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Abstract
Cryptol is programming a language designed for specifying and
programming cryptographic algorithms. In order to meet high-
assurance requirements, Cryptol comes with a suite of formal-
methods based tools allowing users to perform various program
verification tasks. In the fully automated mode, Cryptol uses mod-
ern off-the-shelf SAT and SMT solvers to perform verification in
a push-button manner. In the manual mode, Cryptol produces Is-
abelle/HOL specifications that can be interactively verified using
the Isabelle theorem prover. In this paper, we provide an overview
of Cryptol’s verification toolset, describing our experiences with
building a practical programming environment with dedicated sup-
port for formal verification.

Categories and Subject Descriptors F.3.1 [Logics and mean-
ings of programs]: Specifying and Verifying and Reasoning about
Programs—Mechanical verification

General Terms Languages, Reliability, Verification

Keywords Cryptography, Formal methods, Equivalence check-
ing, SAT/SM solving, Size polymorphism, Theorem proving

1. Introduction
Cryptol is a domain specific language tailored for cryptographic al-
gorithms (www.cryptol.net). Explicit support for program ver-
ification is an indispensable part of the Cryptol toolset, due to the
inherent high-assurance requirements of the application domain. To
this end, Cryptol comes with a suite of formal-methods based tools,
allowing users to perform various program verification tasks.

In this paper, we provide an overview of the Cryptol language
and its verification environment. The challenges in this domain
are multifaceted: from the engineering concerns of providing an
easy-to-use system for non-experts, to open research problems in
program verification. We will explore Cryptol’s verification frame-
work, technologies employed, and the research challenges remain-
ing.

2. A taste of Cryptol
Cryptol is a pure functional language, built on top of a Hindley-
Milner style polymorphic type system (Hindley 1997), extended
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with size-polymorphism and arithmetic type predicates (Lewis and
Martin 2003). The size-polymorphic type system has been designed
to capture constraints that naturally arise in cryptographic speci-
fications. To illustrate, consider the following text from the AES
definition (NIST 2001, Section 3.1):

The input and output for the AES algorithm each consist
of sequences of 128 bits. ... The Cipher Key for the AES
algorithm is a sequence of 128, 192 or 256 bits. Other
input, output and Cipher Key lengths are not permitted by
this standard.

This description is captured precisely in Cryptol by the follow-
ing type:

encrypt: {k} (k >= 2, 4 >= k)
=> ([128], [64*k]) -> [128]

Anything to the left of => are quantified type-variables and predi-
cates on them. In this case, the function encrypt is size-polymorphic,
relying on the size-variable k. The predicates constrain what values
the quantified size-variables can take on: Here, k is restricted to be
between 2 and 4. To the right of =>, we see the actual type. The
type of encrypt is a function, from ([128], [64*k]) to [128].
The input to encrypt is a pair of two words, the first of which is
precisely 128-bits wide; this is the plain-text. The second argument
is a 64*k-bit wide word (i.e., 128, 192, or 256 bits, depending on
k), which corresponds to the key. The output of the function, the
ciphertext, is another 128-bit word.

Note how this type precisely corresponds to the English descrip-
tion in the standard. For instance, it is statically ensured that the
key-size will be one of 128, 192, or 256: the type system would
not let a definition of encrypt be accepted that did not satisfy this
requirement. (Similarly, all call-sites will be checked to satisfy this
requirement as well.) Cryptol’s expressive power in stating precise
size relationships is one of its key advantages. In other languages,
such constraints would either only appear in comments, or at best
get dynamically checked at run-time, instead of being enforced stat-
ically at compile-time as in Cryptol.

Predicates and type-expressions in Cryptol can specify arbitrary
arithmetic constraints on the quantified variables, including non-
linear operations. For instance, here is a padding function that adds
enough 0’s to a bit-stream to make its length a multiple of 32:

pad32 : {a} (fin a, (32*((a+31)/32)) >= a)
=> [a] -> [32*((a+31)/32)];

pad32 bs = bs # zero;

Notice how the arithmetic expressions describe the type, and the
operation of pad32, very precisely.1

1 The fin predicate states that the input must be a positive integer that is
provably finite. (Cryptol can deal with infinite streams as well, a crucial



Having such a precise type pays off nicely in the definition of
pad32: It simply appends (the # operator) the polymorphic con-
stant zero (which is the shape-polymorphic sequence of 0-bits) to
its input. The actual number of bits to append is encoded in the
polymorphic type, and hence need not be explicitly computed by
the user. (It is an interesting exercise to compare this definition to
an implementation in a language like C.) By lifting such size con-
straints to types, Cryptol allows both for very precise specifications
that are enforced by the compiler, and much simpler implementa-
tions that are easier to write, understand, and maintain.

While this flexibility is crucial for expressive power, it comes
with a price: Full type-checking for Cryptol would require a system
where arbitrary arithmetic predicates over integers with non-linear
operators can be proven equivalent, which is an undecidable prob-
lem (Tarski et al. 1953). As a practical consequence, Cryptol can
sometimes fail to discharge predicates that express mathematical
tautologies. For instance, the reader can verify that the constraint

32*((a+31)/32) >= a

that appears in the type of pad32 is in fact unnecessary, since it
holds for all possible values a can take. (Size variables range over
non-negative integers.) While Cryptol can discharge many such
constraints using an internal arithmetic solver, it does not always
succeed in doing so, causing tautological predicates to show up
in function signatures and corresponding call-sites. Although these
predicates are harmless from a theoretical point of view, they might
be confusing for unsuspecting users.

3. Verification of Cryptol programs
Cryptol’s program verification framework has been designed to
address equivalence and safety checking problems.

The equivalence-checking problem asks whether two functions
f and g agree on all inputs. In case f and g are not equivalent, we
would like to find a particular value x such that f x 6= g x.

The safety-checking problem is about run-time exceptions.
Given a function f , we would like to know if f ’s execution can per-
form operations such as division-by-zero or index-out-of-bounds.
If so, we would like to know what particular input values will re-
sult in an exceptional behavior. (We will discuss safety-checking in
detail in Section 6.)

Users interact with Cryptol’s verification system via theorem
declarations. Here is an example Cryptol theorem, named C, stating
that dec and enc are cryptographic inverses of each other:2

theorem C: {key pt}.
dec(key, enc(key, pt)) === pt;

Theorems in Cryptol are simply bit-valued functions, taking
their quantified variables as inputs, returning True or False as
their result. We call this the theorem-function correspondence. This
unified view provides a consistent and familiar environment for
end-users, avoiding the need for an extra language to express prop-
erties. As a nice consequence, proving a Cryptol theorem simply
amounts to showing that it is equivalent to the constant function
that always returns True. This is the main mechanism that connects
program verification to equivalence checking in Cryptol.

As the reader might suspect, there are no known methods for
automatically proving arbitrary Cryptol theorems (or perform-
ing safety checks). Furthermore, even when an automated proof

feature for encoding bit-stream ciphers.) The arithmetic division (/) oper-
ator returns the quotient, ignoring the remainder. To compute the next size
from a that is a multiple of 32, we simply add 31 and divide by 32; deter-
mining the number of 32-bit chunks we need to have in the result. The final
bit-size is simply 32 times the number of chunks.
2 The notation “{key pt}.” reads “for all values of key and pt.”

might be possible, time/memory requirements might make the ap-
proach infeasible. Therefore, Cryptol provides two main verifica-
tion routes:

• Fully-automated: For a restricted (but relatively large) subset of
Cryptol, both equivalence and safety checking problems can be
decided. For this subset, Cryptol provides fully automated tools
to prove theorems with no further user involvement.
• Semi-automated: When automated solvers are not suitable,

Cryptol provides a tool to translate Cryptol theorems to Is-
abelle/HOL automatically, where proofs can be manually con-
structed by the user.

It is a fair question to ask why Cryptol’s formal-methods tools
only focus on safety and functional-equivalence checking, instead
of adapting a more general logic for expressing and proving prop-
erties. The reasons are quite practical:

• To do equivalence checking, users need not learn any new
language in which to express properties. The term language of
Cryptol is sufficient to express functional correctness properties
concisely.
• Equivalence checking works well with an incremental develop-

ment model; successive versions of an algorithm can be proven
equivalent to a known “reference” specification, following the
stepwise-refinement approach.
• Due to the theorem-function correspondence, all Cryptol the-

orems are executable. We take advantage of this correspon-
dence by providing a “quick-check” facility, where theorems
are checked automatically over randomly generated input data
to aid in high-assurance development (Claessen and Hughes
2000).
• Counterexamples provided by equivalence checkers are ex-

tremely important. Having a concrete “bug” to look at makes all
the difference in providing a practical verification environment
for end-users.

Also, on the social side, we have found that the equivalence
checking approach lowers the barriers for the adoption of formal
methods. Since the users are not required to write program proper-
ties in an unfamiliar logic, equivalence checking is easier to intro-
duce into daily development activities. The automated quick-check
facility provides instant feedback, empowering users to try alter-
nate ideas with a certain degree of confidence with no extra cost.
Additionally, theorem declarations mixed with source-code serve
as valuable documentation that is guaranteed not to become obso-
lete as the code around them evolves.

Equivalence checking applies not only to user programs, but
also to compiler generated code as well. Cryptol’s FPGA compiler
performs extensive and often very complicated transformations to
turn Cryptol programs into hardware primitives available on tar-
get FPGA platforms. The formal verification framework of Cryp-
tol also allows equivalence checking between Cryptol and netlist
representations that are generated by various parts of the compiler.
Therefore, any potential bugs in the compiler itself are also caught
by the same formal verification framework. This is a crucial as-
pect of the system: proving the Cryptol compiler correct would
be a prohibitively expensive task, if not impossible. Instead, Cryp-
tol provides a verifying compiler, generating code together with a
formal-proof that the output is functionally equivalent to the input
program.

4. Automated equivalence checking
The main idea behind automated equivalence checking is to trans-
late Cryptol into a much simpler symbolic bit-vector (SBV) lan-



guage, for which there are existing decision procedures. This trans-
lation is done via symbolic execution. To illustrate, let us consider
a very simple cipher, which simply adds/subtracts a key:3

enc, dec: {a b} ([b], [a][b]) -> [a][b];
enc (key, pts) = [| pt + key || pt <- pts |];
dec (key, cts) = [| ct - key || ct <- cts |];

We would like to prove theorem C from Section 3 for this encryp-
tion/decryption pair, proving that they are inverses of each other. In
this case, theorem C has the following polymorphic type:

C : {a b} ([a],[b][a]) -> Bit

As we shall see in Section 7.1, we can only prove theorems at
monomorphic instances. So, let us fix a to be 8 and b to be 2, and
prove C at the following monomorphic type:

C : ([8],[2][8]) -> Bit

That is, the key and plain-text are each 8-bits wide; and we are in-
terested in encrypting/decrypting 2 blocks at a time. The symbolic
interpreter executes C over symbolic variables, obtaining the fol-
lowing SBV program:

INPUT s0:[8]
INPUT s1:[8]
INPUT s2:[8]
s3:[8] = (s1:[8] + s0:[8])
s4:[8] = (s3:[8] - s0:[8])
s5:[1] = (s1:[8] = s4:[8])
s6:[8] = (s2:[8] + s0:[8])
s7:[8] = (s6:[8] - s0:[8])
s8:[1] = (s2:[8] = s7:[8])
s9:[1] = (s5:[1] & s8:[1])
OUTPUT s9:[1]

The input key is represented by the 8-bit symbolic quantity s0.
The input vector pts is represented by two variables, s1 and s2,
one for each 8-bit wide plain-text value. It is easy to see that s3
and s6 represent the encrypted text, while s4 and s7 represent the
results of decryption. The variables s5 and s8 check that the final
results match the inputs. Hence, proving the theorem amounts to
showing that the value of s9 is always 1 regardless of the values of
s0-s2.

While the details of the SBV format are beyond the scope of
this paper, the following points are worth noting:

• The program is completely monomorphised.
• Cryptol types are serialized into of fixed-size bit-vectors. The

target language only consists of bit-vector data and arith-
metic/logical operations on them, all expressed in a three-
address form. In particular, there are no nested expressions.
• All function calls are completely translated away via unrolling.

There are no jumps remaining, the output is a straight-line
sequence of bit-vector operations. (Termination of the unrolling
process is sometimes a problem. We will discuss this issue in
Section 7.4.)
• The resulting SBV program is in static-single-assignment form:

Each variable si is assigned exactly once.

Compiling Cryptol into SBV is only the first (and the easier)
part of the verification task. The more challenging task is to show
that the final output of an SBV program always equals 1 regardless
of its inputs, as we discuss next.

3 The type [a][b] denotes a sequence of a elements, each of which is
of type [b]. The type [b], short-hand for [b]Bit in Cryptol, indicates
a sequence of b bits, analogously.

4.1 SAT based equivalence checking
It is a fairly straightforward task to bit-blast an SBV program to
obtain a corresponding bit-level representation. The idea is to rep-
resent each bit-vector operation by a series of operations on indi-
vidual bits, much like how they would be implemented in hardware.
In this manner, the SBV-decision problem can be reduced to an in-
stance of SAT, the boolean satisfiability question, using only the
bit-and (∧) and negation (¬) operations.

Once this translation is done, we simply ask a SAT solver
whether there are any assignments to input variables such that
the output node will ever be 0. If the answer to this questions is
“unsatisfiable,” meaning there are no such input values, we can
conclude that the original theorem is indeed valid. If, on the other
hand, there are values for the inputs making the output node 0, we
will have found a counterexample to the statement of the theorem,
i.e., a bug.

This approach does indeed yield a decision procedure for the
Cryptol equivalence-checking problem by reduction to SAT. Un-
fortunately, the feasibility of this approach depends on the par-
ticular problem at hand, since SAT is NP-complete. On the pos-
itive side, research in SAT-solving over the last decade has had
several major breakthroughs and many good SAT solvers are now
freely available, such as minisat (Eén and Sörensson 2003), and
abc (Mishchenko 2007). Cryptol gets distributed with the jaig
tool (Nordin 2005), which is built on top of minisat, incorporating
a number of Cryptol-specific heuristics.

While the problem remains NP-complete, we have found that
the SAT-based approach works well for the kinds of structural
transformations the Cryptol compiler tends to perform, such as au-
tomated pipelining and rewrite-based simplification. For instance,
we were able to prove that a 55-stage pipelined implementation
of 128-bit AES is equivalent to its (unpipelined) reference imple-
mentation in about 30 seconds with the jaig tool, and in about 28
minutes with abc, both on commodity hardware. (The generated
SAT problem in this case had about 1.7-million AND-gates.)

4.2 SMT based equivalence checking
The main limitation of the SAT-based approach is that it ignores
the high-level structure of the verification problem. For certain
problems, most notably functions involving multiplication, the
SAT based approach does not scale well. A recent alternative is
to use SMT (satisfiability-modulo-theories) solvers, which come
equipped with dedicated solvers for bit-vector problems. The key
idea is to delay the bit-blasting process as much as possible, taking
advantage of any arithmetic or structural properties that might be
present in the problem.

Cryptol has connections to several SMT solvers, including
Yices from SRI (Duterte and de Moura 2006) and CVC3 from
NYU (Barrett and Tinelli 2008).4 Similar to the SAT case, Cryptol
sends the question if the output can ever be 0 to the SMT solver;
for which any potential model generated by the external tool would
indicate a bug found.

We have found that SMT-based solvers perform better for
handling problems that have a higher-level structure, especially
those depending on algebraic equalities. However, many crypto-
graphic algorithms rely on extensive bit-level manipulation and
bit-shuffling by their very nature, so we have not seen a dramatic
speed-up in using SMT-based solvers for such algorithms. On the
other hand, SMT-solvers for the bit-vector theory are still in their
infancy. We are encouraged by the results of recent SMT-solver
competitions, and we believe that SMT solvers will be an integral
part of Cryptol’s automatic verification toolbox as they mature.

4 Cryptol has a generic API to integrate any SMT solver using the SMT-Lib
format, so adding new solvers is a straightforward task.



This is especially true as we start tackling problems in elliptic-
curve cryptography, which typically rely on high-level algebraic
equalities instead of low-level bit-jumbling.

5. Finding satisfying assignments
We have noted in Section 4 that proving a Cryptol theorem amounts
to showing it equivalent to the constant function that always re-
turns True. There is a nice dual as well: For bit-valued func-
tions, any counter-examples obtained when showing equivalence
to the constant function False are essentially the satisfying assign-
ments. Cryptol’s :sat command precisely implements this idea.
(In essence, this technique allows expressing a limited form of ex-
istentially quantified properties in Cryptol.)

To illustrate, consider how one can formulate the known plain-
text attack using a satisfiability query in Cryptol. If we know that
algorithm enc produces ct for input pt, we can try to find the key
using a query of the form:

> :sat (\key -> enc (key, pt) === ct)

We should emphasize that Cryptol is not a crypto-analysis tool:
The associated verification tools are not meant to be used for estab-
lishing cryptographic strength of algorithms. In fact, the expecta-
tion in posing such a query is that the automated solvers will take an
infeasible amount of time to answer it! The :sat command is most
useful in using Cryptol to solve simple constraint satisfaction prob-
lems, taking advantage of the power of the underlying SAT/SMT
solvers.

Checking satisfiability of a bit-valued function and proving
equivalence of two functions are equivalent problems from a theo-
retical point of view. (Showing f equals g amounts to showing that
the function \x -> f x != g x is not satisfiable. In the other
direction, proving f unsatisfiable is the same as showing that it
is equivalent to the function \x -> False, as we noted earlier.)
However, we have found that supporting both functionalities in
Cryptol’s formal verification toolbox allows users to express the
desired properties in the most natural way.

6. Ensuring safe execution
The other weapon in Cryptol’s verification toolbox is the automated
verification capability that programs cannot cause run-time excep-
tions, such as division-by-zero or index-out-of-bounds. If such an
exception is possible, Cryptol will display a particular input value
that causes the exception. Here is an example to illustrate this facil-
ity in action:

> :safe (\(x,y) -> x/y:[8])
*** Violation detected:
((\(x,y) -> x/y:[8])) (0x00, 0x00)

= divide by zero

If proper care is taken to avoid such failures, the function will be
proven safe:

> :safe (\(x,y) -> if y==0 then 1
else x/y:[8])

*** Verified safe.

The technique for ensuring safe execution relies on generating
verification conditions during symbolic execution. As the symbolic
interpreter executes, it keeps track of its control path, i.e., all the
test expressions of the if-then-else expressions it has gone
through. Then, for each potentially unsafe operation, it generates
a verification condition to ensure that the operand values are safe
whenever this particular path is taken.

For instance, in the second example above, Cryptol generates
the verification condition y 6= 0 for the else-branch, i.e., in the

control path where y == 0 is false, which easily gets discharged
by the prover. In the first example, the same verification condition
is generated in the empty control path, which cannot be discharged
and hence reported to user as a safety violation. Other operations
are similar. Index-out-of-bounds exceptions, for instance, causes
the symbolic interpreter to generate the verification condition that
the value of the index is less than the length of the sequence being
indexed in the current control path.

Automated safety-checking addresses an inherent source of
software bugs. Unsurprisingly, manually performing such checks
becomes simply infeasible as programs get larger. In fact, we were
able to identify several safety issues in programs that were man-
ually translated from their original C implementations to Cryptol.
Further inspection of the code revealed that the hand-translations
were indeed correct; it was the original C programs that had the
corresponding safety problems, yet they survived the test suites
that were explicitly designed to validate them.

The following exceptions are caught by Cryptol’s safety checker:
(1) Division and modulus by 0, (2) index-out-of-bounds, (3) call-
ing lg2 (the base-2 logarithm function) on 0, (4) uses of Cryptol’s
error function and undefined value, and (5) failure cases for
Cryptol’s ASSERT expression.

The last two items are especially important. Cryptol’s error
function and the undefined value causes a user-generated run-
time exception if their value is ever needed. They are typically used
by programmers to indicate that an unexpected case has happened.
ASSERT expressions are similar, they are mainly used for writing
invariants. The safety checker ensures either that these cases will
never happen, or it will provide a concrete counterexample where
the unexpected case does indeed happen, indicating a bug.

The only two other run-time exceptions that are not caught by
the safety-checker are the cases where the program runs out of
memory or stack. The former can happen in the presence of large
data and/or space leaks. The latter can happen if there are non-
terminating execution paths. However, if the program is susceptible
to these errors, the symbolic execution itself will fail as well. That
is, the :safe command will fail to complete, alerting the user.

7. Restrictions of the automated system
Having given an overview of Cryptol’s automated verification
framework, let us now turn to the question of what subset of Cryp-
tol is subject to this analysis. The push-button framework applies
only to theorems that are:

• Monomorphic (Section 7.1),
• Finite (Section 7.2),
• First-order (Section 7.3),
• Symbolically terminating (Section 7.4).

The first three restrictions can be solely detected by looking
at the type of the theorem. (The verification framework will alert
the user if they are violated.) The last restriction is undecidable
in general. In this case the verification process itself might fail to
terminate.

7.1 Polymorphism
Polymorphic programming is a key technique for developing
reusable components. In the case of Cryptol, size-polymorphic
definitions are typically used to encode algorithms that work uni-
formly over multiple key/block sizes, as we have seen in Section 2.
Naturally, properties about such functions themselves tend to be
polymorphic as well.

Unfortunately, proving polymorphic theorems is beyond the ca-
pabilities of the automated verification system. The backend de-



cision procedures that perform the verification task only work on
monomorphic programs. Therefore, only particular monomorphic
instances can be automatically verified, as we have explained in
Section 4.

The question arises, then, whether a proof at a particular
monomorphic type is sufficient to conclude polymorphic validity.
The answer is, unfortunately, no. While this intuition does hold for
many practical cases, we can surely write theorems that are only
valid at certain monomorphic types. Here is a simple example:

theorem P: {x}. x*x <= x+x+x;

The inferred type of P is: {a} (fin a) => [a] -> Bit.5 The
validity of this theorem depends on what bit-size it is instantiated
at. Here are two particular cases:

• a = 2: In this case the arithmetic is done modulo 22 = 4. The
possible values for x are 0, 1, 2, and 3. The user can easily
verify that the statement is indeed a theorem for all these input
values.
• a = 3: The arithmetic is now done modulo 23 = 8. The

variable x ranges from 0 to 7. It is easy to see that when x = 6,
the theorem states 4 <= 2, which is false.

This observation leads to the first restriction on the automated
prover: Only theorems at a monomorphic type can be proven.
Validity of polymorphic theorems cannot be automatically estab-
lished.

As the reader might suspect, not all polymorphic theorems are
size-sensitive in practice. It is an open research problem to devise
an algorithm to determine if a given polymorphic Cryptol theorem
is size-independent in this sense.

7.2 Dealing with infinite streams
Functions that accept and return infinite streams are not sup-
ported by the automated verification system. There is simply no
way to represent an arbitrary infinite stream symbolically. (Recall
that SBV programs have only bitvector data of arbitrary-but-fixed
sizes.)

The most interesting case is functions that return an infinite
stream, typically used to represent sequential output in Cryptol. To
illustrate, consider the following theorem:6

theorem I: {x}. [y (y+1) ..] === [z (z+1) ..]
where { y = x+x; z = (2:[8])*x };

Theorem I states that the infinite sequences

[(x+x) (x+x+1) (x+x+2) ..]

and

[(2*x) (2*x+1) (2*x+2) ..]

are equivalent. Since Cryptol’s equivalence checker cannot sym-
bolically execute an infinite sequence producing function, we will
have to restrict ourselves to only finite segments of the output:

theorem I’: {x}.
take (100, [y (y+1) ..])

=== take (100, [z (z+1) ..])
where { y = x+x; z = (2:[8])*x };

5 The fin (finite) predicate comes from the use of arithmetic operations and
comparison. All arithmetic in Cryptol is modular, with modulus 2n where
n is the size of the arguments.
6 Cryptol’s enumeration syntax [a b ..] represents the infinite sequence
starting with a, successively incrementing the previous element by b− a at
each position, with wrap-around using modular arithmetic.

In general, proving equivalence over an infinite stream of out-
put would require induction, which is beyond the capabilities of
Cryptol’s push-button equivalence checking system.

7.2.1 Counter based attacks
While proving equivalence for a segment of length k might provide
some evidence of correct behavior, it does not provide a proof of
correctness. In the particular domain of cryptography, such proofs
will fail to identify malicious code based on counters. The idea
is simple: A malicious implementation of an encryption algorithm
could deliberately “behave” correctly for k cycles, and start to leak
the secret key afterwards. To illustrate, let enc be an encryption
algorithm. Here is a definition for enc’, which starts leaking the
key after one thousand cycles of correct execution:

enc’ (key, pts) = take(1000, enc (key, pts))
# [key key ..];

A theorem stating enc and enc’ behave the same for any finite
prefix will fail to identify the malicious code, unless the prefix size
happens to be larger than one thousand.

7.2.2 Refactoring
In certain cases, it might be possible to refactor a function produc-
ing an infinite stream into a form that is easier to verify automati-
cally. Let us reconsider theorem I from Section 7.2. It is easy to see
that we can use a seed-value/next element encoding to implement
its components:

gen1, gen2 : [8] -> ([8], [8] -> [8]);
gen1 s = (s+s, \v -> v+1);
gen2 s = (2*s, \v -> v+1);

The first element of the output tuple corresponds to the first ele-
ment of the output, while the second element is the function cap-
turing how successive elements are related. We can easily use the
equivalence checker to prove equivalence of these two components
separately.

How do we use this state machine representation in a real
program? Such a machine can be turned into an infinite stream
producing function as follows:

m2s : {a b} (a -> (b,b -> b)) -> a -> [inf]b;
m2s f = \x -> res
where { (seed, next) = f x;

res = [seed]
# [| next r || r <- res |]

};

Note that m2s itself will not be part of the verification path; we will
only have to work with gen1 and gen2 in the proof.

While refactoring may first seem to be a tedious task, it is
usually an exercise that is well worth the effort. Notice that only
the top-level infinite-stream producing function we are equivalence
checking has to be refactored this way. (Using infinite streams
elsewhere in the program is actually an encouraged Cryptol idiom
that is fully supported by the equivalence checker.) Furthermore,
such functions typically follow a well-defined encryption mode
such as cipher-block-chaining or counter modes (Dworkin 2001).
Therefore, the rewrite needed is generally rather rudimentary.

7.3 Higher-order functions
A higher-order function takes or returns another function as an ar-
gument (such as the m2s function from Section 7.2.2). Equivalence
checking in the presence of higher-order functions is an undecid-
able problem in general. Unsurprisingly, our symbolic execution
based equivalence checking framework does not support such func-
tions, as there is no data-type to map them to in the SBV language.



Techniques such as firstification/defunctionalization might prove
helpful in dealing with such problems, should one need to work
with higher-order theorems (Reynolds 1972).

7.4 Symbolic termination
The final restriction for automated verification in Cryptol is the
requirement of symbolic termination: All recursive calls in a given
function must terminate with respect to the initial set of symbolic
inputs.

To illustrate, consider the following function sum, which com-
putes the sum of numbers up to n, modulo 8:

sum : [8] -> [8];
sum n = if n == 0 then 0 else n + sum (n-1);

The function sum is not symbolically terminating: The base case of
its recursive definition relies on a non-static check. That is, in order
to stop the recursive call, we have to compare the symbolic input
variable n against 0, which cannot be done statically. It is important
to note that the function sum is terminating for all (concrete) inputs.
Symbolic termination is a stronger property than termination.

Here is how one can rewrite sum so that it is symbolically
terminating:

sum’ : [8] -> [8];
sum’ n = s (n, 0)
where s (n, mx) =

if (n == 0) | (mx == 255)
then 0
else n + s (n-1, mx+1);

The mx argument keeps track of how deep we can recurse. We start
by calling s with the constant value of 0 for mx, which is incre-
mented at each recursive call. At the 256th unfolding of s, the value
of mx will be 255. Therefore the expression (n == 0) | (mx ==
255) will be reduced to True by the symbolic simulator, even
though n is symbolic. Therefore, the unfolding will stop, terminat-
ing the translation process. (Contrast this to the original definition
of sum above, where the test of the if expression always remains
symbolic, causing the symbolic simulator to run indefinitely.) This
alternative definition of sum can now be used for automated equiv-
alence checking since the termination will be controlled by a static
argument.

Unfortunately, the symbolic termination requirement is not
something Cryptol can check ahead of time and warn the user
against, as opposed to all the other restrictions. On the other hand,
symbolic termination is a rare issue in Cryptol, since recursive
functions are typically discouraged and rarely needed in practice.
(Also see Section 10.1 for a technique to remove this restriction
completely.)

8. Verification via theorem proving
Cryptol’s automated verification system works in a complete push-
button manner, providing a seamless integration between daily pro-
gramming and formal verification. Unfortunately, the fully auto-
mated system is not the panacea. Some important Cryptol theorems
can not be proved in a reasonable amount of time (i.e. several days)
by any of the SAT or SMT solvers currently available. These prob-
lems typically rely on high-level algebraic equivalences, and in-
volve sub-problems that are notoriously hard for SAT/SMT solvers,
such as multiplication.

Large-word modular multiplication underlies many public-key
crypto algorithms such as RSA and ECC (Elliptic Curve Cryp-
tography). A modular multiplication algorithm computes u × v
mod m where u, v, and m are all unsigned bitvectors of hun-
dreds or thousands of bits wide. However, using the SAT and

SMT solvers currently available to us we cannot verify even sim-
ple implementations of ordinary bitvector multiplication (u × v)
at these word sizes, much less modular multiplication. In fact,
equivalence checking even simple multiplication properties such as
(a× b)× c = a× (b× c) is known to take time exponential to the
word size of the variables involved, at least when using the current
SAT based technologies (Kroening and Strichman 2008, Section
6.3.1).

To deal with these difficult theorems we have recently added a
translator from our SBV format to the Isabelle proof assistant (Nip-
kow et al. 2002). Isabelle has a wide array of existing rewrite and
proof search methods, and also allows users to certify their own
custom proof strategies. The use of a proof assistant such as Is-
abelle allows one to integrate human insight into the proof process
when fully automated tools do not provide a feasible alternative.

8.1 Example Isabelle proof
To illustrate the use of Isabelle in equivalence checking, let us re-
consider theorem C from Section 4. Below is the Isabelle translation
of this theorem, automatically generated by Cryptol:

theory Example imports SBV
begin
consts v0 :: 8 word
consts v1 :: 8 word
consts v2 :: 8 word

definition v3 :: 8 word where v3 = v0 + v1
definition v4 :: 8 word where v4 = v3 - v0
definition v5 :: 1 word where

v5 = bool2bv (v1 = v4)
definition v6 :: 8 word where v6 = v0 + v2
definition v7 :: 8 word where v7 = v6 - v0
definition v8 :: 1 word where

v8 = bool2bv (v2 = v7)
definition v9 :: 1 word where

v9 = (v5 AND v8)

lemmas sbv_defs =
v3_def v4_def v5_def v6_def
v7_def v8_def v9_def

lemma match: v9 = (1 :: 1 word)
oops (* User’s proof script goes here *)

end

In the Isabelle/HOL translation the symbolic SBV inputs s0, s1,
and s2 become uninterpreted constants v0, v1, and v2 of the
theory, and each SBV definition becomes a corresponding defined
constant. Each Isabelle definition statement also generates a
corresponding theorem asserting that the left- and right-hand sides
of the definition are equal. For user convenience during proofs,
these theorems are collected up into a named list of lemmas called
sbv defs. Finally, we add a postulated lemma match stating that
the output variable v9 is always 1, regardless of the values of the
uninterpreted constants v0, v1, and v2. The oops proof command
on the next line tells Isabelle to abort the proof attempt and not
record match as a proved theorem.

At this point the user must step in and replace oops with an
appropriate proof script. This is where the user intervention comes
into play. As we shall see shortly, the following simple script is
sufficient in this case:

apply (unfold sbv_defs)
apply simp
done



The command unfold sbv defs expands all definitions referred
to in sbv defs, resulting in the proof state

goal (1 subgoal):
1. bool2bv1 (v1 = v0 + v1 - v0) AND

bool2bv1 (v2 = v0 + v2 - v0) = 1

The command simp can now solve this subgoal directly, using
arithmetic simplification rules and rewrite rules for bool2bv1
that we have previously installed in Isabelle’s database of default
rewrites. The new proof state becomes:

goal:
No subgoals!

Since the proof is now finished, the final command done instructs
Isabelle to record the original formula as a certified lemma.

8.2 Verifying large-word multiplication
We have also used Isabelle to prove theorems that could not be
handled by our existing automated tools. For example, we have
verified a simple implementation of a large-word multiplier, estab-
lishing that it corresponds to Isabelle’s definition of multiplication.
In this case we had to prove auxiliary lemmas that allowed us to
rewrite all bitvector expressions in terms of modular arithmetic on
unbounded integers. We were then able to carry out the verification
using Isabelle’s existing database of modular arithmetic lemmas as
well as a library of new modular arithmetic rewrites we proved cor-
rect. (This library is shipped with Cryptol to aid end-users construct
similar proofs.)

Because the multiplier implementation had been completely un-
rolled by the SBV translator, the intermediate Isabelle terms grew
quite large. To prevent these terms growing even larger and swamp-
ing the simplifier, we had to develop a custom rewriting strategy
that carefully staged the order in which rewrite rules were applied.
Isabelle was then able to verify a 256-bit implementation of the
multiplication problem in 25 minutes, and a 384-bit implementa-
tion in about 2.5 hours, which are both beyond the capabilities of
currently available SAT/SMT solvers.

8.3 Isabelle limitations
Although these timings are far better than we could get from cur-
rent push-button tools, they do not scale arbitrarily. In particular,
Isabelle’s simplifier represents all terms as trees. However, the orig-
inal SBV expressions actually represent a directed-acyclic-graph
(DAG), and usually have a lot of subterm sharing. Expanding this
DAG representation into a tree can easily cause an exponential
blowup in the term sizes. There have been Cryptol theorems we
could not verify using Isabelle’s current simplifier because of this
blowup.

It is possible to certify a custom simplifier in Isabelle that would
preserve SBV’s DAG representation. However we have not done
this yet. Instead, we are planning to add rewrite strategies directly
into DPT, an open source SMT solver (Goel et al. 2008). Here we
hope to gain the best of both worlds, combining the efficient DAG
term representation, case splitting, and backtracking strategies of
an SMT solver with the higher level rewrite strategies available in
proof assistants such as Isabelle.

To ensure that our combined solver is still sound, we also plan
to leverage a proof logging facility that is currently being added to
DPT. We would replay DPT proof logs in Isabelle, being careful
to maintain the proof’s DAG term structure. Isabelle can already
replay very large SAT proofs using similar techniques (Weber and
Amjad 2007).

9. Related work
Equivalence checking has a long history in the hardware design
community, and is one of the flagship applications of formal-
methods in industry (Huang and Cheng 1998). Equivalence check-
ing software against software, and software against hardware are
also very active research topics (Feng 2007). We review some of
the most relevant work below, mostly from a programming lan-
guage/theorem proving point of view.

9.1 Safety checking stream-transformers
Cryptol is an example of a stream transformer language, where
time-dependent behaviors—wires—are explicitly represented as
streams (infinite sequences). Stateful programs are then represented
as pure functions that take and deliver streams.

Lustre is a commercial stream transformer language that targets
safety-critical reactive programs (Halbwachs et al. 1991). Lustre
is the core language of the SCADE toolset, provided by Esterel
Technologies, Inc. SCADE comes with a sequential safety checker,
which can check that a property holds of every element of a Lustre
infinite stream. In contrast, our safety checker can only check these
kinds of properties for a fixed, finite prefix. Full sequential safety
checking has not been a priority for us, since crypto-algorithms
are designed to terminate after a fixed number of iterations, as
otherwise they would be vulnerable to timing attacks.

Recently Hagen and Tinelli have also implemented a sequential
safety checker for Lustre named Kind, using Yices as its underlying
SMT-solver (Hagen and Tinelli 2008).

As far as we know, there are no equivalence checkers for Lustre,
either bounded or sequential.

9.2 Interactive theorem proving
Many cryptographic algorithms have been specified in the formal
logics of interactive theorem provers (Toma and Borrione 2005;
Duan et al. 2005). This approach has the benefit of leveraging a very
powerful verification platform for proving both safety and equiva-
lence properties, at the cost of requiring expert human guidance to
carry out the proofs.

9.3 Shallow embedding into higher-order-logics
Various subsets of Cryptol have been embedded in higher-order
logics before, for the purposes of modeling and theorem prov-
ing (Li and Slind 2005; Hurd 2007). In each case, termination
was a big issue since the target logics (close variants of HOL)
only admit total functions. The other main difficulty was in find-
ing a faithful embedding with respect to Cryptol’s size-types. In
Li and Slind’s approach, lazy lists are used for representing all se-
quences. This allows for a flexible means for manipulating them
easily, but loses size type information. In Hurd’s approach, func-
tions from naturals represent infinite sequences, while functions
from singleton-numeric types are used to represent finite ones. Al-
though Hurd’s approach is more precise, it does not handle size-
polymorphic Cryptol functions that accept both finite and infinite
sequences, due to the fundamental difference in how these two
types are represented.

9.4 Verifying compilers
Theorem provers have also been used as verifying compilers to au-
tomatically prove that a compiler has generated correct code for a
given crypto specification (Pike et al. 2006; Slind et al. 2007). This
is in contrast to a verified compiler which has a once-and-for-all
proof that the compiler itself is correct. We use our equivalence
checker as a limited form of a verifying compiler for Cryptol’s
VHDL synthesizer: at various stages of the compiler we can output
a circuit representation of the compiler’s intermediate representa-
tion language. We symbolically simulate each circuit for a fixed



number of clock cycles, and then check that the result is equivalent
to what the original Cryptol specification says the output should be
at that particular clock cycle.

10. Future work
There are a number of research opportunities/challenges regarding
equivalence and safety checking in Cryptol. In this section, we will
briefly describe some of the most promising possibilities.

10.1 Precise termination analysis
Recall from Section 7.4 that the automated verification system re-
quires all recursive functions to be symbolically terminating. In
fact, this restriction is not fundamental and can be lifted completely.
The problem arises since the symbolic simulator takes a conserva-
tive approach when dealing with if-expressions: Unless the test ex-
pression statically evaluates to True or False, it simply expands
both branches. An alternative approach would be to check whether
it is possible to have a True or False value computed instead. If
one of these values is not possible, then we can simply eliminate
that branch. For instance, in the sum example from Section 7.4,
we can statically determine that the if-expression will necessarily
evaluate to True at the 255th unfolding of the recursive call, al-
lowing us to stop the infinite unfolding at that point. Since all data
domains are finite in Cryptol, we can always decide this question
using a SAT/SMT solver during the translation process itself.

While the implementation of precise termination analysis is not
particularly hard, it would be best to use an incremental solver
for performing the termination queries. (An incremental solver is
one where satisfiability checks can be done incrementally, allow-
ing one to add further constraints in between these checks.) Un-
fortunately, neither the SMT-Lib language we are using for com-
municating to SMT-solvers, nor the AIG format we use for com-
municating to SAT-based solvers allow incremental queries. With a
non-incremental solver, we would be running similar queries over
and over, which would dominate analysis time, making the overall
approach impractical.

We do have plans for a much tighter integration of Cryptol
with incremental SMT solvers, and in particular with DPT (Goel
et al. 2008). Once this incremental bridge is available, we plan to
implement precise termination analysis to increase the subset of
Cryptol the automated verifier can handle, essentially lifting the
symbolic-termination requirement.7

10.2 Size polymorphism
Recall from Section 7.1 that validity at a monomorphic instance
does not necessarily imply validity for polymorphic theorems. The
question we would like to investigate is whether we can come
up with a list of conditions that would be sufficient to validate
a polymorphic theorem from a monomorphic instance proof. It
would still be very useful even if we can only come up with
a conservative answer. (That is, answering “unknown” when we
cannot decide.) Designing such an algorithm for Cryptol remains
an open research problem.

10.3 Verification with infinite sequences
The other research area for Cryptol equivalence checking is per-
forming proofs for functions producing infinite sequences, typi-
cally used in modeling sequential output over time. As we have
discussed in Section 7.2, an inductive proof would be needed for

7 Note that termination will always remain a requirement. If a recursive
function does not terminate on all of its inputs, then the symbolic simulator
will simply loop forever. Handling such functions in general would amount
to solving the halting problem.

addressing this problem in general. Our current push-button equiv-
alence checking framework lacks this capability. However, if we
can identify common themes (such as encoding crypto-modes), we
might be able to simplify the problem significantly.

10.4 Identifying malicious code
Unsurprisingly, not all properties of interest can be cast as func-
tional equivalence problems. This is especially true in the domain
of cryptography, where non-functional security requirements are
inherent. For instance, if we are handed an alleged FPGA imple-
mentation of AES, we would like to ensure that it not only imple-
ments AES correctly, but also that it does not contain any “extra-
circuitry” to leak the key. In general, we would like to show that
an end-user cannot gain any information from an implementation
that cannot be obtained from a reference specification. It is an open
research question to design algorithms that can effectively detect
such side-channel attacks for Cryptol.

10.5 More general translation to Isabelle/HOL
Recall from Section 8 that our current translation of Cryptol into
Isabelle/HOL goes through the SBV format, which implies def-
initions are monomorphised and completely unrolled. While this
unrolling is necessary when SAT/SMT solvers are targeted, it is
not always the best choice when targeting Isabelle, which has a
much richer programming environment. To this end, we have re-
cently started building a translator from Cryptol to Isabelle/HOL
that maintains the polymorphic typing and the recursive structure
of programs, motivated by earlier work along these lines (Li and
Slind 2005; Hurd 2007). We are planning to use this embedding
to carry out general correctness proofs manually, especially when
extra assurance is needed. However, as we have pointed out earlier,
the differences between Cryptol’s and HOL’s type systems com-
plicate the Isabelle/HOL translation significantly, requiring more
research in this area to ensure a sound and effective embedding.

11. The trusted code base
Cryptol’s formal verification system inherently relies on the cor-
rectness of Cryptol’s compiler front-end components (i.e., the
parser, the type system, etc.), the symbolic simulator, and the trans-
lators to SAT/SMT solvers and to Isabelle/HOL. Note that Cryp-
tol’s internal compiler passes, optimizations, and code generators
(i.e., the typical compiler back-end components) are not in the
trusted code base.

While Cryptol’s trusted code base is only a fraction of the entire
Cryptol tool suite, it is nevertheless a large chunk of Haskell code.
Needless to say, we heavily test this trusted code base using an
extensive regression test suite.

12. Conclusions
In this paper, we have described the verification framework of
Cryptol, a key ingredient of Cryptol’s high-assurance development
environment. The system has already proved itself useful in prac-
tice, especially in establishing the equivalence of reference and
pipelined implementations of crypto-algorithms, essential in gen-
erating efficient FPGA representations. Since such transformations
are done both manually by programmers and automatically by the
compiler, it is absolutely essential to ensure that correctness is pre-
served through many structural transformations applied to obtain a
time/space efficient realization.

Developing a practical programming language with formal ver-
ification in mind is an inherently difficult task. The needs for “ease
of programming,” and “ease of verification” are often at odds. Sup-
porting more language constructs to simplify programming comes
with an obligation to support those constructs precisely in the proof



environment as well. (In the case of Cryptol, this is further compli-
cated by the desire to support compilation down to FPGA based tar-
gets, where “run-time” resources are extremely limited.) Nonethe-
less, the rather general programming model of Cryptol based on
size-types and pure functional programming, along with being ex-
plicit about what is supported for automated verification paid off
nicely in practice, balancing the needs of both sides.
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