
High assurance programming in Cryptol ∗

Levent Erkök John Matthews
Galois, Inc.

421 SW 6th Ave. Suite 300
Portland, OR 97204

{levent.erkok,matthews}@galois.com

1. Introduction
Cryptol is a domain specific language tailored for cryptographic al-
gorithms (www.cryptol.net). Explicit support for program ver-
ification is an indispensable part of the Cryptol toolset, due to the
inherent high-assurance requirements of the application domain. To
this end, Cryptol comes with a suite of formal-methods based tools,
allowing users to perform various program verification tasks.

In this extended abstract, we provide an overview of the Cryp-
tol language and its verification environment. The challenges in this
domain are multifaceted: from the engineering concerns of provid-
ing an easy-to-use system for non-experts, to open research prob-
lems in program verification.

2. A taste of Cryptol
Cryptol is a pure functional language, built on top of a Hindley-
Milner style polymorphic type system extended with size polymor-
phism and arithmetic type predicates (Lewis and Martin 2003). The
size-polymorphic type system has been designed to capture con-
straints that naturally arise in cryptographic specifications. To il-
lustrate, consider the following text from the AES definition (NIST
2001, Section 3.1):

The input and output for the AES algorithm each consist
of sequences of 128 bits. ... The Cipher Key for the AES
algorithm is a sequence of 128, 192 or 256 bits. Other
input, output and Cipher Key lengths are not permitted by
this standard.

This description is captured precisely in Cryptol by the follow-
ing type:

encrypt: {k} (k >= 2, 4 >= k)
=> ([128], [64*k]) -> [128]

Anything to the left of => are quantified type-variables and predi-
cates on them. In this particular case, the function encrypt is size-
polymorphic, relying on the size-variable k. The predicates con-
strain what values the quantified size-variables can take on: Here,
k is restricted to be between 2 and 4. To the right of =>, we see
the actual type. The type of encrypt is a function, accepting tu-
ples of type ([128], [64*k]) and returning [128]. The input to
encrypt is a pair of two words, the first of which is precisely 128-
bits wide; this is the plain-text. The second argument is a 64*k-bit
wide word (i.e., 128, 192, or 256 bits, depending on k), which cor-

∗ Extended abstract.
(c) 2009 ACM. This is a minor revision of the work published as: Prag-
matic equivalence and safety checking in Cryptol. In Programming Lan-
guages meets Program Verification, pages 73–81. ACM Press, January
2009. http://doi.acm.org/10.1145/1481848.1481860

responds to the key. The output of the function, the ciphertext, is
another 128-bit word.

Note how this type precisely corresponds to the English descrip-
tion in the standard. For instance, it is statically ensured that the
key-size will be one of 128, 192, or 256: the type system would
not let a definition of encrypt be accepted that did not satisfy this
requirement. (Similarly, all call-sites will be checked to satisfy this
requirement as well.) Cryptol’s expressive power in stating precise
size relationships is one of its key advantages. In other languages,
such constraints would either only appear in comments, or at best
get dynamically checked at run-time, instead of being enforced stat-
ically at compile-time as in Cryptol.

3. Verification of Cryptol programs
Cryptol’s program verification framework has been designed to
address equivalence and safety checking problems.

The equivalence-checking problem asks whether two functions
f and g agree on all inputs. In case f and g are not equivalent, we
would like to find a particular value x such that f x 6= g x.

The safety-checking problem is about run-time exceptions.
Given a function f , we would like to know if f ’s execution can per-
form operations such as division-by-zero or index-out-of-bounds.
If so, we would like to know what particular input values will result
in an exceptional behavior.

Users interact with Cryptol’s verification system via theorem
declarations. Here is an example Cryptol theorem, named C, stating
that dec and enc are cryptographic inverses of each other:

theorem C: {key pt}.
dec(key, enc(key, pt)) == pt;

(The notation “{key pt}.” reads “for all values of key and pt.”)
Theorems in Cryptol are simply bit-valued functions, taking

their quantified variables as inputs, returning True or False as
their result. We call this the theorem-function correspondence. This
unified view provides a consistent and familiar environment for
end-users, avoiding the need for an extra language to express prop-
erties. As a nice consequence, proving a Cryptol theorem simply
amounts to showing that it is equivalent to the constant function
that always returns True. This is the main mechanism that connects
program verification to equivalence checking in Cryptol.

The other weapon in Cryptol’s verification toolbox is the au-
tomated verification capability that programs cannot cause run-
time exceptions, such as division-by-zero or index-out-of-bounds.
If such an exception is possible, Cryptol will display a particular
input value that causes the exception.

4. Verification technology
Cryptol provides two main verification routes:

1



• Fully-automated: For a restricted (but relatively large) subset of
Cryptol, both equivalence and safety checking problems can be
decided. For this subset, Cryptol provides fully automated tools
to prove theorems with no further user involvement, using off-
the-shelf SAT and SMT solvers as proof engines to complete
the verification task (Barrett et al. 2008).

• Semi-automated: When automated solvers are not suitable,
Cryptol provides a tool to translate Cryptol theorems to Is-
abelle/HOL automatically, where proofs can be manually con-
structed by the user.

It is a fair question to ask why Cryptol’s formal-methods tools
only focus on safety and functional-equivalence checking, instead
of adapting a more general logic for expressing and proving prop-
erties. The reasons are quite practical:

• To do equivalence checking, users need not learn any new
language in which to express properties. The term language of
Cryptol is sufficient to express functional correctness properties
concisely.

• Equivalence checking works well with an incremental develop-
ment model; successive versions of an algorithm can be proven
equivalent to a known “reference” specification, following the
stepwise-refinement approach.

• Due to the theorem-function correspondence, all Cryptol the-
orems are executable. We take advantage of this correspon-
dence by providing a “quick-check” facility, where theorems
are checked automatically over randomly generated input data
to aid in high-assurance development (Claessen and Hughes
2000).

• Counterexamples provided by equivalence checkers are ex-
tremely important. Having a concrete “bug” to look at makes all
the difference in providing a practical verification environment
for end-users.

Also, on the social side, we have found that the equivalence
checking approach lowers the barriers for the adoption of formal
methods. Since the users are not required to write program proper-
ties in an unfamiliar logic, equivalence checking is easier to intro-
duce into daily development activities. The automated quick-check
facility provides instant feedback, empowering users to try alter-
nate ideas with a certain degree of confidence with no extra cost.
Additionally, theorem declarations mixed with source-code serve
as valuable documentation that is guaranteed not to become obso-
lete as the code around them evolves.

Equivalence checking applies not only to user programs, but
also to compiler generated code as well. For intance, Cryptol’s
FPGA compiler backend performs extensive transformations to
turn Cryptol programs into hardware primitives available on target
FPGA platforms. The formal verification framework of Cryptol al-
lows equivalence checking between Cryptol and netlist representa-
tions that are generated by various parts of the compiler. Therefore,
any potential bugs in the compiler itself are also caught by the same
formal verification framework. This is a crucial aspect of the sys-
tem: proving the Cryptol compiler correct would be a prohibitively
expensive task, if not impossible. Instead, Cryptol provides a ver-
ifying compiler, generating code together with a formal-proof that
the output is functionally equivalent to the input program.

5. Verification via theorem proving
Cryptol’s automated verification system works in a complete push-
button manner, providing a seamless integration between daily pro-
gramming and formal verification. Unfortunately, the fully auto-
mated system is not the panacea. Some important Cryptol theo-
rems can not be proved in a reasonable amount of time (i.e. sev-

eral days) using the currently available automated proving tools.
These problems typically rely on high-level algebraic equivalences,
and involve sub-problems that are notoriously hard for SAT/SMT
solvers, such as multiplication (Kroening and Strichman 2008, Sec-
tion 6.3.1).

To deal with these difficult theorems we have recently added
a translator from Cryptol to the Isabelle proof assistant (Nipkow
et al. 2002). Isabelle has a wide array of existing rewrite and proof
search methods, and also allows users to certify their own custom
proof strategies. The use of a proof assistant such as Isabelle allows
one to integrate human insight into the proof process when fully
automated tools do not provide a feasible alternative.

6. Conclusions
In this extended abstract, we have provided a very brief overview
of the verification framework of Cryptol, a key ingredient of Cryp-
tol’s high-assurance development environment. The system has al-
ready proved itself useful in practice, especially in establishing the
equivalence of reference and pipelined implementations of crypto-
algorithms, essential in generating efficient FPGA representations.
Since such transformations are done both manually by program-
mers and automatically by the compiler, it is absolutely essential to
ensure that correctness is preserved through many structural trans-
formations applied to obtain a time/space efficient realization.

Developing a practical programming language with formal ver-
ification in mind is an inherently difficult task. The needs for “ease
of programming,” and “ease of verification” are often at odds. Sup-
porting more language constructs to simplify programming comes
with an obligation to support those constructs precisely in the proof
environment as well. (In the case of Cryptol, this is further compli-
cated by the desire to support compilation down to FPGA based tar-
gets, where “run-time” resources are extremely limited.) Nonethe-
less, the rather general programming model of Cryptol based on
size-types and pure functional programming, and an “integrated
verification” based approach in the design of the toolset paid off
nicely in practice, balancing the needs of both sides.

The web-site www.cryptol.net contains further resources re-
lated to Cryptol, including downloadable tools.

Acknowledgments
Many people have worked on Cryptol and its formal verification
toolset over the years, including Jeff Lewis, Thomas Nordin, and
Phil Weaver. We are also thankful to Magnus Carlsson, Lee Pike,
John Launchbury, Joe Hurd, and Sally Browning for their feedback
and comments on this work.

References
Clark Barrett, Silvio Ranise, Aaron Stump, and Cesare Tinelli. The Sat-

isfiability Modulo Theories Library (SMT-LIB). www.smt-lib.org,
2008.

Koen Claessen and John Hughes. QuickCheck: A lightweight tool for ran-
dom testing of Haskell programs. In Proc. of International Conference
on Functional Programming (ICFP). ACM SIGPLAN, 2000.

Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic
Point of View. Springer, 2008.

J. R. Lewis and B. Martin. Cryptol: high assurance, retargetable crypto
development and validation. In Military Communications Conference
2003, volume 2, pages 820–825. IEEE, October 2003.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant
for Higher-Order Logic. LNCS 2283. Springer, 2002.

NIST. Announcing the AES, November 2001. URL http://csrc.nist.
gov/publications/fips/fips197/fips-197.pdf. FIPS Publica-
tion 197.

2


