
Hardware/Software Co-verification of Cryptographic
Algorithms using Cryptol

Levent Erkök Magnus Carlsson Adam Wick

Galois, Inc.
421 SW 6th Ave. Suite 300

Portland, OR 97204

Abstract—Cryptol is a programming language designed for
specifying cryptographic algorithms. Despite its high-level mod-
eling nature, Cryptol programs are fully executable. Further,
a large subset of Cryptol can be automatically synthesized to
hardware. To meet the inherent high-assurance requirements of
cryptographic systems, Cryptol comes with a suite of formal-
methods based tools that enable users to perform various pro-
gram verification tasks. In this paper, we provide an overview of
Cryptol and its verification toolset, especially focusing on the co-
verification of third-party VHDL implementations against high-
level Cryptol specifications. As a case study, we demonstrate the
technique on two hand-written VHDL implementations of the
Skein hash algorithm.

Index Terms—Specification and Verification, Equivalence
checking, HW/SW Co-verification, Cryptography

I. INTRODUCTION

Cryptol is a domain specific language tailored for the
domain of cryptographic algorithms.1 Cryptol specifications
are fully executable on commodity hardware using an in-
terpreter, and a large subset of Cryptol programs can be
automatically synthesized to various hardware platforms via
translation through VHDL. Explicit support for verification is
an indispensable part of the Cryptol toolset, due to the inherent
high-assurance requirements of the application domain. To this
end, Cryptol comes with a suite of formal-methods based tools,
allowing users to perform various program verification tasks.
In this paper, we provide a short overview of the Cryptol
language, especially focusing on verification.

Cryptol is a pure functional language, built on top of a
Hindley-Milner style polymorphic type system, extended with
size-polymorphism and arithmetic type predicates [1]. The
size-polymorphic type system has been designed to capture
constraints that naturally arise in cryptographic specifications.
To illustrate, consider the following text from the AES defini-
tion [2, Section 3.1]:

The input and output for the AES algorithm each
consist of sequences of 128 bits. ... The Cipher
Key for the AES algorithm is a sequence of 128,
192 or 256 bits. Other input, output and Cipher Key
lengths are not permitted by this standard.

This description is captured precisely in Cryptol by the
following type:

1Cryptol toolset licenses are freely available at www.cryptol.net.

{k} (k >= 2, 4 >= k)
=> ([128], [64*k]) -> [128]

Anything to the left of => are quantified type-variables and
predicates on them. In this case, the type is size-polymorphic,
relying on the size-variable k. The predicates constrain what
values the quantified size-variables can accept: Here, k is
restricted to be between 2 and 4. To the right of =>, we see
the actual type. The input to the function is a pair of two
words, the first of which is the 128-bit plain-text. The second
argument is a 64*k-bit wide word (i.e., 128, 192, or 256
bits, depending on k) representing the key. The output of the
function, the ciphertext, is another 128-bit word. Note how
this type precisely corresponds to the English description.

II. VERIFICATION OF CRYPTOL PROGRAMS

Cryptol’s program verification framework has been designed
to address equivalence and safety checking problems.

The equivalence-checking problem asks whether two func-
tions f and g agree on all inputs. Typically, f is a reference
implementation of some algorithm, following a standard text-
book style description, and g is a version optimized for time
and/or space for a particular target platform. The equivalence-
checking framework allows one to formally prove that f and
g are semantically equivalent, ensuring that the (often very
complicated and extensive) optimizations performed during
synthesis are semantics preserving. Note that the final im-
plementation (i.e., g) need not necessarily be in Cryptol: an
important use case of the verification framework is in verifying
third-party algorithm implementations (typically in VHDL) are
functionally equivalent to their high-level Cryptol versions. In
this case, Cryptol acts as a HW/SW co-verification tool.

The safety-checking problem is about run-time exceptions.
Given a function f , we would like to know if f ’s execution
can perform operations such as division-by-zero or index-out-
of-bounds. These checks are essential for increasing reliability
and availability of Cryptol-based products, since they elimi-
nate the need for sophisticated run-time exception handling
mechanisms whenever applicable.

The Cryptol toolset comes with a push-button equiva-
lence/safety checking framework to answer these questions
automatically for a large subset of the Cryptol language [3].
As the reader might suspect, the push-button system suffers



Fig. 1. Typical design and verification flow in Cryptol. Verification can be performed at various points during the translation, which allows for high-assurance
refinement during development. Note that the major compiler phases (the flow through the top-line) remain out of the trusted-code base for verification:
One only needs to trust the down-arrows representing translators from various intermediate forms to AIG-based formal models, along with the off-the-shelf
equivalence checkers themselves.

from state-explosion, and thus might fail to provide an answer
in a feasible amount of time for larger designs. Cryptol
uses off-the-shelf SAT/SMT solvers (such as ABC or Yices)
as the underlying equivalence checking engine, translating
Cryptol specifications to appropriate inputs for these tools
automatically [4], [5]. However, the use of these external
tools remains transparent to the users, who only interact with
Cryptol as the main verification tool.

It is essential to emphasize that equivalence checking ap-
plies not only to hand-written programs but also to generated
code as well. Cryptol’s synthesis tools perform extensive
and often very complicated transformations to turn Cryptol
programs into hardware primitives available on target FPGA
platforms. The formal verification framework of Cryptol al-
lows equivalence checking between Cryptol and netlist repre-
sentations that are generated by various parts of the compiler,
as we will explain shortly. Therefore, any potential bugs in
the compiler itself are also caught by the same verification
framework. This is a crucial aspect of the system: proving the
Cryptol compiler correct would be a prohibitively expensive
task, if not impossible. Instead, Cryptol provides a verifying
compiler, generating code together with a formal proof that the
output is functionally equivalent to the input program [6], [7].
As opposed to using a deep-embedding in a theorem prover
like ACL2, however, we utilize modern off-the-shelf SAT and
SMT solvers to perform automated equivalence checking.

A. Design and Verification Flow
Figure 1 provides a high-level overview of a typical Cryp-

tol development and co-verification flow. Starting with a

reference specification in Cryptol, the designer successively
refines his program and “runs” his design at the Cryptol
command line. These refinements typically include various
pipelining and structural transformations to increase speed
and/or reduce space usage. Behind the scenes, the Cryptol
tool-chain translates Cryptol to a custom signal-processing
intermediate representation (SPIR), which acts as a bridge
between Cryptol and FPGA-based target platforms. The SPIR
representation allows for easy experimentation with high-
level design changes since it remains fully executable, also
providing essential timing/space usage statistics without going
through the computationally expensive synthesis tasks.

Once the programmer is happy with the design, Cryptol
translates the code to VHDL, which is further fed to third party
synthesis tools. Figure 1 shows the flow for the Xilinx tool-
chain; taking the VHDL through synthesis, place and route,
and bit-file generation steps. In practice, these steps might need
to be repeated depending on feedback from the synthesis tools.
The overall approach aims at reducing the number of such
repetitions greatly, by providing early feedback to the user at
the SPIR level. The final outcome is a custom binary file that
can be downloaded onto an Xilinx FPGA board, completing
the design process.

Our co-verification flow is interleaved with the design
process. As depicted in Figure 1, Cryptol provides custom
translators at various points in the translation process to
generate formal models in terms of AIG (and-inverter graph)
representations [8]. In particular, the user can generate AIG
representations from the reference (unoptimized) Cryptol spec-



ification, from the target (optimized) Cryptol specification,
from the SPIR representation, from the post-synthesis circuit
description, and from the final (post-place-and-route) circuit
description. By successive equivalence checking of the formal
models generated at these check points, Cryptol provides the
user with a high-assurance development environment, ensuring
that the transformations applied preserve semantic equiva-
lence. The final piece of the puzzle for end-to-end verification
is generating an AIG for the bit-file generated by the Xilinx
tools, as represented by the dashed line in Figure 1. The format
of this file remains proprietary, but we hope to provide this
final link through future collaboration with Xilinx.

B. Verification for the Cryptography domain

Cryptol’s formal verification framework clearly benefits
from recent advances in SAT/SMT solving. However, it is also
important to recognize that the properties of cryptographic
algorithms make applications of automated formal methods
particularly successful. This is especially true for symmetric
key encryption algorithms that rely heavily on low-level bit
manipulations instead of the high-level mathematical functions
employed by public-key cryptography.

In particular, symmetric key crypto-algorithms almost never
perform control flow based on input data in order to avoid
attacks based on timing. The series of operations performed
are typically “fixed,” without any dependence on the actual
input values. Similarly, the loops used in these algorithms
almost always have fixed bounds; typically these bounds
arise from the number of rounds specified by the underlying
algorithm. Techniques like SAT-sweeping [9] are especially
effective on crypto-algorithm verification, since simulation-
based node-equivalence guesses are likely to be quite accurate
for algorithms that heavily rely on shuffling input bits. Obvi-
ously, these properties do not make formal verification trivial
for this class of crypto-algorithms; but rather they make the
use of such techniques quite feasible in practice [10].

III. CASE STUDY: SKEIN

Skein [11] is a suite of cryptographic hash algorithms
targeted at the NIST competition for choosing the next-
generation hash function SHA-3 [12]. At its core, Skein uses
a tweakable block cipher named Threefish. The unique block
iteration (UBI) chaining mode defines the mode of operation
by the repeated application of the block cipher function. A
detailed write-up on the Cryptol implementation of Skein is
publicly available [13].

The process of proving that a given VHDL implementation
is functionally equivalent to a Cryptol reference specification
begins with understanding the high-level interfaces of both.
Once the high-level input/output correspondences are deter-
mined, the VHDL implementation is imported into the Cryptol
program using Cryptol’s extern declaration capability. Then,
the required interface-matching code is written in Cryptol,
mainly taking care of the proper use of control-signals.
This allows the external implementation to be available at
the Cryptol command prompt, enabling the user to call it
on specific values, pass it through previously generated test

vectors, essentially making the external definition behave just
like any other Cryptol function. This facility greatly increases
productivity, since it unifies software and hardware under one
common interface. Once the reference specification and the
Cryptol/VHDL hybrid expose the same interface, the user
generates AIGs from both, and checks for equivalence.

We verified our implementation of Skein against two sepa-
rate VHDL implementations using this methodology. In each
case, we have used Alan Mishchenko’s ABC tool as the under-
lying equivalence checker [4]. The verification was performed
for one 256-bit input block, generating a 256-bit hash value.

The first verification was performed against Men Long’s
implementation [14]. Since Long did not implement the full
Skein algorithm, but instead implemented only the underlying
Threefish encryption and the XOR of input data, we tweaked
our reference Cryptol implementation to match this partial
result. The AIG generated for the reference implementation
in Cryptol had 118156 and-gates, while the VHDL version
gave rise to 653963 and-gates; about 5.5 times larger. The
equivalence checking process took about an hour to complete
on commodity hardware using ABC. During the verification
effort, we encountered a problem with a piece of code that
rotates a 64-bit signal a variable number of steps. It was given
three different meanings by GHDL [15], simili [16] and the
Xilinx synthesis tools. We were able to remove the ambiguity
of the code by replacing it with the standard library function
rotate_left. In essence, the Cryptol co-verification path
found an ambiguity bug that remained undetected before.

We performed our second verification against Stefan
Tillich’s Skein implementation [17], which is a full implemen-
tation of the Skein algorithm. The AIG sizes in this case were
301085 and-gates for the reference Cryptol versus 900239 and-
gates for the VHDL implementation; about 3 times larger. In
this case, equivalence checking was completed in about 18
hours using ABC.

Commonly, the VHDL implementations include a global
reset signal that brings back the circuit’s internal registers
to their initial state. In some cases, the reset signal is acted
upon immediately regardless of the clock signal, that is, in
an asynchronous manner. Our tools are currently not able to
generate formal models from VHDL code with asynchronous
resets—instead we have an additional assumption that the
reset signal is only asserted initially and in a synchronous
manner across a rising clock edge. Under this assumption,
we manually perform an equivalence-preserving rewrite of the
VHDL code so that it uses the reset signal synchronously. In
the case of Tillich’s code, this was a local rewrite consisting
of a couple of lines of VHDL code change. While this is
a problem for any asynchronous signal, we plan to enhance
our tools so that they can at least handle asynchronous resets
without the need for manual VHDL code modifications.

IV. CHALLENGES

Increasing the coverage of formal methods: Cryptol’s formal
verification framework works on a (relatively large) subset
of Cryptol [3]. The main limitation is in the verification
of algorithms for all-time, i.e., those programs that receive



and produce infinite streams of data. While infinite streams
pose no challenge for synthesis, Cryptol can only equivalence
check such algorithms up to a fixed number of clock-cycles.
Although this restriction is irrelevant for most block-based
crypto-algorithms, it does not generalize to stream-ciphers
in general. The introduction of induction capabilities in the
equivalence checker or the use of hybrid methods combining
manual top-level proofs with fully-automated SAT/SMT based
sub-proofs might provide a feasible alternative for handling
such problems.

Proving security properties: Unsurprisingly, not all proper-
ties of interest can be cast as functional equivalence problems.
This is especially true in the domain of cryptography. For
instance, if we are handed an alleged VHDL implementation of
AES, we would like to ensure that it not only implements AES
correctly but also that it does not contain any extra circuitry
to leak the key.

The trusted code base: Cryptol’s formal verification system
relies on the correctness of the Cryptol compiler’s front-end
components (i.e., the parser, the type system, etc.), the sym-
bolic simulator, and the translators to SAT/SMT solvers. Note
that Cryptol’s internal compiler passes, optimizations, and
code generators (i.e., the typical compiler back-end compo-
nents) are not in the trusted code base. While Cryptol’s trusted
code base is only a fraction of the entire Cryptol tool suite, it
is nevertheless a large chunk of Haskell code. Reducing the
footprint of this trusted code base, and/or increasing assurance
in these components of the system is an on-going challenge.

V. RELATED WORK

Software/Hardware co-verification problem is an open re-
search area, especially focusing on equivalence checking C-
style programs against RTL implementations [18], [19]. Sim-
ilar to earlier pioneering work in this area, our approach
does not freeze the—usually very large and complicated—
code generator portion of the system, since the code generator
is not in the trusted path. The reduction of the trusted code
base is a significant gain for assurance purposes. Unlike earlier
work, however, we do not assume that the implementations
in these languages are “similar,” or done in certain styles
to enable effective verification. In fact, Cryptol specifica-
tions remain purely functional and hence combinatorial, while
VHDL implementations are typically highly state-based and
thus sequential. Note that, our approach remains bit-precise,
i.e., no simplifying assumptions are made on the semantics of
the underlying languages.

VI. CONCLUSIONS

In this paper, we have provided a brief description of the
Cryptol language, an overview of its verification framework,
and a case study of verifying the hash algorithm Skein. The
novel part of our approach is the bridging of hardware and
software artifacts, allowing designers to treat them uniformly
during verification. The system has already proved itself
useful in practice, especially in establishing the equivalence
of reference and extensively optimized implementations of
crypto-algorithms such as AES. Since such transformations

are done both manually by programmers and automatically
by the compiler and external synthesis tools, it is essential
that automated formal-verification capabilities are seamlessly
integrated into the process, ensuring that the final hardware
implementations are semantically equivalent to their high-level
reference specifications.

ACKNOWLEDGMENTS

Many people have worked on Cryptol and its formal verifi-
cation toolset over the years, including Jeff Lewis, Thomas
Nordin, John Matthews, Sigbjorn Finne, Phil Weaver, and
Sally Browning. Men Long of Intel and Stefan Tillich of TU
Graz kindly made their VHDL code available to us for verifica-
tion and answered several questions on their implementations.

REFERENCES

[1] J. R. Lewis and B. Martin, “Cryptol: high assurance, retargetable crypto
development and validation,” in Military Communications Conference
2003, vol. 2. IEEE, Oct. 2003, pp. 820–825.

[2] NIST, “Announcing the AES,” November 2001, FIPS Publication
197. [Online]. Available: http://csrc.nist.gov/publications/fips/fips197/
fips-197.pdf

[3] L. Erkök and J. Matthews, “Pragmatic equivalence and safety checking
in Cryptol,” in Programming Languages meets Program Verification,
PLPV’09, Savannah, Georgia, USA. ACM Press, Jan. 2009, pp. 73–
81.

[4] A. Mishchenko, “ABC: System for sequential synthesis and verifica-
tion,” 2007, release 70930, Available at: http://www.eecs.berkeley.edu/
∼alanmi/abc.

[5] “Yices web site,” http://yices.csl.sri.com/.
[6] L. Pike, M. Shields, and J. Matthews, “A verifying core for a cryp-

tographic language compiler,” in ACL2 ’06: Proceedings of the sixth
international workshop on the ACL2 theorem prover and its applications.
New York, NY, USA: ACM, 2006, pp. 1–10.

[7] W. A. Hunt and E. Reeber, “Formalization of the DE2 language,”
in Correct Hardware Design and Verification Methods, 13th IFIP
WG 10.5 Advanced Research Working Conference, CHARME 2005,
Saarbrücken, Germany, October 3-6, 2005, Proceedings, ser. Lecture
Notes in Computer Science, vol. 3725. Springer, 2005, pp. 20–34.

[8] A. Biere, “The AIGER And-Inverter Graph (AIG) format,” 2007.
[Online]. Available: http://fmv.jku.at/aiger/FORMAT.aiger

[9] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust boolean
reasoning for equivalence checking and functional property verification,”
IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 21, no. 12,
pp. 1377–1394, 2002.

[10] E. W. Smith and D. L. Dill, “Automatic formal verification of block
cipher implementations,” in FMCAD ’08: Proceedings of the 2008 In-
ternational Conference on Formal Methods in Computer-Aided Design.
Piscataway, NJ, USA: IEEE Press, 2008, pp. 1–7.

[11] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno,
J. Callas, and J. Walker, “The Skein Hash Function Family,” 2009, http:
//www.skein-hash.info.

[12] “NIST Cryptographic Hash Algorithm Competition,” 2008, http://csrc.
nist.gov/groups/ST/hash/sha-3.

[13] S. Finne, “A Cryptol implementation of Skein,” 2009, http://www.galois.
com/blog/2009/01/23/a-cryptol-implementation-of-skein.

[14] M. Long, “Implementing Skein hash function on Xilinx Virtex-5
FPGA platform,” 2009, http://www.skein-hash.info/sites/default/files/
skein fpga.pdf.

[15] “GHDL simulator version 0.26,” http://ghdl.free.fr/.
[16] “Simili VHDL simulator version 3.1,” http://www.symphonyeda.com/

products.htm.
[17] S. Tillich, 2009, The Institute for Applied Information Processing and

Communications (IAIK). http://www.iaik.tugraz.at/content/research.
[18] A. Pnueli, O. Shtrichman, and M. Siegel, “The code validation tool (cvt)

- automatic verification of code generated from synchronous languages,”
Software Tools for Technology Transfer, vol. 2, 1998.

[19] L. Séméria, R. Mehra, B. M. Pangrle, A. Ekanayake, A. Seawright,
and D. Ng, “Rtl c-based methodology for designing and verifying a
multi-threaded processor,” in Proceedings of the 39th Design Automation
Conference, DAC 2002, New Orleans, LA, USA, June 10-14, 2002, 2002,
pp. 123–128.


