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The Cryptol Project

Goal: To reduce the cost of developing, certifying, and deploying
cryptographic applications

@ A Domain Specific Language

e High level design exploration

o Fully executable
@ Automated Synthesis down to FPGAs
@ Verification tool-chain

SAT/SMT based property checking
Safety checking

QuickCheck

Translation to Isabelle/HOL
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Cryptol Type System

@ Captures bit-precise size-type relations
e Hindley-Milner + arithmetic constraints
e Both linear and non-linear operations
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Cryptol Type System

@ Captures bit-precise size-type relations
e Hindley-Milner + arithmetic constraints
e Both linear and non-linear operations

@ Numeric literals are one source of constraints:
13 : {a} (a >= 4) => [a]

“The literal 13 is represented by a bit vector that requires at least 4
bits to represent”

@ Arbitrary arithmetic expressions as constraints:
split : {a b c} [a*blc -> [a][blc
@ NB. Size types; not dependent types!
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Capturing Cryptography

@ From AES standard definition:

The input and output for the AES algorithm each consist of
sequences of 128 bits. ... The Cipher Key for the AES
algorithm is a sequence of 128, 192 or 256 bits. Other input,
output and Cipher Key lengths are not permitted by this standard.
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Capturing Cryptography

@ From AES standard definition:

The input and output for the AES algorithm each consist of
sequences of 128 bits. ... The Cipher Key for the AES
algorithm is a sequence of 128, 192 or 256 bits. Other input,
output and Cipher Key lengths are not permitted by this standard.

{k} (k >= 2, 4 >= k) = ([128] , [64*k]) — [128] \
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A taste of Cryptol expressions

Informal circuit diagrams are often used by cryptographers:

I.Eﬁllllllim-.sql””l‘_l_’s
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A taste of Cryptol expressions

Informal circuit diagrams are often used by cryptographers:

s IIIIIIi--i"-°>'IIIIIII<-|_’ss

)

—@—

L
IIIIII‘."“.LIIIIIII|<J_’Is

Code (Cryptol implementation)

ss = [| (s+atb) <<< 3 || s <- initS # ss
|| a <- [0] # ss
Il b <- [0] # 1s [];

1s = [| (1+atb) <<< (at+b) || 1 <- initL # 1s
|l a <- ss
Il o <- [0] # 1s |];
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Cryptol verification flow

Refine Eres Create an FPGA
for a specific implementation from the
target specification

Reference
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IP Core
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Synthesis Place and Bit Gen
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g v

Reference
Model

Key
- Galois tools
- Xilinx tools
- Cryptol files

I Formal Models
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Data files Checker

— Input to teal Equivalence
Evidence

=% Input to designer
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High Assurance Cryptol

“The"” original motivation

Equivalence checking at various levels:

Cryptol vs. Cryptol

o Cryptol vs. generated VHDL/Netlist
o Cryptol vs. hand-written VHDL

o [Future] Cryptol vs. bit-file

Key component in crypto-evaluation

“Verifying" compiler approach
e Found several Cryptol-FPGA compiler bugs already!

o Stepwise refinement with confidence

/s galois



Verification desiderata

@ Push button
@ Full coverage of Cryptol

o Fast
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Verification desiderata

Push button
Full coverage of Cryptol
Fast

What we have

o Push button (but manual option available when needed)
e Good coverage of Cryptol
o Fast enough (most of the time)

@ Theoretical limits

o Full problem is undecidable
e Equivalent to solving the halting problem

o/35 galois



Compromise

@ Restrict the language subset
Monomorphic

Finite

First-order

Symbolically terminating
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Compromise

@ Restrict the language subset
e Monomorphic
o Finite
e First-order
e Symbolically terminating
@ Bad news: The problem remains NP-Complete!
o Easy reduction to 3-SAT
@ Good news: Most practical instances are feasible
o Thanks to the advances in SAT/SMT technologies

o/35 galois



© Examples
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Equivalence checking

@ Given two Cryptol functions f, g

o Either prove they agree on all inputs
e Or, provide a counter-example

o Typically:
e f: Spec, written for clarity
e g: Implementation, optimized for speed/space/FPGA etc.

11/35 galois



Boolean functions are theorems!

Let

f, g, h : [8] -> [8];

f x = (x-1)*%(x+1);

g x = x*x - 1;

hx=xxx +1;

theorem FG: {x}. f x == g x;
theorem FH: {x}. f x == h x;
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Boolean functions are theorems!

Let

f, g, h : [8] -> [8];
f x = (x-1)*%(x+1);

g x = x*x - 1;
hx=xxx +1;

theorem FG: {x}. f x == g x;
theorem FH: {x}. f x == h x;

\

@ No need to learn a new language!

Prover in action

Cryptol> :prove FG
Q.E.D.
Cryptol> :prove FH
Falsifiable.
FH 60

= False
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Safety checking

@ Given a function f
o Either prove that nothing bad will happen at run-time
e Or, provide a counter-example
o Statically catch:
e Index out-of-bounds
e ASSERTion failures
o Uses of error and undefined
o Division/modulus by 0
o Polynomial division/modulus by 0
e Logarithm of zero
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Safety checking

@ Given a function f

o Either prove that nothing bad will happen at run-time
e Or, provide a counter-example

o Statically catch:

o Index out-of-bounds

ASSERTion failures

Uses of error and undefined
Division/modulus by 0
Polynomial division/modulus by 0
e Logarithm of zero

e Safe programs really don't crash!
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Checking safety - Index out of bounds - |

lkupl : ([4]1([2], [2]) -> [2];
lkupl (xs, i) = xs @ i;
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Checking safety - Index out of bounds - |

Let

lkupl : ([4]1([2], [2]) -> [2];
lkupl (xs, i) = xs Q@ i;

We have

Cryptol> :safe lkupl
"lkupl" is safe; no safety violations exist.

| \

.
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Index out of bounds - Il

lkup2 : ([6]1[2], [31) -> [2];
lkup2 (xs, i) = xs @ ij;
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Index out of bounds - Il

lkup2 : ([6]1[2], [31) -> [2];
lkup2 (xs, i) = xs @ ij;

Cryptol> :safe lkup2
**x*x Violation detected:
lkup2 ([0 0 0 0 O 0], 6)
= index of 6 is out of bounds (valid range is O thru 5).
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Index out of bounds - Il

lkup3 : ([6]1[2], [3]1) -> [2];
lkup3 (xs, i) = if i >= 6 then O else xs @ 1i;
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Index out of bounds - Il

Let

lkup3 : ([6]1[2], [3]1) -> [2];
lkup3 (xs, i) = if i >= 6 then O else xs @ i;

We have
Cryptol> :safe 1lkup3
*** 1 safety condition to be checked.
*x*x ]line 2, col 42: index out of bounds
*xx Verified safe.
%% All safety checks pass, safe to execute.

| A
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Index out of bounds - IV

lkup4 : ([6][2], [3]1) -> [2];
lkup4 (xs, i) = if i > 6 then 0 else xs @ i;
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Index out of bounds - IV

lkup4 : ([6][2], [3]1) -> [2];
lkup4 (xs, i) = if i > 6 then 0 else xs @ i;

Cryptol> :safe lkup4
**x*x Violation detected:
lkup4 ([0 0 0 0 O 0], 6)
= index of 6 is out of bounds (valid range is O thru 5).
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Summary so far

o Fully automated
o No separate verification language

@ Properties are first class
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Summary so far

Fully automated
No separate verification language

Properties are first class

Other tools available:
Checking satisfiability
Check against VHDL
Check against C

QuickCheck
Automatic translation to Isabelle/HOL

o Custom “Cryptol” theory for aiding in manual proof

18/35 galois



© How it works

10735 galois



Verification strategy

@ Given a Cryptol function f

o Run f symbolically on its input
o Generate “code” as execution proceeds
o Generate ‘“verification conditions” for checking safety

@ The residual thus generated is the “formal model” of £
@ Translate the “formal model” to AIG/SMT-Lib
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Verification strategy

@ Given a Cryptol function f

o Run f symbolically on its input

o Generate “code” as execution proceeds

o Generate “verification conditions” for checking safety
@ The residual thus generated is the “formal model” of £
@ Translate the “formal model” to AIG/SMT-Lib
@ To show £ and g equivalent:

e Show that their formal models are equivalent
@ To prove a theorem:

o Exploit the fact that theorems are boolean-functions
o Show that it is equivalent to the constant function that always returns
True
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Cryptol Program:

f : [8] -> [2][8];
fx= [y z]
where {
y =g (x+1);
z =h (x, y);
}s

g : [8] -> [8];
g X =2 % Xx;

h . ([8], [8]) -> [8];

h (x, y) =if x>y
then x
else y+1;
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Cryptol Program: Formal Model for f:

f . [8] -> [2][8]; INPUT s0: [8]
f x= [y zl
where {
y =g (x+1);
z=h (x, y);
};
g : [8] -> [8]; ]
g X =2 % x;
h : ([8], [8]) -> [8]; sO «— x
h (x, y) =if x >y
then x
else y+1;
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Cryptol Program: Formal Model for f:

f . [8] -> [2][8]; INPUT s0: [8]
fx= [y z] s1:[8] = s0 + 1
where {
y =g (x+1);
z="h (x, y);
I
g : [8] -> [8]; ]
g X =2 % x;
h : ([8], [8]) -> [8]; sO «— x
h (x, y) =if x >y
then x
else y+1;
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Cryptol Program:

21/35

f : [8] -> [2]1[8];
f x= [y zl
where {
y =g (x+1);
z=h (x, y);
I
g : [8] -> [8];
g X =2 % x;
h : ([8], [8]) -> [8];
h(x, y) =if x >y
then x
else y+1;

Formal Model for £:

INPUT sO: [8]
s1:[8] = s0 + 1
s2:[8] = s1 * 2

sO «— x
s2 — y {=g (x+1)}
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Cryptol Program: Formal Model for f:

f . [8] -> [2][8]; INPUT s0: [8]
f x= [y zl s1:[8] = s0 + 1
where { s2:[8] = s1 * 2
y =g (x+1); OUTPUT s2
z=h (x, y);
};
g : [8] -> [8]; )
g X =2 % x;
h : ([8], [8]) -> [8]; sO «— x
h (x, y) =if x >y s2 «— y {= g (x+1)}
then x
else y+1;
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Cryptol Program:

21/35

f .

f x

(8] -> [2][8];

= [y z]

where {

};

g .

g X

h :

y
z=h (x, y);

g (x+1);

[8] -> [8];

=2 *x x;

(8], [8]) -> [8];

h (x, y) =if x >y

then x
else y+1;

Formal Model for £:

INPUT s0: [8]
s1:[8] = s0 + 1
s2:[8] = s1 * 2
OUTPUT s2

s3:[1] = sO0 > s2

sO «— x
s2 — y {=g (x+1)}
S3 «— is x > g (x+1)7?
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Cryptol Program: Formal Model for f:

f . [8] -> [2][8]; INPUT s0: [8]
f x= [y zl s1:[8] = s0 + 1
where { s2:[8] = s1 * 2
y =g (x+1); OUTPUT s2
z=h (x, y); s3:[1] = s0 > s2
}; s4:[8] =s2 + 1
s5:[8] = ite s3 sO s4
g : [8] -> [8]; ]
g X =2 % x;
h : ([8], [8]) -> [8]; sO «— x
h (x, y) =if x >y s2 «— y {= g (x+1)}
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Cryptol Program: Formal Model for f:

f . [8] -> [2][8]; INPUT s0: [8]
f x= [y zl s1:[8] = s0 + 1
where { s2:[8] = s1 * 2
y =g (x+1); OUTPUT s2
z=h (x, y); s3:[1] = s0 > s2
}; s4:[8] =s2 + 1
s5:[8] = ite s3 sO s4
g : [8] -> [8]; OUTPUT sb5 )
g X =2 % x;
h : ([8], [8]) -> [8]; sO «— x
h (x, y) =if x >y s2 «— y {= g (x+1)}
then x s3 «— is x > g (x+1)7
else y+1; s4 < else branch
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Notes on the formal model

@ The only data-type is fixed-size bit-vectors
e Types are serialized
@ Original program completely unrolled

e No functions, no loops
o Essentially one huge expression per output!

o With subexpression sharing..

e Easy to map to SMT-Lib or generate AIG
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@ Restrictions and Challenges
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Supported subset of Cryptol

@ The automated verifier supports Cryptol functions that are:

@ Monomorphic,

Q@ Finite,

© First-order,

@ Symbolically terminating.
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Supported subset of Cryptol

@ The automated verifier supports Cryptol functions that are:
@ Monomorphic,
Q@ Finite,
© First-order,
@ Symbolically terminating.
o First three restrictions directly deduced from type
@ Last one is undecidable in general

e But many instances are easily detectable..
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Supported subset of Cryptol

@ The automated verifier supports Cryptol functions that are:
@ Monomorphic,
© Finite,
© First-order,
@ Symbolically terminating.

First three restrictions directly deduced from type
Last one is undecidable in general
e But many instances are easily detectable..
This is still a very large and useful subset for Cryptol
e Especially for block ciphers
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The "monomorphism” restriction

@ Symbolic simulator needs to have a fixed size input

@ Underlying logic is fixed-size bit vectors
@ Unfortunate: Most Crypto-algorithms are size-polymorphic
o Luckily, only a few instances are typically important

25/35 galois



The "monomorphism” restriction

@ Symbolic simulator needs to have a fixed size input

@ Underlying logic is fixed-size bit vectors
@ Unfortunate: Most Crypto-algorithms are size-polymorphic
o Luckily, only a few instances are typically important

Doubling a number
twice, twice’ : {a} (a >= 2) => [a] -> [al;
twice x = x+x;
twice’ x = 2*x;

Equivalence at a

Cryptol> :eq (twice : [4] -> [4]) (twice’ : [4] -> [4])
True
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The "monomorphism” restriction

@ Symbolic simulator needs to have a fixed size input

@ Underlying logic is fixed-size bit vectors
@ Unfortunate: Most Crypto-algorithms are size-polymorphic
o Luckily, only a few instances are typically important

Doubling a number
twice, twice’ : {a} (a >= 2) => [a] -> [al;
twice x = x+x;
twice’ x = 2*x;

Equivalence at a

Cryptol> :eq (twice : [4] -> [4]) (twice’ : [4] -> [4])
True

e Can we just generalize?
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Properties might rely on sizel

A simple function

f : {a} (fin a) => [a]l -> Bit;
f x=x1=0;
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Properties might rely on sizel
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f x=x1=0;

Use the satisfiability checker

Cryptol> :sat (f : [0] -> Bit)
No variable assignment satisfies this function
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Properties might rely on sizel

A simple function

f : {a} (fin a) => [a]l -> Bit;
f x=x1=0;

Use the satisfiability checker

Cryptol> :sat (f : [0] -> Bit)
No variable assignment satisfies this function

Cryptol> :sat (f : [1] -> Bit)
((f : [3] -> Bit)) 1
= True

e Satisfiable at any type except when a = 0

e Wanted: A theory of size-parametricity for Cryptol!
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The “finiteness’ restriction

@ Symbolic simulator cannot represent infinite input/output
e The formal model would have to be infinite..

@ Such proofs typically require induction
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The “finiteness’ restriction

@ Symbolic simulator cannot represent infinite input/output
e The formal model would have to be infinite..

@ Such proofs typically require induction

o Need to settle for finite prefixes:
o Equivalence for the first K clock-cycles..
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The “hidden counter’ attack

Spec and implementation

pts : [inf][128];
pts = [0 ..1;

spec, imp : [128] -> [inf][128];
spec k = [| pt + k || pt <- pts |];
imp k = take(100, spec k) # pts;

e imp follows spec for the first 100 outputs
@ Then it starts leaking the plain text!
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Approval granted!

Equivalence tester in action

Cryptol> :eq spec imp

ERROR: "spec" has an infinite number of outputs
ERROR: "imp" has an infinite number of outputs

Cryptol> :eq (\k -> take(50, spec k)) (\k -> take(50, imp k))

True

Cryptol> :eq (\k -> take(100, spec k)) (\k -> take(100, imp k).

True

v

e Will be approved if equivalence checked up to first 100 cycles!
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Check the 101st element!

Looking deeper..

Cryptol> :eq (\k -> spec k @ 100) (\k -> imp k @ 100)

False

(\k -> spec k @ 100) 87729047721804447611651265978502737985
= 87729047721804447611651265978502738085

(\k -> imp k @ 100) 87729047721804447611651265978502737985
=0

@ There is no general way to know how deep we need to look..

@ Wanted: Induction capabilities in the equivalence checker!

s0/35 galois



The “first-order”" restriction

@ Only data type available is fixed-size bit vectors
@ Tuples, records, finite sequences are all expanded away

@ No way to represent functions..
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The “first-order”" restriction

Only data type available is fixed-size bit vectors
Tuples, records, finite sequences are all expanded away
No way to represent functions..

Luckily: Higher order functions are rare in Cryptol!
Infrequent uses can mostly be rewritten away

Wanted: (Maybe) Automatic firstification for Cryptol
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The “symbolic termination” restriction

@ Only applies to recursive functions

o Uses are discouraged: Use streams instead
o Recursive stream definitions are fine

o Bad news: Cannot tell ahead..

o All other restrictions are detectable by just looking at the type
e The prover will loop itself

@ Good news: Typically easy to deal with once spotted..
o See paper for an example
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© Conclusions
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Conclusions

Formal verification is not a luxury for Cryptol

Basic pillar of Cryptol’s high assurance approach

Verified vs. Verifying compiler
e Already found several bugs

Compilation to non-standard targets
FPGAs

GPUs

Verification against hand-written VHDL
Formal equivalence is paramount

Programming as if correctness mattered..

e Encourages stepwise refinement
e Maintain equivalence at each step
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@ Academic licenses available for the Cryptol interpeter

e www.cryptol.net
o (NB. No support for verification except for QuickCheck)

@ Full version evaluation licenses expected soon

35/35 galois
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