
Pragmatic Equivalence and Safety Checking in
Cryptol

Levent Erkök John Matthews
{levent.erkok,matthews}@galois.com

PLPV’09; Savannah, GA

January 2009

The Cryptol Project

Goal: To reduce the cost of developing, certifying, and deploying
cryptographic applications

A Domain Specific Language
High level design exploration
Fully executable

Automated Synthesis down to FPGAs
Verification tool-chain

SAT/SMT based property checking
Safety checking
QuickCheck
Translation to Isabelle/HOL

2/35

The Cryptol Project

Goal: To reduce the cost of developing, certifying, and deploying
cryptographic applications

A Domain Specific Language
High level design exploration
Fully executable

Automated Synthesis down to FPGAs
Verification tool-chain

SAT/SMT based property checking
Safety checking
QuickCheck
Translation to Isabelle/HOL

2/35

The Cryptol Project

Goal: To reduce the cost of developing, certifying, and deploying
cryptographic applications

A Domain Specific Language
High level design exploration
Fully executable

Automated Synthesis down to FPGAs

Verification tool-chain
SAT/SMT based property checking
Safety checking
QuickCheck
Translation to Isabelle/HOL

2/35

The Cryptol Project

Goal: To reduce the cost of developing, certifying, and deploying
cryptographic applications

A Domain Specific Language
High level design exploration
Fully executable

Automated Synthesis down to FPGAs
Verification tool-chain

SAT/SMT based property checking
Safety checking
QuickCheck
Translation to Isabelle/HOL

2/35

Cryptol Type System

Captures bit-precise size-type relations
Hindley-Milner + arithmetic constraints

Both linear and non-linear operations

Numeric literals are one source of constraints:
13 : {a} (a >= 4) => [a]

“The literal 13 is represented by a bit vector that requires at least 4
bits to represent”
Arbitrary arithmetic expressions as constraints:

split : {a b c} [a*b]c -> [a][b]c

NB. Size types; not dependent types!

3/35

Cryptol Type System

Captures bit-precise size-type relations
Hindley-Milner + arithmetic constraints

Both linear and non-linear operations

Numeric literals are one source of constraints:
13 : {a} (a >= 4) => [a]

“The literal 13 is represented by a bit vector that requires at least 4
bits to represent”

Arbitrary arithmetic expressions as constraints:
split : {a b c} [a*b]c -> [a][b]c

NB. Size types; not dependent types!

3/35

Cryptol Type System

Captures bit-precise size-type relations
Hindley-Milner + arithmetic constraints

Both linear and non-linear operations

Numeric literals are one source of constraints:
13 : {a} (a >= 4) => [a]

“The literal 13 is represented by a bit vector that requires at least 4
bits to represent”
Arbitrary arithmetic expressions as constraints:

split : {a b c} [a*b]c -> [a][b]c

NB. Size types; not dependent types!

3/35

Cryptol Type System

Captures bit-precise size-type relations
Hindley-Milner + arithmetic constraints

Both linear and non-linear operations

Numeric literals are one source of constraints:
13 : {a} (a >= 4) => [a]

“The literal 13 is represented by a bit vector that requires at least 4
bits to represent”
Arbitrary arithmetic expressions as constraints:

split : {a b c} [a*b]c -> [a][b]c

NB. Size types; not dependent types!

3/35

Capturing Cryptography

From AES standard definition:

The input and output for the AES algorithm each consist of
sequences of 128 bits. ... The Cipher Key for the AES
algorithm is a sequence of 128, 192 or 256 bits. Other input,
output and Cipher Key lengths are not permitted by this standard.

In Cryptol:

{k} (k >= 2, 4 >= k) ⇒ (

[128] , [64*k]) → [128]

4/35

Capturing Cryptography

From AES standard definition:

The input and output for the AES algorithm each consist of
sequences of 128 bits. ... The Cipher Key for the AES
algorithm is a sequence of 128, 192 or 256 bits. Other input,
output and Cipher Key lengths are not permitted by this standard.

In Cryptol:

{k} (k >= 2, 4 >= k) ⇒ ([128] , [64*k]) → [128]

4/35

Capturing Cryptography

From AES standard definition:

The input and output for the AES algorithm each consist of
sequences of 128 bits. ... The Cipher Key for the AES
algorithm is a sequence of 128, 192 or 256 bits. Other input,
output and Cipher Key lengths are not permitted by this standard.

In Cryptol:

{k} (k >= 2, 4 >= k) ⇒ (

[128]

, [64*k]) → [128]

4/35

Capturing Cryptography

From AES standard definition:

The input and output for the AES algorithm each consist of
sequences of 128 bits. ... The Cipher Key for the AES
algorithm is a sequence of 128, 192 or 256 bits. Other input,
output and Cipher Key lengths are not permitted by this standard.

In Cryptol:

{k} (k >= 2, 4 >= k) ⇒ (

[128]

, [64*k])

→ [128]

4/35

Capturing Cryptography

From AES standard definition:

The input and output for the AES algorithm each consist of
sequences of 128 bits. ... The Cipher Key for the AES
algorithm is a sequence of 128, 192 or 256 bits. Other input,
output and Cipher Key lengths are not permitted by this standard.

In Cryptol:

{k} (k >= 2, 4 >= k) ⇒

([128] , [64*k]) → [128]

4/35

Capturing Cryptography

From AES standard definition:

The input and output for the AES algorithm each consist of
sequences of 128 bits. ... The Cipher Key for the AES
algorithm is a sequence of 128, 192 or 256 bits. Other input,
output and Cipher Key lengths are not permitted by this standard.

In Cryptol:

{k}

(k >= 2, 4 >= k) ⇒ ([128] , [64*k]) → [128]

4/35

Capturing Cryptography

From AES standard definition:

The input and output for the AES algorithm each consist of
sequences of 128 bits. ... The Cipher Key for the AES
algorithm is a sequence of 128, 192 or 256 bits. Other input,
output and Cipher Key lengths are not permitted by this standard.

In Cryptol:
{k} (k >= 2, 4 >= k) ⇒ ([128] , [64*k]) → [128]

4/35

A taste of Cryptol expressions
Informal circuit diagrams are often used by cryptographers:

Code (Cryptol implementation)
ss = [| (s+a+b) <<< 3 || s <- initS # ss

|| a <- [0] # ss
|| b <- [0] # ls |];

ls = [| (l+a+b) <<< (a+b) || l <- initL # ls
|| a <- ss
|| b <- [0] # ls |];

5/35

A taste of Cryptol expressions
Informal circuit diagrams are often used by cryptographers:

Code (Cryptol implementation)
ss = [| (s+a+b) <<< 3 || s <- initS # ss

|| a <- [0] # ss
|| b <- [0] # ls |];

ls = [| (l+a+b) <<< (a+b) || l <- initL # ls
|| a <- ss
|| b <- [0] # ls |];

5/35

Cryptol verification flow

6/35

High Assurance Cryptol

“The” original motivation
Equivalence checking at various levels:

Cryptol vs. Cryptol
Cryptol vs. generated VHDL/Netlist
Cryptol vs. hand-written VHDL
[Future] Cryptol vs. bit-file

Key component in crypto-evaluation
“Verifying” compiler approach

Found several Cryptol-FPGA compiler bugs already!

Stepwise refinement with confidence

7/35

Verification desiderata

Push button
Full coverage of Cryptol
Fast

What we have
Push button (but manual option available when needed)
Good coverage of Cryptol
Fast enough (most of the time)

Theoretical limits
Full problem is undecidable
Equivalent to solving the halting problem

8/35

Verification desiderata

Push button
Full coverage of Cryptol
Fast
What we have

Push button (but manual option available when needed)
Good coverage of Cryptol
Fast enough (most of the time)

Theoretical limits
Full problem is undecidable
Equivalent to solving the halting problem

8/35

Verification desiderata

Push button
Full coverage of Cryptol
Fast
What we have

Push button (but manual option available when needed)
Good coverage of Cryptol
Fast enough (most of the time)

Theoretical limits
Full problem is undecidable
Equivalent to solving the halting problem

8/35

Compromise

Restrict the language subset
Monomorphic
Finite
First-order
Symbolically terminating

Bad news: The problem remains NP-Complete!
Easy reduction to 3-SAT

Good news: Most practical instances are feasible
Thanks to the advances in SAT/SMT technologies

9/35

Compromise

Restrict the language subset
Monomorphic
Finite
First-order
Symbolically terminating

Bad news: The problem remains NP-Complete!
Easy reduction to 3-SAT

Good news: Most practical instances are feasible
Thanks to the advances in SAT/SMT technologies

9/35

Outline

1 Introduction

2 Examples

3 How it works

4 Restrictions and Challenges

5 Conclusions

10/35

Equivalence checking

Given two Cryptol functions f , g
Either prove they agree on all inputs
Or, provide a counter-example

Typically:
f : Spec, written for clarity
g : Implementation, optimized for speed/space/FPGA etc.

11/35

Boolean functions are theorems!

Let
f, g, h : [8] -> [8];
f x = (x-1)*(x+1);
g x = x*x - 1;
h x = x*x + 1;
theorem FG: {x}. f x == g x;
theorem FH: {x}. f x == h x;

No need to learn a new language!

Prover in action
Cryptol> :prove FG
Q.E.D.
Cryptol> :prove FH
Falsifiable.
FH 60

= False

12/35

Boolean functions are theorems!

Let
f, g, h : [8] -> [8];
f x = (x-1)*(x+1);
g x = x*x - 1;
h x = x*x + 1;
theorem FG: {x}. f x == g x;
theorem FH: {x}. f x == h x;

No need to learn a new language!

Prover in action
Cryptol> :prove FG
Q.E.D.
Cryptol> :prove FH
Falsifiable.
FH 60

= False

12/35

Boolean functions are theorems!

Let
f, g, h : [8] -> [8];
f x = (x-1)*(x+1);
g x = x*x - 1;
h x = x*x + 1;
theorem FG: {x}. f x == g x;
theorem FH: {x}. f x == h x;

No need to learn a new language!

Prover in action
Cryptol> :prove FG
Q.E.D.
Cryptol> :prove FH
Falsifiable.
FH 60

= False
12/35

Safety checking

Given a function f
Either prove that nothing bad will happen at run-time
Or, provide a counter-example

Statically catch:
Index out-of-bounds
ASSERTion failures
Uses of error and undefined
Division/modulus by 0
Polynomial division/modulus by 0
Logarithm of zero

Safe programs really don’t crash!

13/35

Safety checking

Given a function f
Either prove that nothing bad will happen at run-time
Or, provide a counter-example

Statically catch:
Index out-of-bounds
ASSERTion failures
Uses of error and undefined
Division/modulus by 0
Polynomial division/modulus by 0
Logarithm of zero

Safe programs really don’t crash!

13/35

Checking safety - Index out of bounds - I

Let
lkup1 : ([4][2], [2]) -> [2];
lkup1 (xs, i) = xs @ i;

We have
Cryptol> :safe lkup1
"lkup1" is safe; no safety violations exist.

14/35

Checking safety - Index out of bounds - I

Let
lkup1 : ([4][2], [2]) -> [2];
lkup1 (xs, i) = xs @ i;

We have
Cryptol> :safe lkup1
"lkup1" is safe; no safety violations exist.

14/35

Index out of bounds - II

Let
lkup2 : ([6][2], [3]) -> [2];
lkup2 (xs, i) = xs @ i;

We have
Cryptol> :safe lkup2
*** Violation detected:
lkup2 ([0 0 0 0 0 0], 6)

= index of 6 is out of bounds (valid range is 0 thru 5).

15/35

Index out of bounds - II

Let
lkup2 : ([6][2], [3]) -> [2];
lkup2 (xs, i) = xs @ i;

We have
Cryptol> :safe lkup2
*** Violation detected:
lkup2 ([0 0 0 0 0 0], 6)

= index of 6 is out of bounds (valid range is 0 thru 5).

15/35

Index out of bounds - III

Let
lkup3 : ([6][2], [3]) -> [2];
lkup3 (xs, i) = if i >= 6 then 0 else xs @ i;

We have
Cryptol> :safe lkup3
*** 1 safety condition to be checked.
*** line 2, col 42: index out of bounds
*** Verified safe.
*** All safety checks pass, safe to execute.

16/35

Index out of bounds - III

Let
lkup3 : ([6][2], [3]) -> [2];
lkup3 (xs, i) = if i >= 6 then 0 else xs @ i;

We have
Cryptol> :safe lkup3
*** 1 safety condition to be checked.
*** line 2, col 42: index out of bounds
*** Verified safe.
*** All safety checks pass, safe to execute.

16/35

Index out of bounds - IV

Let
lkup4 : ([6][2], [3]) -> [2];
lkup4 (xs, i) = if i > 6 then 0 else xs @ i;

We have
Cryptol> :safe lkup4
*** Violation detected:
lkup4 ([0 0 0 0 0 0], 6)

= index of 6 is out of bounds (valid range is 0 thru 5).

17/35

Index out of bounds - IV

Let
lkup4 : ([6][2], [3]) -> [2];
lkup4 (xs, i) = if i > 6 then 0 else xs @ i;

We have
Cryptol> :safe lkup4
*** Violation detected:
lkup4 ([0 0 0 0 0 0], 6)

= index of 6 is out of bounds (valid range is 0 thru 5).

17/35

Summary so far

Fully automated
No separate verification language
Properties are first class

Other tools available:
Checking satisfiability
Check against VHDL
Check against C
QuickCheck
Automatic translation to Isabelle/HOL

Custom “Cryptol” theory for aiding in manual proof

18/35

Summary so far

Fully automated
No separate verification language
Properties are first class
Other tools available:

Checking satisfiability
Check against VHDL
Check against C
QuickCheck
Automatic translation to Isabelle/HOL

Custom “Cryptol” theory for aiding in manual proof

18/35

Outline

1 Introduction

2 Examples

3 How it works

4 Restrictions and Challenges

5 Conclusions

19/35

Verification strategy

Given a Cryptol function f
Run f symbolically on its input
Generate “code” as execution proceeds
Generate “verification conditions” for checking safety

The residual thus generated is the “formal model” of f
Translate the “formal model” to AIG/SMT-Lib

To show f and g equivalent:
Show that their formal models are equivalent

To prove a theorem:
Exploit the fact that theorems are boolean-functions
Show that it is equivalent to the constant function that always returns
True

20/35

Verification strategy

Given a Cryptol function f
Run f symbolically on its input
Generate “code” as execution proceeds
Generate “verification conditions” for checking safety

The residual thus generated is the “formal model” of f
Translate the “formal model” to AIG/SMT-Lib
To show f and g equivalent:

Show that their formal models are equivalent

To prove a theorem:
Exploit the fact that theorems are boolean-functions
Show that it is equivalent to the constant function that always returns
True

20/35

Verification strategy

Given a Cryptol function f
Run f symbolically on its input
Generate “code” as execution proceeds
Generate “verification conditions” for checking safety

The residual thus generated is the “formal model” of f
Translate the “formal model” to AIG/SMT-Lib
To show f and g equivalent:

Show that their formal models are equivalent
To prove a theorem:

Exploit the fact that theorems are boolean-functions
Show that it is equivalent to the constant function that always returns
True

20/35

Example

Cryptol Program:
f : [8] -> [2][8];
f x = [y z]
where {

y = g (x+1);
z = h (x, y);

};

g : [8] -> [8];
g x = 2 * x;

h : ([8], [8]) -> [8];
h (x, y) = if x > y

then x
else y+1;

Formal Model for f:

INPUT s0:[8]
s1:[8] = s0 + 1
s2:[8] = s1 * 2
OUTPUT s2
s3:[1] = s0 > s2
s4:[8] = s2 + 1
s5:[8] = ite s3 s0 s4
OUTPUT s5

Notes:

s0 ← x
s2 ← y {= g (x+1)}
s3 ← is x > g (x+1)?
s4 ← else branch

21/35

Example

Cryptol Program:
f : [8] -> [2][8];
f x = [y z]
where {

y = g (x+1);
z = h (x, y);

};

g : [8] -> [8];
g x = 2 * x;

h : ([8], [8]) -> [8];
h (x, y) = if x > y

then x
else y+1;

Formal Model for f:
INPUT s0:[8]

s1:[8] = s0 + 1
s2:[8] = s1 * 2
OUTPUT s2
s3:[1] = s0 > s2
s4:[8] = s2 + 1
s5:[8] = ite s3 s0 s4
OUTPUT s5

Notes:
s0 ← x

s2 ← y {= g (x+1)}
s3 ← is x > g (x+1)?
s4 ← else branch

21/35

Example

Cryptol Program:
f : [8] -> [2][8];
f x = [y z]
where {

y = g (x+1);
z = h (x, y);

};

g : [8] -> [8];
g x = 2 * x;

h : ([8], [8]) -> [8];
h (x, y) = if x > y

then x
else y+1;

Formal Model for f:
INPUT s0:[8]
s1:[8] = s0 + 1

s2:[8] = s1 * 2
OUTPUT s2
s3:[1] = s0 > s2
s4:[8] = s2 + 1
s5:[8] = ite s3 s0 s4
OUTPUT s5

Notes:
s0 ← x

s2 ← y {= g (x+1)}
s3 ← is x > g (x+1)?
s4 ← else branch

21/35

Example

Cryptol Program:
f : [8] -> [2][8];
f x = [y z]
where {

y = g (x+1);
z = h (x, y);

};

g : [8] -> [8];
g x = 2 * x;

h : ([8], [8]) -> [8];
h (x, y) = if x > y

then x
else y+1;

Formal Model for f:
INPUT s0:[8]
s1:[8] = s0 + 1
s2:[8] = s1 * 2

OUTPUT s2
s3:[1] = s0 > s2
s4:[8] = s2 + 1
s5:[8] = ite s3 s0 s4
OUTPUT s5

Notes:
s0 ← x
s2 ← y {= g (x+1)}

s3 ← is x > g (x+1)?
s4 ← else branch

21/35

Example

Cryptol Program:
f : [8] -> [2][8];
f x = [y z]
where {

y = g (x+1);
z = h (x, y);

};

g : [8] -> [8];
g x = 2 * x;

h : ([8], [8]) -> [8];
h (x, y) = if x > y

then x
else y+1;

Formal Model for f:
INPUT s0:[8]
s1:[8] = s0 + 1
s2:[8] = s1 * 2
OUTPUT s2

s3:[1] = s0 > s2
s4:[8] = s2 + 1
s5:[8] = ite s3 s0 s4
OUTPUT s5

Notes:
s0 ← x
s2 ← y {= g (x+1)}

s3 ← is x > g (x+1)?
s4 ← else branch

21/35

Example

Cryptol Program:
f : [8] -> [2][8];
f x = [y z]
where {

y = g (x+1);
z = h (x, y);

};

g : [8] -> [8];
g x = 2 * x;

h : ([8], [8]) -> [8];
h (x, y) = if x > y

then x
else y+1;

Formal Model for f:
INPUT s0:[8]
s1:[8] = s0 + 1
s2:[8] = s1 * 2
OUTPUT s2
s3:[1] = s0 > s2

s4:[8] = s2 + 1
s5:[8] = ite s3 s0 s4
OUTPUT s5

Notes:
s0 ← x
s2 ← y {= g (x+1)}
s3 ← is x > g (x+1)?

s4 ← else branch

21/35

Example

Cryptol Program:
f : [8] -> [2][8];
f x = [y z]
where {

y = g (x+1);
z = h (x, y);

};

g : [8] -> [8];
g x = 2 * x;

h : ([8], [8]) -> [8];
h (x, y) = if x > y

then x
else y+1;

Formal Model for f:
INPUT s0:[8]
s1:[8] = s0 + 1
s2:[8] = s1 * 2
OUTPUT s2
s3:[1] = s0 > s2
s4:[8] = s2 + 1

s5:[8] = ite s3 s0 s4
OUTPUT s5

Notes:
s0 ← x
s2 ← y {= g (x+1)}
s3 ← is x > g (x+1)?
s4 ← else branch

21/35

Example

Cryptol Program:
f : [8] -> [2][8];
f x = [y z]
where {

y = g (x+1);
z = h (x, y);

};

g : [8] -> [8];
g x = 2 * x;

h : ([8], [8]) -> [8];
h (x, y) = if x > y

then x
else y+1;

Formal Model for f:
INPUT s0:[8]
s1:[8] = s0 + 1
s2:[8] = s1 * 2
OUTPUT s2
s3:[1] = s0 > s2
s4:[8] = s2 + 1
s5:[8] = ite s3 s0 s4

OUTPUT s5

Notes:
s0 ← x
s2 ← y {= g (x+1)}
s3 ← is x > g (x+1)?
s4 ← else branch

21/35

Example

Cryptol Program:
f : [8] -> [2][8];
f x = [y z]
where {

y = g (x+1);
z = h (x, y);

};

g : [8] -> [8];
g x = 2 * x;

h : ([8], [8]) -> [8];
h (x, y) = if x > y

then x
else y+1;

Formal Model for f:
INPUT s0:[8]
s1:[8] = s0 + 1
s2:[8] = s1 * 2
OUTPUT s2
s3:[1] = s0 > s2
s4:[8] = s2 + 1
s5:[8] = ite s3 s0 s4
OUTPUT s5

Notes:
s0 ← x
s2 ← y {= g (x+1)}
s3 ← is x > g (x+1)?
s4 ← else branch

21/35

Notes on the formal model

The only data-type is fixed-size bit-vectors
Types are serialized

Original program completely unrolled
No functions, no loops
Essentially one huge expression per output!

With subexpression sharing..

Easy to map to SMT-Lib or generate AIG

22/35

Outline

1 Introduction

2 Examples

3 How it works

4 Restrictions and Challenges

5 Conclusions

23/35

Supported subset of Cryptol

The automated verifier supports Cryptol functions that are:
1 Monomorphic,
2 Finite,
3 First-order,
4 Symbolically terminating.

First three restrictions directly deduced from type
Last one is undecidable in general

But many instances are easily detectable..
This is still a very large and useful subset for Cryptol

Especially for block ciphers

24/35

Supported subset of Cryptol

The automated verifier supports Cryptol functions that are:
1 Monomorphic,
2 Finite,
3 First-order,
4 Symbolically terminating.

First three restrictions directly deduced from type

Last one is undecidable in general
But many instances are easily detectable..

This is still a very large and useful subset for Cryptol
Especially for block ciphers

24/35

Supported subset of Cryptol

The automated verifier supports Cryptol functions that are:
1 Monomorphic,
2 Finite,
3 First-order,
4 Symbolically terminating.

First three restrictions directly deduced from type
Last one is undecidable in general

But many instances are easily detectable..

This is still a very large and useful subset for Cryptol
Especially for block ciphers

24/35

Supported subset of Cryptol

The automated verifier supports Cryptol functions that are:
1 Monomorphic,
2 Finite,
3 First-order,
4 Symbolically terminating.

First three restrictions directly deduced from type
Last one is undecidable in general

But many instances are easily detectable..
This is still a very large and useful subset for Cryptol

Especially for block ciphers

24/35

The “monomorphism” restriction

Symbolic simulator needs to have a fixed size input
Underlying logic is fixed-size bit vectors
Unfortunate: Most Crypto-algorithms are size-polymorphic

Luckily, only a few instances are typically important

Doubling a number
twice, twice’ : {a} (a >= 2) => [a] -> [a];
twice x = x+x;
twice’ x = 2*x;

Equivalence at a = 4
Cryptol> :eq (twice : [4] -> [4]) (twice’ : [4] -> [4])
True

Can we just generalize?

25/35

The “monomorphism” restriction

Symbolic simulator needs to have a fixed size input
Underlying logic is fixed-size bit vectors
Unfortunate: Most Crypto-algorithms are size-polymorphic

Luckily, only a few instances are typically important

Doubling a number
twice, twice’ : {a} (a >= 2) => [a] -> [a];
twice x = x+x;
twice’ x = 2*x;

Equivalence at a = 4
Cryptol> :eq (twice : [4] -> [4]) (twice’ : [4] -> [4])
True

Can we just generalize?

25/35

The “monomorphism” restriction

Symbolic simulator needs to have a fixed size input
Underlying logic is fixed-size bit vectors
Unfortunate: Most Crypto-algorithms are size-polymorphic

Luckily, only a few instances are typically important

Doubling a number
twice, twice’ : {a} (a >= 2) => [a] -> [a];
twice x = x+x;
twice’ x = 2*x;

Equivalence at a = 4
Cryptol> :eq (twice : [4] -> [4]) (twice’ : [4] -> [4])
True

Can we just generalize?

25/35

Properties might rely on size!

A simple function
f : {a} (fin a) => [a] -> Bit;
f x = x != 0;

Use the satisfiability checker
Cryptol> :sat (f : [0] -> Bit)
No variable assignment satisfies this function

Cryptol> :sat (f : [1] -> Bit)
((f : [3] -> Bit)) 1

= True

Satisfiable at any type except when a = 0

Wanted: A theory of size-parametricity for Cryptol!

26/35

Properties might rely on size!

A simple function
f : {a} (fin a) => [a] -> Bit;
f x = x != 0;

Use the satisfiability checker
Cryptol> :sat (f : [0] -> Bit)
No variable assignment satisfies this function

Cryptol> :sat (f : [1] -> Bit)
((f : [3] -> Bit)) 1

= True

Satisfiable at any type except when a = 0

Wanted: A theory of size-parametricity for Cryptol!

26/35

Properties might rely on size!

A simple function
f : {a} (fin a) => [a] -> Bit;
f x = x != 0;

Use the satisfiability checker
Cryptol> :sat (f : [0] -> Bit)
No variable assignment satisfies this function

Cryptol> :sat (f : [1] -> Bit)
((f : [3] -> Bit)) 1

= True

Satisfiable at any type except when a = 0

Wanted: A theory of size-parametricity for Cryptol!

26/35

The “finiteness” restriction

Symbolic simulator cannot represent infinite input/output
The formal model would have to be infinite..

Such proofs typically require induction

Need to settle for finite prefixes:
Equivalence for the first K clock-cycles..

27/35

The “finiteness” restriction

Symbolic simulator cannot represent infinite input/output
The formal model would have to be infinite..

Such proofs typically require induction
Need to settle for finite prefixes:

Equivalence for the first K clock-cycles..

27/35

The “hidden counter” attack

Spec and implementation
pts : [inf][128];
pts = [0 ..];

spec, imp : [128] -> [inf][128];
spec k = [| pt + k || pt <- pts |];
imp k = take(100, spec k) # pts;

imp follows spec for the first 100 outputs
Then it starts leaking the plain text!

28/35

Approval granted!

Equivalence tester in action
Cryptol> :eq spec imp
ERROR: "spec" has an infinite number of outputs
ERROR: "imp" has an infinite number of outputs
Cryptol> :eq (\k -> take(50, spec k)) (\k -> take(50, imp k))
True
Cryptol> :eq (\k -> take(100, spec k)) (\k -> take(100, imp k))
True

Will be approved if equivalence checked up to first 100 cycles!

29/35

Check the 101st element!

Looking deeper..
Cryptol> :eq (\k -> spec k @ 100) (\k -> imp k @ 100)
False
(\k -> spec k @ 100) 87729047721804447611651265978502737985

= 87729047721804447611651265978502738085
(\k -> imp k @ 100) 87729047721804447611651265978502737985

= 0

There is no general way to know how deep we need to look..
Wanted: Induction capabilities in the equivalence checker!

30/35

The “first-order” restriction

Only data type available is fixed-size bit vectors
Tuples, records, finite sequences are all expanded away
No way to represent functions..

Luckily: Higher order functions are rare in Cryptol!
Infrequent uses can mostly be rewritten away
Wanted: (Maybe) Automatic firstification for Cryptol

31/35

The “first-order” restriction

Only data type available is fixed-size bit vectors
Tuples, records, finite sequences are all expanded away
No way to represent functions..
Luckily: Higher order functions are rare in Cryptol!
Infrequent uses can mostly be rewritten away
Wanted: (Maybe) Automatic firstification for Cryptol

31/35

The “symbolic termination” restriction

Only applies to recursive functions
Uses are discouraged: Use streams instead
Recursive stream definitions are fine

Bad news: Cannot tell ahead..
All other restrictions are detectable by just looking at the type
The prover will loop itself

Good news: Typically easy to deal with once spotted..
See paper for an example

32/35

Outline

1 Introduction

2 Examples

3 How it works

4 Restrictions and Challenges

5 Conclusions

33/35

Conclusions

Formal verification is not a luxury for Cryptol
Basic pillar of Cryptol’s high assurance approach
Verified vs. Verifying compiler

Already found several bugs
Compilation to non-standard targets

FPGAs
GPUs
Verification against hand-written VHDL
Formal equivalence is paramount

Programming as if correctness mattered..
Encourages stepwise refinement
Maintain equivalence at each step

34/35

Thank you!

Academic licenses available for the Cryptol interpeter
www.cryptol.net
(NB. No support for verification except for QuickCheck)

Full version evaluation licenses expected soon

35/35

	Introduction
	Examples
	How it works
	Restrictions and Challenges
	Conclusions

