
A PARTIAL EVALUATOR AND POST-OPTIMIZER FOR A FLOW CHARTLANGUAGE
A THESIS SUBMITTED TOTHE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCESOFTHE MIDDLE EAST TECHNICAL UNIVERSITYBYLEVENT ERK�OK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FORTHE DEGREE OFMASTER OF SCIENCEINTHE DEPARTMENT OF COMPUTER ENGINEERING
JULY 1997

Approval of the Graduate School of Natural and Applied Sciences.
Prof. Dr. Tayfur �Ozt�urkDirectorI certify that this thesis satis�es all the requirements as a thesis for the degree ofMaster of Science.

Prof. Dr. Fato�s Yarman VuralHead of DepartmentThis is to certify that we have read this thesis and that in our opinion it is fullyadequate, in scope and quality, as a thesis for the degree of Master of Science.
Assist. Prof. Dr. HalitO�guzt�uz�unSupervisorExamining Committee Members

Assoc. Prof. Dr. Adnan Yaz�c�Assist. Prof. Dr. Cem Boz�sahinAssist. Prof. Dr. _Ilyas C� i�cekliAssist. Prof. Dr. Halit O�guzt�uz�unAssist. Prof. Dr. G�okt�urk �U�coluk

ABSTRACT
A PARTIAL EVALUATOR AND POST-OPTIMIZER FOR AFLOW CHART LANGUAGEErk�ok, LeventMSc., Department of Computer EngineeringSupervisor: Assist. Prof. Dr. Halit O�guzt�uz�unJuly 1997, 137 pagesIn this thesis, the concept of partial evaluation and post optimization techniqueshas been studied and a system, called ILPOS, implementing the ideas on a
owchart language is developed. The e�ects of specialization and optimizations, in-cluding useless code removal and program minimization are discussed. A methodfor handling incomplete speci�cations is discussed in the context of partial eval-uation. The termination problem of partial evaluation is studied and the ILPOSsolution to the problem is described.Keywords: Partial Evaluation, Program Specialization and Optimization, Pro-gram Termination.

iii

�OZ
AKIS� S�EMASI T_IP_I B_IR D_IL _IC� _IN B_IR KISM_I HESAPLAYICI VEEN _IY_ILEY_IC_IErk�ok, LeventY�uksek Lisans, Bilgisayar M�uhendisli�gi B�ol�um�uTez Y�oneticisi: Yrd. Do�c. Dr. Halit O�guzt�uz�unTemmuz 1997, 137 sayfaBu tez �cal��smas�nda, k�smi hesaplama ve en iyileme teknikleri incelenmi�s ve bu�kirler ak��s �semas� tipi bir dil �uzerinde uygulanarak ILPOS isimli bir sistem ileortaya konmu�stur. Program �ozelle�stirme ve en iyileme teknikleri, gereksiz pro-gram par�cac��g� yok edilmesi ve program ufalt�lmas� konular� tart��s�lm��st�r. Eksiktan�mlamalar�n durumu ve bunlar�n k�smi hesaplama i�cersindeki durumlar� ince-lenmi�s ve ILPOS taraf�ndan kullan�lan metod a�c�klanm��st�r. K�smi hesaplamadaprogram sonlanmas� problemi ve �c�oz�um�u incelenmi�stir.Anahtar Kelimeler: K�smi Hesaplama, Program �Ozelle�stirme ve En _Iyileme, Pro-gram Sonlanmas�.

iv

ACKNOWLEDGMENTS
I would like to thank to my supervisor Mr. Halit O�guzt�uz�un for his guidanceand help throughout the study. Many thanks go to my colleague Mr. M. U�gurY�lmaz for his help on every sort of problem that I have met. Special thanks goto Ms. S�eng�ul Vurgun and to my family for their invaluable encouragement andsupport. I also wish to express my gratitude to other colleagues and friends fortheir help and understanding.

v

TABLE OF CONTENTS
ABSTRACT : iii�OZ : ivACKNOWLEDGMENTS : vTABLE OF CONTENTS : viLIST OF FIGURES : ixCHAPTER1 INTRODUCTION : 11.1 Program Specialization and Optimization Techniques : : : 11.2 Recent Literature on Partial Evaluation : : : : : : : : : : 21.3 ILPOS Overview : 32 THE LANGUAGE L : 62.1 Syntax of L : 62.2 Semantics of L : 82.3 Other features of L : 93 PARTIAL EVALUATION : 103.1 Semantic formulation of Partial Evaluation : : : : : : : : 113.2 The motivation for using Partial Evaluation : : : : : : : : 134 PARTIAL EVALUATION FOR THE L LANGUAGE : : : : : : : 154.1 Program point specialization for L : : : : : : : : : : : : : 164.2 How to perform PPS : 174.3 Transition Compression : : : : : : : : : : : : : : : : : : : 204.4 Binding Time Analysis : : : : : : : : : : : : : : : : : : : 224.5 PPS algorithm and ILPOS : : : : : : : : : : : : : : : : : 244.6 Handling Incomplete Speci�cations : : : : : : : : : : : : : 27vi

4.6.1 Guards : 284.6.2 Guards in ILPOS : : : : : : : : : : : : : : : : : 294.7 Computational Complexity of Partial Evaluation : : : : : 315 POST OPTIMIZATIONS : 335.1 Useless Code Removal : 335.1.1 Notion of useless code and useless variables : : : 335.1.2 Global Data Flow Analysis for L : : : : : : : : : 355.2 Program minimization : 385.3 Linearization and Canonicalization : : : : : : : : : : : : : 425.3.1 Linearization : 425.3.2 Canonicalization : : : : : : : : : : : : : : : : : : 445.4 The need for post optimizations : : : : : : : : : : : : : : 455.5 Computational Complexity of Post Optimizations : : : : : 466 TERMINATION OF PARTIAL EVALUATION : : : : : : : : : : 486.1 In�nite partial traces : 486.2 Coping with non-termination : : : : : : : : : : : : : : : : 506.3 ILPOS termination handler : : : : : : : : : : : : : : : : : 527 LOGGING AND GAIN ANALYZER PARTS OF ILPOS : : : : : 557.1 Logging system of ILPOS : : : : : : : : : : : : : : : : : : 557.2 Symbolic Gain Analysis : : : : : : : : : : : : : : : : : : : 568 A CASE STUDY: DEFINITE INTEGRALS : : : : : : : : : : : : 598.1 De�nite Integration : 598.2 Simpson's Formula : 608.3 Programming the Simpson's Composite Rule in L : : : : : 608.4 Obtaining the Erf function Integrator Automatically : : : 618.5 Other Specializations : 628.6 Remarks on the case study : : : : : : : : : : : : : : : : : 639 FINAL THOUGHTS AND CONCLUSIONS : : : : : : : : : : : : 649.1 Final remarks and future work : : : : : : : : : : : : : : : 649.2 Conclusions : 65REFERENCES : 68APPENDICES : 70A ILPOS USER MANUAL : 70vii

B FINITE AUTOMATON SIMULATOR IN L : : : : : : : : : : : : 73C SIMPSON'S RULE IN L : 75C.1 The De�nite Integrator : : : : : : : : : : : : : : : : : : : 75C.2 Specialization for the Error Function : : : : : : : : : : : : 76C.3 SGA of the Error Function : : : : : : : : : : : : : : : : : 77C.4 A Non-terminating specialization : : : : : : : : : : : : : : 78C.5 Log �le for specialization : : : : : : : : : : : : : : : : : : 80C.6 SGA for Non-terminating specialization : : : : : : : : : : 81D SOURCE CODE OF ILPOS : 82D.1 ILPOS loader: ilpos : 82D.2 ILPOS driver: ilpos.s : 82D.3 Lexical Analyzer for L: lexer.s : : : : : : : : : : : : : : : : 84D.4 Parser for L: parser.s : 86D.5 Unparser for L: unparser.s : : : : : : : : : : : : : : : : : : 90D.6 Interpreter for L: interpreter.s : : : : : : : : : : : : : : : : 92D.7 The L library: llibrary.s : : : : : : : : : : : : : : : : : : : 95D.8 Set operations package: setOperations.s : : : : : : : : : : 97D.9 Commenting and Debugging: aux.s : : : : : : : : : : : : : 98D.10 Utility functions: util.s : : : : : : : : : : : : : : : : : : : 101D.11 Binding Time Analyzer for L: bta.s : : : : : : : : : : : : : 105D.12 The L Partial Evaluator: lpeval.s : : : : : : : : : : : : : : 107D.13 The Useless Code Remover: ucr.s : : : : : : : : : : : : : : 115D.14 Guard system of ILPOS: guards.s : : : : : : : : : : : : : : 120D.15 Code minimizer of ILPOS: minimize.s : : : : : : : : : : : 122D.16 Code linearizer of ILPOS: linearize.s : : : : : : : : : : : : 126D.17 The Symbolic Gain Analyzer: symbSpeedUp.s : : : : : : : 130

viii

LIST OF FIGURES1.1 The ILPOS module chart : 52.1 Syntax of the language L : 72.2 An example L program: search : : : : : : : : : : : : : : : : : : : 93.1 A specialization example : 114.1 Specialized search program : 154.2 Uncompressed residual code for search : : : : : : : : : : : : : : : 204.3 Initial form of compressed search program : : : : : : : : : : : : : 214.4 Compressed form of specialized search program : : : : : : : : : : 214.5 Algorithm for preparing a program for PPS : : : : : : : : : : : : 244.6 Algorithm for Trace Construction : : : : : : : : : : : : : : : : : : 254.7 Algorithm for code generation : 264.8 An example of an incomplete speci�cation : : : : : : : : : : : : : 274.9 Traces of an incomplete speci�cation : : : : : : : : : : : : : : : : 294.10 Residual program for an incompletely speci�ed program : : : : : : 304.11 Sample warning of guards in the log �le : : : : : : : : : : : : : : : 305.1 An L program demonstrating useless codes : : : : : : : : : : : : : 345.2 PPS producing useless code : 345.3 Algorithm for computing successors of a block : : : : : : : : : : : 365.4 Algorithm for computing live variables : : : : : : : : : : : : : : : 375.5 An example of a used useless variable : : : : : : : : : : : : : : : : 375.6 UCR applied to the specialized code : : : : : : : : : : : : : : : : 385.7 Algorithm for program minimization : : : : : : : : : : : : : : : : 405.8 An L program matching two lists : : : : : : : : : : : : : : : : : : 415.9 PPS applied to matcher program : : : : : : : : : : : : : : : : : : 425.10 Program graph for the specialized program : : : : : : : : : : : : : 435.11 Program graph for the minimized program : : : : : : : : : : : : : 435.12 Final form of matcher program : : : : : : : : : : : : : : : : : : : 445.13 An all states accepting minimal program : : : : : : : : : : : : : : 466.1 Russian Peasant's algorithm : 496.2 RPA specialized for a : 496.3 In�nite partial traces : 506.4 RPA specialized for b : 537.1 Result of symbolic gain analysis on RPA : : : : : : : : : : : : : : 58ix

CHAPTER 1
INTRODUCTION

ILPOS, an acronym for Integrated L Partial evaluator and postOptimizer System,has been developed in this thesis to study the program specialization techniquecalled partial evaluation and various post optimization techniques on the result-ing residual programs. The system implements all these operations on a
owchart language called L.1.1 Program Specialization and Optimization TechniquesProgram specialization and optimization techniques have always been a challeng-ing and active research area in computer science. This section brie
y introducesthe techniques used in ILPOS.Partial Evaluation is a program specialization technique aiming the use ofthe whole static information about the program at the specialization time. Asdiscussed later, a partial evaluator accepts some program written in a high levellanguage and produces another program, again in the same language, as its out-put. This output is called the residual program. The intended transformation issuch that the execution time of the residual program is less than the executiontime of the original program, thus achieving a certain speed-up. The main themeof partial evaluation is the usage of the static arguments of the programs. Theresidual program will be free of such static parameters and it will only dependon the dynamic part of the input. 1

Post optimization techniques aim at the production of more e�cient programsin terms of both time and space. Removal of useless code is one such techniquewhich employs the idea of no nonsense computation. The main idea is to avoid anycomputation that has no e�ect on the output of the program. Such optimizationsrely on the
ow analysis of the programs. ILPOS employs a
ow analyzer for thelanguage L which collects the information needed by the useless code remover.The main usage of useless code removal is for gaining time e�ciency through theremoval of useless code portions.Program minimization is another technique aiming at space e�ciency. As itwill become clear later on, the language L is very suitable for such a minimization.The idea of minimization has been adopted from the formal language theory whereit is applied to the reduction of �nite state machines.Brie
y, ILPOS is an experimental system for studying these program spe-cialization and optimization techniques. The language under consideration is a
ow chart language called L. This thesis describes the operation of ILPOS anddescribes the functions of its modules as they are needed. The structure of thethesis is as follows: First recent literature is summarized and an overview ofILPOS is given. This is followed by the description of the L language and itsproperties. Then the concept of partial evaluation is given and the technique ofpartial evaluation for L is described. The thesis will continue with the post opti-mizations that are implemented by ILPOS. After this, termination problem andits solution is discussed. The discussion will continue with the description of thesymbolic gain analyzer system and a case study on de�nite integrals. Throughoutthe discussion several examples will be given to demonstrate the ideas.1.2 Recent Literature on Partial EvaluationThe earliest work on partial evaluation dates back to 1967. The term partialevaluation has been used in those days for the discussion of computation withincomplete information. Since then, a huge literature has been formed. A detailedguide to the literature can be found in chapter 18 of [14]. Here some pointers tothe literature not listed there is given. 2

For the principals of partial evaluation, a very recent work in binding timeanalysis techniques is given in [12] by L. Hornof et.al. Correctness proofs foron-line and o�-line partial evaluators by C. Consel et. al. is also an importantwork in the foundations of the area, see [8]. Another recent study for the programadaptation techniques has been done by C. Consel in [5].The idea of program specialization has also been applied to operating systems.A work that applies the ideas to a commercial system by G. Muller et. al.appeared recently in [19]. Another paper describing the applications to operatingsystems is by E. N. Volanschi et. al, see [22] for details. A paper by C. Conselet. al. describes the incremental specialization techniques as they are applied tooperating systems, see [9] for details.Functional languages has always been a �rst choice for partial evaluationresearch. A partial evaluator for Scheme, called Schism, see [6], and binding timeanalysis techniques for such languages, see [7], is among the research areas. Themessage dispatching problems of object oriented programming languages has alsobeen addressed. A work by Je�rey Dean et. al, see [10], analyses the topic.Another important point of work is that of code generation on the
y. In thisapproach, the code is generated at the run time whenever partial evaluation isuseful. This direction of research has become very popular in recent years. Worksdescribing compile time and run time specialization techniques can be found in[3, 20]. An interesting programming language work has been done by Dawson R.Engler with the tick-c language, see [11]. This language, a descendant of C, hasspecial constructs for run time code generation.1.3 ILPOS OverviewILPOS has been entirely implemented in the Scheme language and works underMIT Scheme, Release 7.3.0 (beta) and is freely available. See appendix D for thedetails of getting it. It is R4RS (see reference [4]) compliant. ILPOS is composedof the following modules:� L interpreter system 3

{ L lexical analyzer{ L parser and unparser{ L interpreter� L library manager� Expression Evaluator� Partial Evaluator system{ Binding Time Analyzer{ Partial Evaluator� Incomplete Speci�cation Handler� Code Generator� Expression Reducer� Termination Handler� Post Optimizer System{ Useless Code Remover� L
ow analyzer{ Program Minimizer{ Linearizer and Canonicalizer� Gain Analysis System{ Symbolic Analysis Runner{ Statistics Collector� Documentation system, the log �le generatorAll the modules of ILPOS will be explained together with the ideas that theyimplement throughout this thesis. The source code for all these modules aresupplied in the appendix. Figure 1.1 shows the modules and their relations in agraphical format. 4

Post Optimizer

Symbolic Gain Analyzer

L Interpreter

Interpreter
Lexical

Partial Evaluator

 Analyzer

 Specializer

Specification
Incomplete

Handler

Analyzer Parser

SGA

ILPOS
Log

 System

Termination
 Handler

Useless Code
 Remover

Program
Minimizer

Reducer
Expression

Canonicalizer

Manager
 Library

 Analyzer
Global Flow

Code Generator

Unparser

Program
Linearizer

Logger

Program Point

Binding TimeFigure1.1:TheILPOSmodulechart
5

CHAPTER 2
THE LANGUAGE L

ILPOS, being an experimental system, demonstrates the ideas on a toy
ow chartlanguage called L. Although very simple, it proves to be a real programminglanguage since any Turing machine can be simulated by an L program, up to theallowed memory limits of the underlying computer.2.1 Syntax of LThe syntax of L has been given in [14]. ILPOS uses the same syntax with somelittle modi�cations. The syntax of L in extended BNF notation, as employed byILPOS is given in Figure 2.1.Syntactically, L is a free indentation language in the sense that any whitespace is welcome unless it breaks up some intended token. The user is free toformat the input �le in any way s/he likes. Tokens are separated by white space(blank, tab or newline). Comments are also welcome, any string of charactersthat follow a # character up to the next newline is assumed to be a commentand ignored by the lexical analyzer. There is no prede�ned limit on the length ofidenti�ers or the range of the numbers that are written as literals.Notice that L does not have the concept of user de�ned functions. The built-infunctions are listed under the <Op> category in the grammar. On the other hand,one can easily add new functions to the library, i.e. to the built-in collection, using6

the underlying implementation language Scheme. To make the lexical analyzerand the parser recognize this new function, it is not necessary to modify them.The lexical analyzer and the parser has been prepared in such a way that theaddition of the name of the new function to an existing functions list handlesthe rest automatically (see appendix D.7 for a description of how to do this). Inthis way, a new library function can be added to the system without altering theinternals of the lexical analysis and the parsing systems of ILPOS.
<Program> ::= read (<VarList>); <BasicBlock>+<VarList> ::= � j <Var> <VarListRest><VarListRest> ::= , <Var> <VarListRest> j �<BasicBlock> ::= <Label> <Assignment>� <Jump><Assignment> ::= <Var> := <Expr> ;<Jump> ::= goto <Label> ;j if <Expr> goto <Label> else <Label> ;j return <Expr> ;<Expr> ::= <Constant>j <Var>j <Op> (<ExprList>)<ExprList> ::= � j <Expr> <ExprListRest><ExprListRest> ::= , <Expr> <ExprListRest> j �<Constant> ::= ' <Val><Op> ::= hd j rest j cons j list j member j append j eqj add j sub j mul j div j odd j even j informSGAj gte j gt j lte j lt j sqrt j exp<Label> ::= <Id> j <Number><Val> ::= <Number> j <Id> j <List><List> ::= (<Val>�)<Id> ::= <L> (<L>j<D>)�<Number> ::= <D>+ (: <D>+)?<D> ::= 0 j 1 j : : : j 9<L> ::= the ascii character setFigure 2.1: Syntax of the language L

7

2.2 Semantics of LBeing a
ow chart language, the semantics of L is quite straightforward. Any Lprogram has a single entry point which is the read block that must appear atthe top. The termination of an L program must necessarily be caused by somereturn statement, no other sort of termination is provided. This means thatany program in L computes some value and returns it to the caller. This featurenicely �ts in our interpretation of programs as functions.An L program is composed of a sequence of blocks each of which is capable ofmaking any number of assignments. A block is always terminated either by a con-ditional or an unconditional jump to some other block, or by a return statementwhich causes the program to cease the execution. Upon the start of the execu-tion, the read block is activated and the initial values of the variables listed in theread list is read from the standard input. Then the �rst block takes the action,performing some assignments and then jumping to some other block. Notice thatthe read block does not have any jumps, control passes to the textually followingblock automatically. Execution goes in this fashion until it reaches some returnstatement or the program crashes for some reason1. It is also possible that theprogram may loop forever without ever returning a value.All variables are assumed to be global and a reference to some variable thathas not been initialized before crashes the program. There is no variable declara-tion, the �rst assignment to some variable name automatically creates a storagelocation for it. An L variable is dynamically typed. The same variable can assumeany valid L data type, i.e. numbers, constants or Scheme like lists at di�erentpoints in the execution of the program. As each assignment is executed, the storeis updated to re
ect the new values of the variables.An example L program is depicted in Figure 2.2. As usual, hd and rest are themain list processing functions. This program searches the namelist for a speci�cname and returns the value corresponding to it in the valuelist. This operationis typical of a symbol list search in a compiler. Notice that the case when name1 For example, some library routine may crash or program may jump to some block that isnot present. 8

is not in namelist is ignored by the program. This is done deliberately and theconsequences are investigated in Section 4.6.
simple L program, searching two parallel lists.read(namelist, valuelist, name);search: if eq(name, hd(namelist)) goto found else cont;cont: valuelist := rest(valuelist);namelist := rest(namelist);goto search;found: return hd(valuelist);Figure 2.2: An example L program: search
2.3 Other features of LThere are no side e�ects in L, meaning that any library routine is evaluatedsolely for the value it produces, not for any other purpose2. This feature isparticularly important as it allows the partial evaluator to regard library calls asordinary values, rather than commands that may a�ect the internal store in someundetectable manner. The store of an executing L program can only be alteredthrough the assignment statements present in the basic blocks.As indicated before, L supports the list data structure. A list can be of anydepth and may contain constants or numbers in it. Also, L supports arbitrarilylarge integer numbers and arithmetic operations on them.The L interpreter supplied within ILPOS has been designed to accommodateeasy extension of the L library. Any user can add new functions to the libraryby adding its de�nition to the llibrary:s �le (See Section D.7). Note that thede�nition must be given in the Scheme language and it must be free of any sidee�ects. For a reference of Scheme see [1, 4].2 This explains the reason for having no output functions in L.9

CHAPTER 3
PARTIAL EVALUATION

Consider some mathematical function f having two arguments. It is obviousthat one can obtain another function, say g, which has only one argument andobtained by freezing one of the arguments of f to some known �xed value. Forexample let f(x; y) = x! + xy and set x to 4. Now, g is a function of y only andits de�nition is g(y) = 24 + 4y. Note that for all computations of the functionf where the value of x is 4, one can use the g function instead of it and obtainthe same result much more easily. Technically we say that g is the projection(or restriction) of f with respect to x = 4. In logic, the same idea follows withcurrying.Now consider what would happen when the same idea is carried over to pro-grams written in some language. In essence, any program can be thought of asa function that maps its arguments to the corresponding output value. This is atrivial consequence of the Church-Turing thesis indicating that any computablefunction can be computed by a Turing machine and a Turing machine is nothingbut a transformer of its initial tape contents (i.e. arguments) to a �nal tape (i.e.the output).In fact this idea has been investigated by Kleene in 1952 with his famouss-m-n theorem [15]. Although Kleene's formulation had nothing to do with thee�ciency of such a specialization process, his work signals the existence of suchspecialized Turing machines. For a recent survey of the topic, see [13].10

To illustrate the concept of partial evaluation, consider the programs in Fig-ure 3.1 written in a hypothetical programming language.
f(n, x) = if n = 0 then 1
 else if even(n) then f(n/2, x)^2
 else x * f(n-1, x)

A two input
program p =

Specialize with respect to n=5:

5 = f5(x) = x * ((x^2)^2) p

Figure 3.1: A specialization example
The program p simply raises its argument x to the power n. The program p5is a specialized form of the original program raising its argument x to the power5. Clearly one can use p5 instead of p whenever the second argument is known tobe 5 and this would allow an e�cient computation since there would be no testsetc. that must be performed at the run time. The merit of partial evaluation liesin the generation of such residual programs from the original ones automatically.3.1 Semantic formulation of Partial EvaluationConsider some program p written in some language L. Then, the notation [[p]]Lis used to denote the meaning of the program p. This can be considered asthe transfer function (or input/output function) corresponding to the programp. Now assume that p has n input arguments and consider that p is run witharguments a1; a2; : : : an. Then the notation [[p]]L[a1; a2; : : : ; an] denotes the output11

of the program with respect to these inputs, i.e.:result = [[p]]L[a1; a2; : : : ; an]The program p may go into an in�nite loop, which is, in general, undetectabledue to the halting problem, and in such a case result is simply unde�ned.Using these notational conventions one can describe the partial evaluationprocess in a more concise way. Historically, the partial evaluator programs hasbeen given the name mix, a short for mixed computations. Suppose that p isan n argument program written in some language L. Furthermore assume thatthe k of its arguments are static. By static we mean that its value is knownat the specialization time, i.e. the program will be specialized with that �xedspeci�c value. By this discussion the remaining n� k arguments are assumed tobe dynamic, i.e. their initial values will not be available until run time. Withoutany loss of generality and for the sake of notational convenience, we can assumethat these k static arguments are the �rst k of the program arguments1. Let'sdenote a1; a2; : : : ; ak by s1; s2; : : : sk (reminding that they are static) and denoteak+1; ak+2; : : : ; an by d1; d2; : : : ; dn�k (reminding that they are dynamic). Now theentire computation of program p with these inputs can be given as:result = [[p]]L[s1; s2; : : : ; sk; d1; d2; : : : ; dn�k]Now assume that we partially evaluate program p with respect to its staticinputs and obtain the program pres, denoting residual p. This computation isexpressed as (assuming mix is written in language M):pres = [[mix]]M [p; s1; s2; : : : ; sk]Note that pres is again a program in the language L. Now this residual programis run with the dynamic input only, i.e.:result = [[pres]]L[d1; d2; : : : ; dn�k]1 Note that this does not impose any restriction on the process since one can always reorderthe arguments in this way. 12

It is clear from the de�nition of partial evaluation that this result is the sameas that obtained by running the original program on all of the inputs, i.e. thefollowing equation, known as the mix equation, holds:[[p]]L[S;D] = �� [[mix]]M [p; S]| {z }pres ��L[D]3.2 The motivation for using Partial EvaluationClearly, performing partial evaluation on some source program has some costassociated with it. The required transformation is not straightforward in thesense that it requires extensive analysis of the source program. This will becomeclear when the technique for partial evaluation is explained later on. If the staticpart of the input does not change frequently and the program is run for thechanging values of the dynamic variables a lot of times, then specialization willgive us good results.More precisely, let tp denote the time required for running the program p.Assume that p has a set of static inputs and the residual program obtained bypartially evaluating p with respect to them is pres. Let the specialized programbe run � times. Then the ratio:�� tp(all inputs)tmix(p; static inputs) + �� tpres(dynamic inputs)gives us the gain that we obtain by partial evaluation. For partial evaluation to beuseful, this ratio must be greater than 1. Note that as � gets larger the signi�canceof the specialization time gets smaller. So one should think of specialization when� is a large value and the produced residual code runs faster than the originalone. The second condition is much easier to satisfy as it will be shown later byexamples. When � is low, the specialization time must also be considered.Another motivation for partial evaluation is that of the trade o� between e�-ciency versus generality. People tend to write programs more and more general,i.e. using as much parameters as possible. This tendency results in highly read-able and modular codes. Although this is desirable, the resulting programs areoften 'more than needed' and run slower than their equivalent, although perform-ing a more speci�c task, programs. Partial evaluation bridges this gap in the sense13

that more general programs are automatically transformed into specialized, andthus more e�cient, programs. This achieves e�ciency without loosing generalityand modularity.A typical example of this fact can be given as follows: Function calls, ingeneral, are bottlenecks for e�ciency, yet they make programs much structured.One can stick to function calls and let the partial evaluator unfold them, and infact specialize them, to get e�cient versions without sacri�cing any modularityin the programs.Partial evaluation has found place in many �elds of computer science. Theseapplications range from computer graphics to neural networks, from scienti�ccomputing to database query optimizations. A guide to such applications can befound in Chapter 13 of [14].

14

CHAPTER 4
PARTIAL EVALUATION FOR THE LLANGUAGE

Consider the search program presented in Figure 2.2. We can think of that Lprogram either as a stand alone program or as a module of a larger one. In anycase assume that we know, at the specialization time, that the value of namelistis '(a b c d) and the value of name is 0c. Also assume that we do not know thevalue of the valuelist. This scenario is not arti�cial, in the senses that it describesexactly what happens when some interpreter refers to the value of some variablein the symbol list. It is clear that the program, at this stage, is equivalent to theprogram in Figure 4.1.
read(valuelist);lpe0: valuelist := rest(valuelist);valuelist := rest(valuelist);return hd(valuelist);Figure 4.1: Specialized search program
It is clear that the specialized version of the program is free of any tests thatthe original should make. Also the resulting program is a linear one, in the sense15

that it does not jump to any other blocks, so there is no jump cost. As thenamelist gets longer and name is found towards the end of the list, the gainwould be much more apparent.The aim of partial evaluation for L language is to obtain these programsautomatically. ILPOS handles this specialization using a technique called programpoint specialization as explained in the subsequent section.4.1 Program point specialization for LConsider the interpretation of some program p in L. A program that is beingexecuted is called a process. Each point in the lifetime of a process can bedescribed with a tuple (pp; store). Here pp denotes the program block that theprocess is currently in and store denotes the values of the program variables.Clearly, a program that has just executed its read block and is at the beginningof its �rst basic block can be described as (pp0; store0). Similarly, a processthat executes its ith block with the values of variables denoted as storej will berepresented by (ppi; storej).Observe that, within each basic block of an L program, the execution is nec-essarily linear. This means that the control can not pass to some other blockwithout performing all the assignments of the current block. Using this notation,an L program in execution can be represented as:(pp0; store0)! (pp1; store1)! : : :! (ppn; storen)where the block corresponding to ppn terminates with a return statement. Inthis notation, each ppi is an element of the basic blocks of the current processfor 0 � i � n. Note that ppi may be the same as ppj, corresponding to the samebasic block in the process. This sequence of transitions is called the trace of theprocess.Notice that we can obtain a unique trace of an L program if we know allthe input arguments. In such a case the L program is equivalent to a programthat has a single block returning the overall result. Now assume that we knowonly a part of the input arguments. In this case, we can de�ne a partial trace16

representing the moves of the program. It is clear that in a partial trace theitems in the sequence need not be unique. This is due to the fact that some blockmay end up with a conditional if statement resulting in two di�erent executionpaths. For instance, assume that l0 is a block that ends with a conditional jumpstatement such as:if eq(a, '()) goto l1 else l2; Then:(l0; storei) �! � (l1; storeq) if eq(a, '()) evaluates to true,(l2; storer) otherwise.This assumes that the conditional expression can not be evaluated at thespecialization time because the value of a is not known1. It is clear that the setof all such traces correspond to all possible execution paths of the program.Now consider that some program L is given and we have a program to produceall partial traces corresponding to that program. If some of the arguments to theprogram are known in advance then this information can be used to cut downsome of the traces of the original program into a set of traces which are possiblewith respect to the known data values. By this means, we have a way of simulatingthe original program without knowing all the values of the variables.Exactly in this point does the concept of program point specialization (PPS)is introduced. The main idea is to produce a new program whose set of allpossible traces is exactly equivalent to the partial traces of the original programwith respect to the values of the known arguments at the specialization time.The name PPS follows from the fact that the residual program consists of a setof blocks which are the specialized versions of the blocks in the original program.4.2 How to perform PPSIn this section the example program given in Figure 2.2 will be used to demon-strate how one can apply PPS to obtain a residual program.Again assume that we want to specialize the search program with respect tothe values namelist 7! '(a b c d) and name 7!0 c. We construct the partial trace1 In fact storeq is exactly equivalent to storer since L does not allow any side e�ects.17

of the program with respect to this known arguments step by step.At the start of the program, we are in block search. This program pointis represented in our tuple notation as: (search, f(a b c d), cg). Note thatthe second element of the tuple is the store of the known values, namelist andname respectively. Now we run our partial evaluator (the program that obtainsall possible partial traces) starting with this program point. The method is togenerate code for the current block with respect to the known store and thenobtain the successors of this block. Looking at the program, the partial evaluatordetermines that it can execute the conditional jump with no di�culty since itinvolves only the known values. Since the condition turns out to be false, thesuccessor node is cont. Up to now, the partial evaluator found out that theexecution path that leads to the found block is impossible with the given startvalues so it cuts down that branch obtaining the following start of the chain:(search, f(a b c d), cg)! (cont, f(a b c d), cg)At the same time the following code is generated for the initial block:(search, {(a b c d), c}) : goto (cont, {(a b c d), c});It is important to note that the label in the goto statement is annotated withthe store associated with the program at that point. At this point the partialevaluator looks for the code in block cont. It sees that there are two assign-ments and the second one can be executed at the specialization time. It up-dates its store by executing that assignment and assigns namelist the new value'(b c d). The partial evaluator notices that it can not handle the �rst assignmentat this time. Upon examining the jump statement associated with the block, thepartial evaluator generates the following code for this program point:(cont, {(a b c d), c}) : valuelist := rest(valuelist);goto (search, {(b c d), c});At this point partial evaluator knows that it needs the code for the program point(search, f(b c d), cg) and looks if it had already generated it before. Checking18

the partial trace that it had generated so far, it determines that this is an entirelynew program point, so it extends the trace with this new item to obtain:(search, f(a b c d), cg)! (cont, f(a b c d), cg)! (search, f(b c d), cg)The code generated for (search, f(b c d), cg) follows the same lines as de-scribed. The result is:(search, {(b c d), c}) : goto (cont, {(b c d), c});Again looking at the partial trace, (cont, f(b c d), cg) is found to be a newprogram point, giving the chain:(search, f(a b c d), cg)! (cont, f(a b c d), cg)!(search, f(b c d), cg)! (cont, f(b c d), cg)Similarly the following code is generated:(cont, {(b c d), c}) : valuelist := rest(valuelist);goto (search, {(c d), c});The generation of this code extends the partial trace to:(search, f(a b c d), cg)! (cont, f(a b c d), cg)! (search, f(b c d), cg)!(cont, f(b c d), cg)! (search, f(c d), cg)Proceeding as before, the partial evaluator �nds out that the program point(search, f(c d), cg) generates the following code:(search, {(c d), c}) : goto (found, {(c d), c});producing the partial trace:(search, f(a b c d), cg)! (cont, f(a b c d), cg)! (search, f(b c d), cg)!(cont, f(b c d), cg)! (search, f(c d), cg)! (found, f(c d), cg)Finally the code for (found, f(c d), cg) is produced as:(found, {(c d), c}) : return hd(valuelist);19

This describes the end of the computation since the partial evaluator has cometo a return statement and it has no items in the partial chain that remainsto be elaborated. So the whole partial chain corresponds to the actions of theresidual program. Combining all the codes that the partial evaluator producedone obtains the program in Figure 4.2.
(search, {(a b c d), c}) : goto (cont, {(a b c d), c});(cont, {(a b c d), c}) : valuelist := rest(valuelist);goto (search, {(b c d), c});(search, {(b c d), c}) : goto (cont, {(b c d), c});(cont, {(b c d), c}) : valuelist := rest(valuelist);goto (search, {(c d), c});(search, {(c d), c}) : goto (found, {(c d), c});(found, {(c d), c}) : return hd(valuelist);Figure 4.2: Uncompressed residual code for search
This completes the actions of the partial evaluator. It successfully producedthe residual code that depends only on the value of the valuelist argument.It should be noted that the illustrative example chosen here was a very simpleone. It never produced choices in the continuation of the partial trace. However,as indicated before, this is not always the case. In case there exists more thanone continuation from a program point, the partial evaluator takes notes of eachof them and expands in both branches. This will allow the correct generationof all the possible program paths thus ensuring the correctness of the producedresidual code.4.3 Transition CompressionThe last section described how a PPS partial evaluator can produce residualprograms. The example gave us the residual in Figure 4.2. Previously it hasbeen indicated that a specialized form of the same program would appear as inFigure 4.1. Inspecting the program given in Figure 4.2, one notices that each20

block is terminated with a goto statement. It is clear that one can always copythe designated block after the goto statement (and by removing the goto) andstill obtain an equivalent program. This procedure is called transition compres-sion. Applying the technique to program in Figure 4.2 one gets the program inFigure 4.3.
(search, {(a b c d), c}) : valuelist := rest(valuelist);valuelist := rest(valuelist);return hd(valuelist);(cont, {(a b c d), c}) : valuelist := rest(valuelist);valuelist := rest(valuelist);return hd(valuelist);(search, {(b c d), c}) : valuelist := rest(valuelist);return hd(valuelist);(cont, {(b c d), c}) : valuelist := rest(valuelist);goto (search, {(c d), c});(search, {(c d), c}) : return hd(valuelist);(found, {(c d), c}) : return hd(valuelist);Figure 4.3: Initial form of compressed search program
A simple reachability analysis on this program reveals that starting at (search,f(a b c d), cg) no other block is reachable. So we can delete the remaining blocks.Finally by adding the initial read block, reading only the value of the valuelistone obtains the �nal code as in Figure 4.4.

read(valuelist);(search, {(a b c d), c}) : valuelist := rest(valuelist);valuelist := rest(valuelist);return hd(valuelist);Figure 4.4: Compressed form of specialized search program21

Notice that the program in Figure 4.4 is isomorphic to the program in Fig-ure 4.1 up to a relabeling of the blocks.4.4 Binding Time AnalysisIt is clear from the previous discussion that PPS technique involves the genera-tion of specialized versions of the program points that are present in the subjectprogram. In doing this, it sometimes generates code for the corresponding state-ment in the original program or it updates the internal store to re
ect the actionsof the program. For this reason, the decision concerning whether a statementshould produce code is an important issue in PPS.Naturally, the partial evaluator attempts to generate as few code as possible.In order to achieve this goal, it must know which statements can be evaluatedat the specialization time and which must be transferred to the residual code. Itis apparent that some statement can be evaluated at the specialization time ifit depends only on the static variables of the program. Then the question is todetermine which variables are static given the list of the known arguments. Thisanalysis is called the binding time analysis (BTA).In the previous section, the only program variables were those that are readthrough the read block of the associated program. Of course this is not always thecase, the program may contain other variables. The aim of BTA is to constructthe so called division which gives all the static variables of the subject program.Simple minded2 de�nitions for a static variable and a static expression can begiven as follows:De�nition 4.1: A dynamic variable of an L program can be de�ned as follows:1. All the variables that are in the read list of the program but not speci�edas known are dynamic.2. Let v := � be an assignment in the program. If � is not a static expressionthen v is dynamic.2 The term simple minded will become clear when termination of partial evaluation isdiscussed. 22

3. No other variable is dynamic unless 1 or 2 is satis�ed.De�nition 4.2: A variable v is called static if it is not dynamic.De�nition 4.3: An expression � of an L program is called a static expression ifand only if the followings hold:� � is a constant,� � is a static variable, or� � is of form op(�1; �2; : : : �n) where each expression �i; 1 � i � n is static.De�nition 4.4: An expression � of an L program is called a dynamic expressionif it is not static.The main idea in BTA algorithm is to apply these de�nitions on the subjectprogram to come up with the division. Note that the BTA described here assumesthat a variable is either static or dynamic in all parts of the program under con-sideration. The division constructed by these algorithms, and hence by ILPOS,are monovariant divisions in this sense. Of course, this is not necessarily the caseand a polyvariant division can be computed which will exhibit the change in thedivision for each block separately. For the details of polyvariant divisions see [14].As mentioned before, the analysis performed by the binding time analyzergives the specializer the required information for making the decision of generatingcode for a program statement. The partial evaluator attempts to generate codefor a statement if it determines that the expression it involves is dynamic (byde�nition 4.4). If an expression is static, it is computed at the specialization timeand the store is updated.The last de�nition concerning the division constructed by BTA is that of�niteness:De�nition 4.5: A division is said to be �nite if it allows the partial evaluatorto generate a �nite residual program.As it will be explained later, unfortunately, �niteness is not guaranteed withthese de�nitions. 23

4.5 PPS algorithm and ILPOSEquipped with the previous discussions, a naive description of the PPS algorithmwill be given in this section. The PPS algorithm can be thought in 3 parts: theinitialization part, the trace construction part and the code generator part.The initialization part of the PPS algorithm, as depicted in Figure 4.5 includesthe binding time analysis of the source program.fGiven the list of input arguments vspec and their starting values which areknown at the specialization time, construct the residual program by the pro-gram point specialization technique, initialization partg1. Let vdyn be the set of variables which appear in the read list but notin vspec.2. Apply de�nition 4.1 with the initial set vdyn to compute the set of alldynamic variables that appear in the program.3. Let vstat be the set of all program variables which are not marked asdynamic by step 2.4. Let store0 be the store containing the variables in vstat together withtheir initial values. If some variable in this set is not an input argumentthen let its value be ERR indicating that it is a not yet initializedvariable.5. Let Trace = f(pp0; store0)g where pp0 is the name of the �rst block inthe program. Let Residual = �.Figure 4.5: Algorithm for preparing a program for PPS
The initialization algorithm aims to �nd the division of the program variables.To do this, it examines every assignment in the program to �nd out the variableswhich are dynamic. Initially the set of input variables (i.e. those variables in theread list) which are not speci�ed to be static are included in the list of dynamicvariables. Then, for all assignments, whenever the right hand side contains adynamic variable, the left hand side is also included in the list. This closurealgorithm is applied until the set of dynamic variables cease to change. Theset di�erence of all program variables and these dynamic variables gives us the24

set of all static variables of the source program. After this analysis the traceconstruction part is activated whose algorithm is given in Figure 4.6.
fPPS algorithm, trace construction part. g1. Select an element f(ppi; storei)g in Trace and mark it as processed. Ifno unmarked element exists goto step 5.2. Let curCode = "(ppi; storei) : "3. Let curBB be the basic block corresponding to ppi. Apply thecodeGeneration algorithm of Figure 4.7 to curBB.4. Let Residual = Residual [curCode, Go to step 1.5. Relabel all the blocks in Residual to identi�ers.6. Initialize ResidualCode to a read statement containing only those in-put arguments which are dynamic.7. Append each element of Residual to ResidualCode.8. Apply transition compression of section 4.3 to ResidualCode.9. Output ResidualCode as the partially evaluated code.Figure 4.6: Algorithm for Trace Construction
The trace construction algorithm explores all possible program points emanat-ing from the starting program point. The algorithm tries to �nd out all possiblecontinuations from a given con�guration and elaborates them as code segmentsin the residual program. The main engine of the algorithm goes with the codegeneration part as depicted in Figure 4.7.ILPOS employs these algorithms with a change in step 8 of the trace con-struction part (Figure 4.6) to implement PPS for language L. ILPOS employstransition compression on the
y instead of a separate phase for compression.Remember that a goto is said to be compressed if the upcoming block is put inplace of it. This has the advantage of both saving an extra phase and eliminatingthe need for a reachability analysis as done in section 4.3. This is due to the fact25

that, a new residual block is generated only if it is reachable.fPPS algorithm, code generation part. g1. For each assignment v := � in curBB do the followings:� if v is static by division then compute � with respect to storei.Update storei to re
ect the change in v.� if v is dynamic then reduce the expression � to obtain � withrespect to storei. Let curCode = curCode � "v := �; " where � isthe concatenation operator.2. According to the jump statement of curCode do the following:� If the jump is a goto then let curCode = curCode �"goto(ppj; storei)" where ppj is the label of the goto. Let Trace =Trace [f(ppj; storei)g.� If the jump is a return then let its expression be �. If � is staticthen compute its value into � otherwise reduce it to expression �.Let curCode = curCode � "return �; ".� if the jump is a conditional jump of the form: if � goto l1 else l2,then proceed as follows:{ if � is static then compute its value. If it evaluates to truethen let curCode = curCode � goto(ppk; storei) otherwise letcurCode = curCode � goto(ppj; storei) where ppk and ppj arethe program points corresponding to l1 and l2. In each case letTrace = Trace [f(ppl; storei)g where ppl is ppk if � = trueand ppj otherwise.{ if � is dynamic then reduce it to �. Let curCode = curCode�"if � goto (ppk; storei) else (ppj; storei); " where ppk and ppjare the program points corresponding to l1 and l2 respectively.Let Trace = Trace [f(ppk; storei); (ppj; storei)g.Figure 4.7: Algorithm for code generation
The algorithm for PPS refers to the concept of reducing an expression withrespect to some store. The de�nition of a reduced expression follows:De�nition 4.6: An expression is reduced if it is,� a constant 26

� a variable v marked as dynamic by division� an application op(e1; e2; : : : ; en) and each of ei; 1 � i � n is reduced and atleast one of ei; 1 � i � n is a dynamic expression.Notice that the reduced form of a static expression is equivalent to a constant. Us-ing this de�nition, ILPOS employs an expression reducer which, given a dynamicexpression, returns the equivalent reduced expression with respect to the currentstore associated with the block. The reduced expression is either a constant oran application with dynamic variables in it.4.6 Handling Incomplete Speci�cations
an incompletely specified L program:read(names, name);look: if eq(name, hd(names)) goto ok else cont;cont: names := rest(names);goto look;ok: return names;Figure 4.8: An example of an incomplete speci�cation

Consider the L program given in Figure 4.8. The intended meaning of the programis to �nd the �rst occurrence of name in the names list and return the rest of thelist starting with it. However, there is an assumption on the contents of names.The programmer assumes that it necessarily contains name3. This is a completelyacceptable program in the sense that the programmer might have made sure thatname would occur in names by some other means. Since it is guaranteed to bethere, the programmer saved a test of emptiness. Programming in this way hasnothing wrong with it as far as the programmer is aware of it4.3 In case name does not exist, the program will crash at run time, since it will attempt totake the rest of an empty list.4 Notice that it may also be the case that the test for emptiness might have been forgottenby mistake. 27

Although nothing is wrong with this style, such programs cause problemswhen they are partially evaluated. Assume that this program is partially eval-uated with respect to the known input argument names = '(a b). The partialtraces obtained are as follows:� Trace corresponding to name = a:(look, f(a b)g)! (ok, f(a b)g)� Trace corresponding to name = b:(look, f(a b)g)! (cont, f(a b)g)! (look, f(b)g)! (ok, f(b)g)� Trace corresponding to neither:(look, f(a b)g)! (cont, f(a b)g)! (look, f(b)g)! (cont, f(b)g)! (look, f()g)! CRASHIn terms of the graph of partial traces this situation is depicted in Figure 4.9.Since the last path in trace results in a crash the entire partial evaluationprocess fails. Of course this is not acceptable since the program and its staticdata is well formed. Unfortunately PPS can not handle this situation. To remedythe problem ILPOS uses guards.4.6.1 GuardsThe problem speci�ed above is the result of applying a library routine to somevalue for which that routine is not de�ned. In the above example the libraryfunction hd was applied to 0() resulting in crash.In general, all library functions implement some partial function. It is thispartiality that causes the problems5. If the partial evaluator knows for everylibrary function the values at which they are unde�ned then it can handle suchincomplete speci�cations correctly. The idea is to check whether some applicationis safe for its arguments. To do this we de�ne guards:28

(cont, {(a b)})

(look, {(b)})

(ok, {(b)}) (cont, {(b)})

(look, {()})

CRASH

(look, {(a b)}

(ok, {(a b)})

)

Figure 4.9: Traces of an incomplete speci�cationDe�nition 4.7: A guard for a library function is another function which returnstrue if the corresponding function is de�ned at some argument, false otherwise.For instance a guard for hd function is a function returning false if theargument is an empty list or a non-list and true otherwise.4.6.2 Guards in ILPOSThe library supported with L contains many functions each of which is equippedwith their guards. As mentioned before, ILPOS has an extendible library andthe user is supposed to supply guards with the new functions all de�ned in theScheme language.Whenever the ILPOS partial evaluator attempts to evaluate some applicationthat is static, it �rst calls the associated guard to check whether the applicationis safe. If the operation is determined to be safe then PPS goes accordingly.Otherwise an incomplete speci�cation is signaled and the code in curCode (seealgorithm in Figure 4.7) is set to "return run time crash;". This guarantees5 For example, hd is a partial function since it is not de�ned for an empty list.29

that if the residual code reaches to this block, it will indicate the crash to theuser as the original would do. Using this method, ILPOS generates the residualprogram in Figure 4.10 for the above example.
read(name);lpe0: if eq(name, 'a) then lpe1 else lpe2;lpe1: return '(a b);lpe2: if eq(name, 'b) then lpe3 else lpe4;lpe3: return '(b);lpe4: return run_time_crash;Figure 4.10: Residual program for an incompletely speci�ed program
Noticing that this may be something intended or something that is forgottenby mistake, the ILPOS log generator adds to its output log a record for itsaction. The corresponding function call and the static argument is recorded witha suitable warning message. The log generator is described later in section 7.1.In this case, it will contain the a warning message as in Figure 4.11. A similarmessage is issued on the screen to notify the online user.

** Warning the call <hd> has problems.** Partial Evaluator Warning: The static expression:hd(names)** has been evaluated with respect to the static environment:names --> ()** contains an unsafe operation.** Signaling operation is indicated above.Figure 4.11: Sample warning of guards in the log �le
30

4.7 Computational Complexity of Partial EvaluationAs described in the previous sections of this chapter, partial evaluation is com-posed of a sequence of separate phases. In this section, the computational com-plexity of these algorithms will be discussed.Any source program that is subject to partial evaluation must �rst be readfrom the disk and parsed into an abstract syntax tree. Once represented inthis form, all operations are carried out as transformations of the parse treecorresponding to the program.First of all, binding time analysis is performed on the program. This analysisstarts with a set of dynamic variables as found by the set di�erence of the programarguments and the static parameters. The BTA algorithm iterates over all theassignments to �nd out if it can add the name of a new variable into the dynamicvariables list (see Figure 4.5). Assuming there are nvar variables in the program,this iteration can be made at most nvar times. Notice that this is the worstcase since it assumes that only one variable is marked as dynamic through eachiteration. In each iteration, a number of assignment statements are checked foranalysis. We can safely assume that the number of assignments is at most aconstant times the number of blocks in the program. That is, we measure thesize of the program as a function of its number of blocks. Then, the numberof iterations for BTA is c1 � n where n is the number of blocks in the program.This altogether counts for c1 � n � nvar operations, when counted for all variablesthat appear in the program. Roughly speaking, the BTA algorithms amountsto a nested loop structure and assuming nvar is a linear function of n (as in thenumber of assignments), the worst case complexity of BTA turns out to be O(n2).After BTA is performed, the trace construction algorithm is activated (seeFigure 4.6). It is not possible to give a complexity measure at this point since thealgorithm simulates the actions of the source program on the static arguments. Itcan be said that the complexity is at least the complexity of the source programas all of its actions are imitated. Certainly, more operations are performed by thecode generator (see Figure 4.7) and other book keeping parts. A rough analysis ofthe algorithms reveal that the complexity of the PPS algorithm need not be more31

than a constant times the complexity of the source code, since for each possiblecon�guration either the computation is imitated or a code portion is generated.Code generation is merely a copying of the original instructions where all thestatic parts are evaluated and substituted in function calls whenever they are apart of a dynamic call. Again, roughly speaking, the complexity of the wholePPS algorithm is a factor of the complexity of the source program.As noted above, giving precise analysis of the complexity of the partial eval-uation is not an easy one. The main complication arises from the fact that theinput to the partial evaluator is not an ordinary data (as a list, number, struc-ture etc.) but just another executable program. Also notice that, as it will beindicated in chapter 6, the partial evaluator may even not terminate in certaincases. The analysis given here assumes that this is not the case.

32

CHAPTER 5
POST OPTIMIZATIONS

ILPOS has two main components: the partial evaluator and the post optimizer.The previous sections investigated PPS for L. In this chapter the post optimizersystem employed by ILPOS will be discussed.The post optimizations performed by ILPOS has three components: uselesscode remover, program minimizer and program linearizer.5.1 Useless Code RemovalUseless code removal (UCR) is a classical optimization technique which aims at"no nonsense computation". This section describes the need and the method forUCR in ILPOS.5.1.1 Notion of useless code and useless variablesThe notion of useless code and useless variables have been widely studied in theliterature. In the context of partial evaluation, useless code and useless variablesarise as the result of specialization of a large and modular program which performsmany tasks. The specialization gets rid of the irrelevant parts of a huge programbut it may leave some code portions which, in general, arrange the relationshipsbetween the modules of the original program. Although these code portions area part of the residual code, they have no e�ect on the semantics of the �nal code.33

It is very di�cult, if not impossible, to give a real example to demonstratethe ideas since it would be a very big program. To illustrate the ideas considerthe L program given in Figure 5.1.
read(a, b);start: c := add(a, b);if eq(a, '0) goto first else second;first: return b;second: return c;Figure 5.1: An L program demonstrating useless codes
Assume that a is static with initial value 0. The PPS algorithm produces theresidual code in Figure 5.2.

read(b);(start, {0}): c := add('0, b);return b;Figure 5.2: PPS producing useless code
It is clear that the computation add('0, b) and assignment to c are useless.Technically, c is called a useless variable and the assignment c := add(0, b) iscalled a useless code. Following de�nitions formalize the problem:De�nition 5.1: Let b be a block in an L program. Then the set of all reachableblocks from b is said to be the successors of b. This set is called succb. Byde�nition b 2 succb.De�nition 5.2: Let v and w be two variables. We say that v directly dependson w if there exists an assignment v := � where � contains w. By de�nition34

v depends on itself. The relation depends is de�ned as the re
exive-transitiveclosure of the directly depends relation.De�nition 5.3: Let v be a variable occurring in some block b. Let the set ofall nodes which are reachable from b be succb and let contributeb be the set ofall return statements occurring in succb. Then v is called a live variable in ablock b if some variable contained in at least one of the expressions in contributebdepends on v. A variable is said to be useless in some block if it is not live.De�nition 5.4: An assignment is said to be a useless code in some block if itsleft hand side is a useless variable in that block.It is clear that performing the computation of a useless code does not doanything sensible. Deleting all such code from a program is the process of uselesscode removal. This analysis has been deeply investigated in the literature, see[2, 18] for details.These ideas have been integrated into ILPOS through a data
ow analyzer asexplained in the following section.5.1.2 Global Data Flow Analysis for LGlobal data
ow analysis (GDFA) is the process of collecting useful informationfrom the text of a program without actually running it. As described in theprevious section, determination of useless variables is an example of such ananalysis.Notice that the syntax of L is very clear in the sense that the blocks of an Lprogram directly correspond to the de�nition of a basic block1 in
ow analysisliterature. ILPOS employs GDFA to determine the useless variables occurringin blocks. This section explains these ideas more concretely. To begin with, analgorithm for computing the successors of a block is given in Figure 5.3. Thisalgorithm has been referenced in the de�nition of a live variable and widely usedin GDFA.1 A basic block is a sequence of instructions which are executed sequentially with no jumps.35

fGiven an L program and a block b that appears in the program, return theset of all blocks that are reachable from b g1. Let succ = fbg.2. Select an element q of succ that is not marked as processed. If no suchblock exists goto step 5. Mark q as processed.3. According to the jump statement of q do one of the followings:� If the jump is a goto l then let succ = succ [flg.� If the jump is a if � goto l1 else l2 then let succ = succ [fl1; l2g� If the jump is a return do nothing4. Go to step 25. succ is the set of all successors of b.Figure 5.3: Algorithm for computing successors of a blockTo compute the set of live variables for each block, ILPOS uses the followingde�nition:De�nition 5.5: Let b be some block in an L program. De�ne inb to be the setof variables live at the "point immediately before" block b. De�ne outb to be theset of variables live at the "point immediately after" block b. Let defb be the setof variables which are assigned values in b "before they are used" and let usebbe the set of those which are "used before assigned". Using set notation thesede�nitions amount to the equations:For any block b, inb = useb [(outb � defb)outb = [p2succb inpThese equations simply say the following: The variables which must be live(i.e. has some e�ect on the computations on block b) are either those that arereferenced without being de�ned (useb), or those that must be live at the exit ofthe block and not de�ned in the block. Similarly the variables which must be liveat the exit of b are those variables which are useful in any of the successors of b.36

When these two equations are solved simultaneously for all the blocks in theprogram the inb sets denote the live variables of each block. To solve theseequations ILPOS uses several algorithms. The algorithm computing def and usesets is a trivial one which explore all the assignments and variables involved inthe block. The algorithm in Figure 5.4 is used to compute in and out sets givendef and use sets. After computing the in sets by the algorithm in Figure 5.4,ILPOS activates the useless code remover to remove any assignment to a variablethat does not occur in the in set of the block that the assignment resides in.
fGiven an L program together with def and use sets for each block, com-pute the in and out sets for all blocksg1. For each block b let inb = �.2. Let changed = false3. For each block b compute outb using the equation following de�nition5.4. Then compute inb and compare it with its old value. If inb changesfrom the previous iteration then let changed = true.4. If changed = true then goto 2 else goto 55. The current value of inb is the set of live variables at block b.Figure 5.4: Algorithm for computing live variables
Note that in doing so one must be careful to delete only those assignments touseless variables which does not have any contribution to a live variable in theblock. For example, let some program has a block as in Figure 5.5
a := add(k, d);c := mul(a, k);a := sub(c, 5);return c;Figure 5.5: An example of a used useless variable37

In this block c is a live variable while a is useless. It is clear that it is safe toremove the second assignment to a while the UCR must save the �rst assignment.This is due to the fact that the value of a is used in the de�nition of the livevariable c. ILPOS takes care of such situations.When applied to program in Figure 5.2, these algorithms produce the followingresults: usestart = instart = outstart = fbg; defstart = fcg. Upon determiningthat c is a useless variable the assignment is removed yielding the program inFigure 5.6.
read(b);(start, {0}): return b;Figure 5.6: UCR applied to the specialized code
5.2 Program minimizationConsider the text of an L program. One may view any L program as a �nitegraph. We have the following de�nition for the graph of an L program:De�nition 5.6: Let p be an L program and b be a block in it. Then immediatesuccessors of b is de�ned according to its jump statement j, as follows:� if j is a goto statement in the form goto l then the immediate successorof b is the set flg.� if j is an if statement in the form if � goto l1 else l2 then the immediatesuccessors of b is the set fl1; l2g.� if j is a return statement then immediate successors of b is �.De�nition 5.7: The graph of an L program is a directed graph G = (V;E), withedge labels where V and E are de�ned as follows:38

� Let V be the set of all blocks in the program. Note that V is always �nitesince any L program has a �nite number of blocks.� Let E contain an edge from some node v1 to v2 if and only if v2 is animmediate successor of v1 in the corresponding L program.The labels are either goto (corresponding to a goto block), or T or F correspond-ing to the possible outcomes of the expression of the conditional jump. Noticethat if the block is terminated with a return statement then it does not haveany successors.When viewed as a graph, an L program is much like a �nite state automaton.In fact, it is natural to think an L program as a Moore type �nite automatonwhere the node corresponding to its �rst block is the start state, see [16] fordetails of such machines.Based on this analogy, it turns out that we can apply the results from �-nite automata theory to L programs. ILPOS uses the concept of a minimumstate �nite automata to minimize the number of states in an L program. Theminimization process for a �nite automaton is described in [17, 16].De�nition 5.8: An L program is said to be in its minimal form if there are notwo blocks which are equivalent.De�nition 5.8 makes use of the concept of equivalent blocks. We de�ne thisequivalence as follows:De�nition 5.9: Two blocks of an L program are equivalent if they are codeequivalent and their immediate successors are equivalent.And code equivalence is de�ned as:De�nition 5.10: Two blocks of an L program are code equivalent if they havethe same sequence of assignments, assigning same expressions to same variables,and they both terminate with the same kind of jump2.It is clear that de�nition 5.10 de�nes an equivalence relation on the blocksof an L program. Furthermore, by the de�nition of an equivalence relation, it2 In fact this de�nition is more restricted then needed. The assignments need not be inthe same order but they must be permutations of each other resulting in the same results. Themore restricted version is used in ILPOS for the sake of implementation e�ciency.39

induces a partition on the set of nodes. Apparently this partition gives us theequivalent blocks which may be replaced with a single representative block.Keeping the analogy of an L program and the properties of its graph, thegraph partitioning algorithm in Figure 5.7 may be used to �nd out a minimal setof blocks which is equivalent to the original program.fGiven the graph of an L program, �nd the partitions of the nodes to constructthe minimal programg1. Construct the initial partition �0 corresponding to the graph. In �0 twonodes are in the same block if and only if they are code equivalent.2. Let i = 03. Let i = i+ 14. Construct �i as follows. Two nodes are in the same block of �i ifthey are in the same block of the partition �i�1 and their immediatesuccessors are in the same block of �i�15. If �i 6= �i�1 goto 3 else goto 66. �i is the �nal partition.Figure 5.7: Algorithm for program minimization
Using the algorithm in Figure 5.7, ILPOS constructs the minimal graph corre-sponding to a given L program. After �nding the partition it converts this graphback to a plain L program. In doing so, a representative node is chosen for eachblock in the partition. All the jumps are arranged to re
ect correct label names.To illustrate the e�ects of UCR and program minimization, consider the pro-gram in Figure 5.8.The program constructs the list, called result, of those elements of a and bwhich are at the same index. Notice that the list is reversed. For instance, if ais '(2 8 7 19 2 32) and b is '(1 8 123 19 8 2) then (19 8) is returned. Theprogram has been specialized with respect to the static argument a 7! '(2 3) .The resulting residual code given in Figure 5.9.40

read(a, b);init : result:='();goto start;start : if eq(a, '()) goto finish else cont1;cont1 : if eq(b, '()) goto finish else cont2;cont2 : if eq(hd(a), hd(b)) goto same else notsame;same : result := cons(hd(a), result);goto notsame;notsame: a:=rest(a);b:=rest(b);goto start;finish: return result;Figure 5.8: An L program matching two lists
When UCR is applied to this program the assignments in blocks lpe8, lpe9,lpe5 and lpe12 are removed.After UCR, minimization is run on the program. The program graph corre-sponding to the program in Figure 5.9, as constructed by ILPOS, is depicted inFigure 5.10. Notice that the nodes are labeled as i for lpei. The nodes havingtwo children are those terminated with a conditional jump, those that are leafare terminated with returns. There is no node having a single child since allsuch nodes, which correspond to a direct goto jump, are eliminated by the tran-sition compression algorithm. The edge labels are marked as T and F in Figures5.10 and 5.11, they correspond to the true and false cases of the conditionalexpression respectively.The minimizer constructs the following partitions (Using i for lpei):�0 = f1; 4; 5; 2; 10; 13; 3; 6; 9; 7; 11; 8; 12g� = �1 = f1; 4; 5; 2; 10; 13; 3; 6; 9; 7; 11; 8; 12gThis identi�es that blocks lpe2, lpe10, lpe13 and lpe6, lpe9 are identical.Replacing them with a single block and relabeling one gets a residual code havingonly 10 blocks. The resulting graph is depicted in Figure 5.11.41

read(b);lpe1: if eq(b, '()) goto lpe2 else lpe3;lpe2: return '();lpe3: if eq('2, hd(b)) goto lpe4 else lpe5;lpe4: b := rest(b);if eq(b, '()) goto lpe6 else lpe7;lpe6: return '(2);lpe7: if eq('3, hd(b)) goto lpe8 else lpe9;lpe8: b := rest(b);return '(3 2);lpe9: b := rest(b);return '(2);lpe5: b := rest(b);if eq(b, '()) goto lpe10 else lpe11;lpe10: return '();lpe11: if eq('3, hd(b)) goto lpe12 else lpe13;lpe12: b := rest(b);return '(3);lpe13: b := rest(b);return '();Figure 5.9: PPS applied to matcher programNotice that the nodes 9, 10 and 13 disappear and all links to them are replacedby links to nodes 6, 2 and 2 respectively. Blocks 6-9 and 2-10-13 have merely thesame e�ect on the program. The resulting L program is presented in Figure 5.12.Labels in this program has been rearranged by the canonicalizer described in thesubsequent section.5.3 Linearization and CanonicalizationThe last phase that is applied in ILPOS is the linearization and the canonical-ization phase. They are not intended to achieve great optimizations but theycomplete the whole cycle.5.3.1 LinearizationAfter minimization is applied to some L code, it may turn out that the labels of aconditional jump statement come out to be the same. This is the case whenever42

the upcoming blocks turn out to be equivalent. In such a case, that conditionaljump simply resolves into a goto statement, since whatever the decision is, thejump will be to the same block in both cases. The aim of linearization is to checkfor such jumps and convert them to goto's.
1

6

7

8

9

10 11

12

4

2

3

13

5

T

F

T

F

T

F
T

F

T F
T

FFigure 5.10: Program graph for the specialized program
1

3

5

6

7

8

11

12

4

2
T

F

T

F

T

F T

F

T

F
T

F

Figure 5.11: Program graph for the minimized program43

read(b);lpe0: if eq(b, '()) goto lpe1 else lpe2;lpe1: return '();lpe2: if eq('2, hd(b)) goto lpe3 else lpe7;lpe3: b := rest(b); if eq(b, '()) goto lpe4 else lpe5;lpe4: return '(2);lpe5: if eq('3, hd(b)) goto lpe6 else lpe4;lpe6: return '(3 2);lpe7: b := rest(b); if eq(b, '()) goto lpe1 else lpe8;lpe8: if eq('3, hd(b)) goto lpe9 else lpe1;lpe9: return '(3);Figure 5.12: Final form of matcher program
The algorithm for linearization consists of a simple scan of the blocks checkingfor such linear jumps. Whenever one is found, it is directly converted to a goto.After this is done, a need for transition compression arises as described before.ILPOS applies a reachability analysis which constructs the equivalent code withno goto's in the resulting program.Notice that, when a code is linearized there is a chance of removing moreuseless code. This is the case since when a jump is removed, the test expressionalso gets deleted. This has the e�ect of changing the out set (see section 5.1.2)of a block which changes the set of live variables associated with it. In order tohandle this case, ILPOS sends the code back to the UCR routine if linearizationachieves any compression. Note that the loop is completed with minimization andlinearization again. ILPOS terminates this loop whenever the program linearizercan not �nd any such conditional statements.5.3.2 CanonicalizationAfter ILPOS completes all the phases described above, the time comes to printout the �nal tailored code to the disk. Before doing so, ILPOS rearranges allthe labels that appear in the program to start from zero and increase as the textof the program goes on. This phase is just for formatting purposes and is not44

intended to achieve any optimization.5.4 The need for post optimizationsThe examples given in the previous sections for useless code removal and min-imization may suggest that they are not too much useful. Although the ef-fectiveness of these optimizations depend highly on the program that has beenspecialized, we can say that such optimizations are far away from being useless.It is well known that, PPS can produce many useless code in the specializationof most programs which are beyond some certain level of complexity. Considerapplying PPS to some program that has been written in a parametric way, suchthat the program performs many di�erent tasks with respect to a set of parame-ters. When specialized with respect to a subset of these parameters, PPS wouldproduce many computations related to other parameters. Although this directlycorresponds to what the original program would do in an ordinary run, suchcomputations do not do anything useful on the result of the program. Removingthese computations becomes, then, a very useful optimization.Program minimization generally results in space gains. Clearly a minimalprogram would occupy less space both in the disk and in the memory. When thelanguage is an interpreted one, as is the case for L, this means small programs tobe processed by the interpreters.As an example on the gains from post optimizations consider the following testperformed by ILPOS: An L program for simulating a �nite state automaton hasbeen prepared3. The program had two inputs, �rst: the machine to be simulated,second: the input list to be processed. When specialized with PPS techniquewith respect to a machine having 15 states, the program produced a programhaving 135 basic blocks. The original program had 19 basic blocks. When thecode has been minimized it resulted in a 24 block program saving 111 blocks.The same test had been repeated with a machine whose states were all accept-ing. The machine was a 2 state automaton. PPS resulted in a 17 block programwhich has been reduced to 6 blocks by the minimizer. Then linearization has3 The source code of this program can be seen in appendix B.45

been applied, which removed some conditional if statement. The useless coderemover and minimizer has been rerun automatically by ILPOS on the programgiving a 3 blocks program as the �nal product. The resulting program is givenin Figure 5.13.
read(input);lpe0: if eq(input, '()) goto lpe1 else lpe2;lpe1: return '1;lpe2: input := rest(input);if eq(input, '()) goto lpe1 else lpe2;Figure 5.13: An all states accepting minimal program
As seen the residual just scans through the input string and returns a 1 indi-cating the acceptance. Notice that, no matter how large is the original machine,the residual program would be same as the one given above, as far as all statesare accepting (or rejecting). Although such a machine is practically not useful ithelps to demonstrate the need and the power of the post optimizations after theprogram point specialization on the source programs.5.5 Computational Complexity of Post OptimizationsIn this section, the computational complexities of the algorithms used in the postoptimizer will be discussed.One fundamental operation used in the post optimization procedures is thecomputation of the successors of a certain block in a program (see Figure 5.3).This algorithm is a simple transitive closure algorithm whose complexity is clearlyO(n) where n is the number of blocks in the program. This corresponds to theworst case when all other blocks are reachable from the node under consideration.The live variable analysis algorithm of Figure 5.4 depends on the generationof in; out; def and use sets of all blocks. The def and use sets are computed justby the analysis of the assignments of the related block while in and out depend46

on the corresponding sets of other blocks. It is clear that these sets will containthe names of the variables in the program, so at the worst case each variablename will be included by one of these sets, requiring the analysis of assignmentsthroughout the program. This suggests an algorithm of complexity O(n2), wheren is the number of blocks in the program, as all blocks are searched for. As before,the number of variables has been assumed to be a linear function of the numberof blocks in a program.Once the live variable analysis is completed, all that remains to be donefor useless code removal is to scan through the program to remove assignmentsto useless variables in their corresponding blocks, amounting to an algorithm ofcomplexity O(n�m) where m is the average number of assignments in the programfor each block.The other stage in post optimizations is that of program minimization. Pro-gram minimization algorithm of Figure 5.7 uses the concept of code equivalenceamong two blocks. The de�nition of code equivalence has been supplied before.According to that usage, the code equivalence can be checked in O(m) time wherem is the number of assignments in the blocks to be compared. In each iterationof the minimization algorithm the partition is either re�ned or stays the same,upon which it terminates. So after at most n � 1 iterations the �nal partitionwould be found. Incorporating all these ideas, it turns out that the minimizationalgorithm is essentially a O(n2) algorithm.The linearization and canonicalization algorithms consist of scanning thewhole program for various information and can be thought of as O(n) algorithms.

47

CHAPTER 6
TERMINATION OF PARTIAL EVALUATION
The de�nition of an algorithm includes the constraint that, for all inputs, it shouldterminate after a �nite number of steps. It is known that the partial evaluation,in its pure form as de�ned here, may not terminate. In this chapter the causesof the problem and the solution implemented in ILPOS is described.6.1 In�nite partial tracesIn describing the PPS technique the concept of the partial traces had been in-troduced. The examples were chosen such that the graph of the partial tracesis always �nite for a given program and its static data. However this is notnecessarily the case, it may turn out that the graph is in�nite.To clarify the topic, consider the Russian Peasant's Algorithm (RPA) for themultiplication of two numbers, given in Figure 6.1. The algorithm proceeds byhalving the value of a and doubling the value of b each time through the loopuntil a becomes 1. Notice that the value of b is changed under the control of thevariable a.Consider the specialization of the RPA with respect to a static value of awhere b is taken to be dynamic. Clearly the residual code will consist of a singleblock which multiplies b by 2 several times and adds as required in the algorithm.The result turns out to be exactly as expected and depicted when a is 10 inFigure 6.2. 48

Russian peasant's algorithm for multiplicationread(a,b);init: result := '0; goto start;start: if odd(a) goto oddCase else process;oddCase: result := add(result, b);goto process;process: if eq(a, '1) goto finish else goOn;goOn: a := intdiv(a, '2); b := mul(b, '2);goto start;finish: return result;Figure 6.1: Russian Peasant's algorithm
read(b);lpe0: result := '0;b := mul(b, '2);result := add(result, b);b := mul(b, '2);b := mul(b, '2);result := add(result, b);return result;Figure 6.2: RPA specialized for a
The specialization for RPA works �ne for this case. On the other hand considerthe specialization of the same algorithm where b is static but a is dynamic. Thetree of the partial traces are given in Figure 6.3. As seen in the tree of the partialtraces the tree has an in�nite number of nodes. The PPS algorithm constructsthis graph on the
y and generates code for each block. Since the graph neverterminates the process of generating code for the residual will never stop, thuscausing the non-termination of partial evaluation.

49

��
��
��

��

��
��

(process, {10, 10}) (finish, {10, 0}) (goOn, {10,0})

(finish, {10, 10}) (goOn, {10, 10})

(start, {20, 10})

(start, {20, 0})

(oddCase, {10, 0}) (process, {10, 0})

(start, {10, 0})

(init, {10, UNDEF})

Figure 6.3: In�nite partial tracesIn summary, it can be said that partial evaluation will not terminate when thegraph of the partial traces is in�nite. From the programmers point of view,the problem is caused by the changes in a static variable under the control ofa dynamic variable. As seen in the Figure, there will be an in�nite number ofspecialized versions of the same node with respect to the values of the staticarguments. Notice the nodes with label start in the Figure, they are the rootsof the subtrees which will never terminate.6.2 Coping with non-terminationAs mentioned before, to be a real algorithm, the partial evaluator must alwaysterminate. Termination is known to be a di�cult problem in the literature ofcomputer science, speci�cally the problem of halting is known to be undecidablefor the general setting of Turing machines. The language L and the paradigm itpresents is of no exception and we can not expect to cope with the problem in50

its entirety.There can be two ways of viewing the problem of non-termination: �rst causedby the nontermination of the original program, second caused by the problems inthe binding time analysis.The �rst sort of nontermination corresponds exactly to the halting problem.If the original program run with its static data will not terminate, then thepartial evaluator that tries to specialize it with respect to those arguments willalso not terminate. Notice that, in this case, the non-termination problem of theunderlying program causes the non-termination of the partial evaluator. Sincethe question is undecidable there is not too much to be done and ILPOS does(and can) not do anything for this case. It simply tries to construct the residualwithout ever stopping1.The second sort of problem is the one that the RPA algorithm has. Althoughthere is nothing wrong in the algorithm, the process of partial evaluation doesnot terminate. There are two main approaches for the handling of this sort ofnon-termination: improving the binding time analyzer or limiting the residualcode size.Notice that, in the RPA algorithm, the partial evaluator might have detectedthat the choice of b as a static parameter, while a is dynamic, would cause thetermination problem and might reject b as static. The de�nition for dynamicand static variables employed by ILPOS (given in section 4.4) can not handlethese constraints. The implementation of a BTA that can handle such situationsrequires analysis of the loops involved with respect to the data changes. Suchan approach is described in chapter 14 of [14]. This analysis is not easy toperform and depends on the concepts of monotonically decreasing and increasingproperties of the functions called in the program being specialized. The mainpoint is to mark enough number of variables as dynamic in order to ensure the�niteness of the resulting partial trace graph. It is noted that the computation ofthe minimum set that must be marked as dynamic in order to ensure �nitenessis not computable. The approach yields such a set, although not necessarily the1 In fact this warns the user about the problem and the partial evaluator works as a "meta-debugger". 51

minimal, which would ensure the �niteness of the resulting partial trace graph.This method has the disadvantage of not specializing the subject program at allor poor specialization. For instance, the RPA algorithm when only b is dynamicwould not be specialized at all. The residual would contain an initial blockassigning the initial static value of b to the variable b, and then the originalprogram itself. Due to these reasons and the high cost of implementation andrun-time ine�ciency, ILPOS uses the second style for handling non-termination:limiting the code size.6.3 ILPOS termination handlerThe approach employed by ILPOS is a more practical one, limiting the code size ofthe residual to a maximum number of elements that is determined by the numberof blocks in the original program. Whenever the specialization starts, the ILPOSPPS module keeps track of the number of blocks that is generated for the residualprogram. The ILPOS termination handler guarantees that the generation of theresidual will eventually stop after this number exceeds the prede�ned limit2. Thissection explains how this works.Consider the operation of the PPS module. It constructs the graph of thepartial traces on the
y and generates code for each block. At any time duringthe process of specialization, there are a number of blocks that has been processedand put into the residual code, and a number of blocks that still remains to bespecialized. The ILPOS termination handler monitors the number of blocks thathas been already generated and gets activated when this number exceeds thecurrent limit allowed. From this point on, the remaining blocks which must bespecialized should be processed without producing any new blocks.Since the generation of new blocks are forbidden from this point on, thetermination handler marks all variables as dynamic. This must be done carefullysince after this marking, the assignments to the variables that are newly promotedto the dynamic class would generate code in the residual program. In orderto ensure the correctness, each such block should contain an initial assignment2 Currently this is 20 times the original program size; the factor can be altered at will.52

list, assigning the values of the static values to their variables. Notice that,since ILPOS uses transition compression on the
y, the upcoming blocks will beconcatenated to the current one with no problems.By this method, the generation of the new blocks is eventually stopped and thePPS algorithm is guaranteed to terminate, unless there is a termination problemof the �rst sort described above.
read(a);lpe0: if odd(a) goto lpe1 else lpe12;lpe1: if eq(a, '1) goto lpe2 else lpe3;lpe2: return '10;lpe3: a := intdiv(a, '2);if odd(a) goto lpe4 else lpe11;lpe4: if eq(a, '1) goto lpe5 else lpe6;lpe5: return '30;lpe6: b := '20;result := '30;a := intdiv(a, '2);b := mul(b, '2);if odd(a) goto lpe7 else lpe10;lpe7: result := add(result, b);if eq(a, '1) goto lpe8 else lpe9;lpe8: return result;lpe9: a := intdiv(a, '2);b := mul(b, '2);if odd(a) goto lpe7 else lpe10;lpe10: if eq(a, '1) goto lpe8 else lpe9;lpe11: b := '20;result := '10;if eq(a, '1) goto lpe8 else lpe9;lpe12: b := '10;result := '0;if eq(a, '1) goto lpe8 else lpe9;Figure 6.4: RPA specialized for b
In order to illustrate the idea, the RPA algorithm has been specialized whenb is static. The value of b has been taken to be 10. The resulting residual is given53

in Figure 6.4. The maximum code size factor has been set to 1, i.e. activatingthe termination handler just after 6 blocks (the size of the original program) aregenerated. This is just for the sake of demonstration.There are a number of points to be pondered on the residual program. First ofall, the number of blocks is 12. This means that when the termination handler isactivated there had been 6 blocks already generated and 6 or less blocks waitingto be specialized. The termination process created another 6 originated from theremaining ones. It is not possible to say how many were there and how many werenewly generated by the inspection of the residual but, for this speci�c example,all was in the list waiting to be processed. The second point is that the blockslpe6, lpe7, lpe11 and lpe12 are the blocks where the variables result and bare switched from static to dynamic. The assignments indicate these transitionsclearly. Another point is the general structure of the residual code, it containssome return statements, returning numbers, corresponding to the parts thatare totally specialized and it has some blocks simulating the computation of theproduct of the numbers according to the RPA algorithm.The original specialization, where the code size factor was 20, activated thetermination handler after the generation of 120 blocks and the residual contained165 blocks. The residual had the same properties as the prototype given above.

54

CHAPTER 7
LOGGING AND GAIN ANALYZER PARTSOF ILPOS

ILPOS is an interactive system for performing partial evaluation and post op-timization experiments on the
ow-chart language L. The previous discussionsdescribed the internals of the ILPOS. In this section the log system and thesymbolic gain analyzer is described.7.1 Logging system of ILPOSILPOS has two sorts of reporting systems. The �rst is the messages that areprinted on the screen throughout the stages of computation. At each stage theuser is given information on what the system is currently doing and on the statusof the partial evaluation and the post optimization process. Along with thisdata, a log �le is produced (with the su�x peo.log) containing the informationregarding the whole process. It �rst lists the environment, �le names, date etc.Then the statistical information regarding the input program (i.e. number ofarguments, blocks, assignments, variables etc.) are given. This information isfollowed by the static arguments and their initial values. After this comes themessages of the guard system and the termination system, if any. The statisticsfor the residual code, before the post optimizations are activated, is also presented.The residual code which is not post optimized is dumped to the disk with the55

su�x pe.lp. Then the post optimizer is activated and the messages related to theuseless code remover, minimizer, linearizer and canonicalizer routines are givenin the log. At each stage, the operations performed are summarized in the log�le. When all the operations are completed, the �nal residual code is dumped tothe disk with the su�x peo.lp and the statistics related to this last �le is givenin the log.The main purpose of the log �le is to keep track of the operations that areperformed by ILPOS, it also serves as a noti�er of the achievements of the di�erentphases of the entire system on the subject program.7.2 Symbolic Gain AnalysisThe main motivation for partial evaluation and the post optimizations has beende�ned to be the speed-up that is obtained by these processes. The usual way ofmeasuring the speed-up is to measure the running times of the original and theresidual code and then dividing them. The ILPOS L interpreter can be used forthis purpose1. Another kind of e�ciency analysis is de�ned as the symbolic gainanalysis. Rather than measuring the real time spent on executing the programs,one may collect information on the operations that are performed by the pro-gram. This approach is more useful when one needs information on the speci�cachievements. The ILPOS SGA is a utility that automates such analysis.The main idea is to count the number of jumps, assignments, variable refer-ences, decisions and library calls that are made for a particular execution. Noticethat these are the basic operations that the interpreter performs for executingthe program. The library calls can also be divided into classes, calculating thecount for each such call. Once all these counts are available, one can associate acost to the program easily. This cost is computed as the dot product of a costvector and the vector formed by these counts. The cost vector is a simple vectorof weights that associate importance factors to each operation. The weights inthis vector can be altered at will.The ILPOS Symbolic Gain Analyzer System (SGA) has been designed with1 The entry point to the interpreter is the li function.56

these points in mind. It keeps counts on the above mentioned operations. Func-tion calls are counted speci�cally for designated functions2 while all other callsare listed under the heading other calls. The SGA system has a feature ofturning o� and on the statistics collecting features. The special library functioninform sga switches these activities on and o�. This call is provided in order tocollect realistic information on the simulation of data structures not supportedby L3. In addition to these counts, the system reports the number of blocks,assignments etc. that are present in the residual code produced.When the ILPOS SGA is activated, it writes its output log to a �le withsu�x peo.sga. The measurements are done on three programs, �rst the originalprogram with no specialization, second the partially evaluated code, third thecode that is both partially evaluated and post optimized. Together with the log�le generated, these two �les constitute a source of information for the process ofspecialization and its consequences.To illustrate the output of the SGA, the RPA algorithm (Figure 6.1) hasbeen specialized with respect to a = 9987654321123456789. The variable b hasbeen chosen as dynamic. Then the SGA has been run with the value of b =123456789987654321. The resulting SGA �le is given in Figure 7.1.The numbers in the parenthesis show the index of the entry in the cost vectorgiven in the �gure. The �rst three columns indicate the counts for each �le. TheGain1 column is formed by dividing the values in column 1 by column 2, andGain2 column is formed by those of column 1 by column 3. The last column isthe di�erence of the Gain2 and Gain1 columns, this is intended to indicate thegains by post optimizations only.Notice that the post optimizations gain us nothing here, since the residualprogram has only a single block (i.e. no minimization is possible) and it has onlyshift and add actions (i.e. no useless code).2 Designated functions can be user speci�ed, see appendix D.17 for details.3 For instance, L does not support random access arrays. Such a data structure may besimulated by a list which enforces sequential search. Thus, when an application uses a list tosimulate an array and wants to perform a direct access, it �rst informs SGA to stop keepingstatistics and when it is done (i.e. when linear search is complete) it reactivates the SGA to goon keeping counts. It is also possible to keep count of such calls, they are reported under theheading intern calls. 57

Welcome to ILPOS-SGA, Static Gain Analyzer System for ILPOS. (v1.0)Activated on: Wednesday June 5, 1996, 3:20:57 PMBy user : erkokWorking dir : /home1/erkok/tez/imp/ilpos/Symbolic analysis performed on:Input : data/RPA/rpa.lpPE file : data/RPA/rpa.pe.lpResidual : data/RPA/rpa.peo.lpSymbolic Analysis Results: (only the relevant entries are printed.)Original PE Only Post-Opts Gain1 Gain2 Opt Gain-------- ------- --------- ------ ------ --------(0) jumps: 225 0 0 inf inf 0(1) assigns: 160 97 97 1.649 1.649 0(2) var refs: 321 130 130 2.469 2.469 0(3)decisions: 128 0 0 inf inf 0(4) eq: 64 0 0 inf inf 0(11) add: 33 33 33 1 1 0(13) mul: 63 63 63 1 1 0(14) div: 63 0 0 inf inf 0(15) odd: 64 0 0 inf inf 0# BBlks: 6 1 1 - - 1# Asgns: 4 97 97 - - 1Cost vector is : (2 2 1 2 3 2 2 3 3 3 0 3 3 3 3 2 2 2)Cost of Original : 2144Cost of PE Only : 612Cost of Residual : 612Gain by PE Only : 3.503Gain by Post Opts: 0Overall Gain is : 3.503The improvement : 71.455 %SGA completed successfully.Figure 7.1: Result of symbolic gain analysis on RPA
58

CHAPTER 8
A CASE STUDY: DEFINITE INTEGRALS

This chapter is devoted for a case study on de�nite integrals. First, the Simpson'stechnique for evaluating de�nite integrals is described and an L program forcomputing them is given. The program is specialized to get the program forcomputing the erf function. Di�erent combinations of static arguments are triedand the e�ects are discussed.8.1 De�nite IntegrationA de�nite integral is one whose lower and upper bounds are numeric values. Forinstance, Z ba f(x)dxis the integral of the function f(x) between the points a and b, where a; b 2 R.By de�nition, the value of the integral is the area of the region enclosed by thecurve f(x) and the lines y = 0, x = a and x = b in the cartesian space1.A de�nite integral can be evaluated mainly in two ways. The �rst one is theanalytical method, which tries to �nd the function F (x) whose derivative yieldsf(x) and then computes the integral by the formula F (b)�F (a). Unfortunately,this is not always possible; there are functions whose integral can not be foundanalytically. The erf function, de�ned later in this chapter, is one such example.1 The theory of integration is well developed and can be found in any standard undergrad-uate text, see [21] for instance. 59

Sometimes the derivation of F (x) may be possible but very expensive. In suchcases one considers numerical approximation techniques. A very well knownmethod is that of Simpson's integration method as described in the next section.8.2 Simpson's FormulaA very standard method for approximating the value of de�nite integrals is theSimpson's composite rule, which computes the area under the curve by a seriesof simple area calculations. The main idea is to divide the region into smallintervals and sum up the areas of these regions to approximate the area of theentire region. The details of the method can be found in [21]. The formula thatis going to be employed in this case study is:Z ba f(x)dx � b� a6n nXi=1(y2i�2 + 4y2i�1 + y2i)where, yi = f(xi); xi = a + b� a2n i. Here n is half of the number of intervals used for the approximation. Theaccuracy of the result increases as n gets larger. In open form, the formula canbe written as:Z ba f(x)dx � b� a6n [(y0+y2n)+2(y2+y4+: : :+y2n�2)+4(y1+y3+: : :+y2n�1)]where yi and xi is the same as before. This form is programmed in L as describedin the subsequent section.8.3 Programming the Simpson's Composite Rule in LThe program to compute de�nite integrals has four di�erent arguments: the lowerbound (lb), the upper bound (ub), number of intervals (n) and the function tobe integrated (f). The �rst three arguments are read from the outer world whilethe function argument is directly coded in the program for the sake of simplicity60

and due to the limitations of L. This implies that each new function should becoded into the L program supplied for integration2.The program for computing de�nite integrals using Simpson's rule is given inappendix C.1. The function integrated in that program is f(x) = 2x.8.4 Obtaining the Erf function Integrator AutomaticallyIn this section we want to use program in appendix C.1 to automatically generatea program for computing the erf function de�ned as:erf(x) = 2p� Z x0 e�t2 dt. The error function (erf) is used in statistics and other sciences, see [21] fordetails. An interesting property of erf is that it is not elementary, which impliesthat it can not be written with a �nite number of operators and other ordinaryfunctions (i.e. without using the integration sign).First, we modify the program in appendix C.1 to compute the integral wedesire. Recall that the function should be coded directly into the program. Thechanges to the program are minor. The computeF block starts with:computeF: f := exp(sub('0, mul(curX, curX)));This is the only place that needs to be altered for a new function. Apart fromthe integration, the error function has another constant factor (2=p�). To takethis factor into account we add the following line to the �nal block:finish: res := mul(res, div('2, sqrt('3.141592653589793));Notice that this last change is only particular to the erf function.If we inspect the erf function, we see that the lower bound is �xed at 0.Therefore lb is the natural candidate for specialization. We also �x n (half of thenumber of intervals) at 10 and we obtain the program in appendix C.2. Whenwe look at the residual program we notice that the output simply computes the2 Another approach might be coding the function in Scheme and putting it into the libraryand then calling it. 61

increment value h and starting from 0 (the lower bound) computes the functionat exactly 21 (2n+1 with n = 10) points. In the meantime it keeps on adding thevalues to the result in accordance with the Simpson's method. Finally the factor2=p� is multiplied and the result is returned. Notice that the numeric value ofthis factor is computed and placed into the program.Once we have specialized the integrator program for error function computa-tion, we want to look at the gain we have obtained automatically by the system.The results of the symbolic gain analysis is given in appendix C.3. The upperbound (ub) used for performing the analysis was 100. The static gain analyzergives an improvement over 60%.8.5 Other SpecializationsThe previous choice of the static variables (i.e. lb and n) gave us good results.Remember that the residual code turned out to be linear. Other variations ofstatic variables is possible. One option is to keep lb dynamic while ub and n arestatic. The resulting residual code is very similar to the previous specialization,we again get a single block program.Another interesting set of static data is where lb and ub are static and n isdynamic. This residual will be helpful if somebody wants to analyze the precisionof the Simpson's method with respect to the number of intervals. When special-ized with respect to lb = 0, ub = 10 and n dynamic, we meet the terminationproblem. ILPOS generates the program in appendix C.4. The residual code has226 blocks so not all of it is presented in the appendix. Also, in this case, post-optimizations help us. The useless code remover removed 146 assignments whilethe code minimizer got rid of 74 blocks. The log �le is presented in appendix C.5.The residual behaves as follows: �rst it computes the increment, i.e. lengthof each interval (see block lpe0). Although it knows lb and ub, notice that, ndetermines the length of intervals. After the increment is computed the code forcomputing the value of the function at the next point is emitted. Once this isdone the residual code checks whether it is done, i.e. it compares the currentindex to the number of points to be computed. If they match, a return statement62

is executed (see the jumps of blocks lpe1, lpe2 and so on). Otherwise similaroperations take place for the following point. Unfortunately, there is no point thatthe specialization can stop as n can be arbitrarily high. The code is goes similarlyuntil the previous threshold for code size is reached. Once this point is crossedthe termination handler is activated and all the variables are marked dynamic.This stops further specialization successfully. See blocks lpe154, lpe155 and soon for the e�ect of this process.The output of the SGA for n = 20 is presented in appendix C.6. The reportedimprovement is about 9% in this case.8.6 Remarks on the case studySimpson's rule for evaluating de�nite integrals is a very well known techniquefor numeric integration. This case study showed us how we can obtain e�cientversions of the programs using this rule provided we know the number of intervalsand one of the upper or lower bounds. It has also provided us with a case wheretermination problem occurs within partial evaluation. The error function hasbeen used to obtain a specialized integrator. Since the formula for erf speci�esthe lower bound to be 0, it appears as a natural candidate for specialization. Also,when n is dynamic, we have seen that post-optimizations helped us to removemany useless assignments and blocks.

63

CHAPTER 9
FINAL THOUGHTS AND CONCLUSIONS

Previous chapters described the entire system and the ideas employed in it. Thischapter �rst summarizes the work, including future directions and then concludesthe thesis.9.1 Final remarks and future workThe residual code generated by ILPOS has several characteristics. First of allit does not have any unconditional jump statements, all blocks terminating withsuch jumps are compressed. There are no static variables remaining in the resid-ual, all static variables are embedded into the specialized blocks and all labelsare rearranged and put in order.With these points in mind, it is possible to think specialization in its twoextremes: when there are no static arguments and when all arguments are static.In the �rst case, the specialization is meaningful in the sense that all uncon-ditional goto's would be removed from the code. Also, any static computationwould be done in the specialization time. This is like �lling up a list with values,computing some number which does not depend on the input arguments etc. Alsothe labels will get arranged.The other extreme, where all arguments are static, the residual code wouldresolve into a single block program returning that particular value computed bythe whole process, provided that the original program terminates with these input64

arguments.As far as the L language de�ned here is concerned, ILPOS seems to be maturewith its all facilities for partial evaluation using the program point specializationtechnique, useless code removal using the data
ow analysis technique and pro-gram minimization based on the theory of sequential machines. However, it ispossible to study the partial evaluation with a stronger language. Most impor-tantly the addition of partially static structures to the L language seems to bea fruitful direction for future work. A partially static structure is a compositedata structure such as an array or a record. Notice that, for that case, some partof the data would be known at the specialization time and some part would bedynamic, hence the name partially static. It would also be of interest to addsub-
ow charts to the language, which is a rather easy extension since every Llanguage program can be thought of as a sub-
ow chart that can be accessedfrom a main one.Another point of extension is that of using polyvariant divisions. ILPOS usesa monovariant division algorithm assuming that every variable is either static ordynamic in its entire life time. Another approach would be to make the divisionfor each block in the original program so that the dynamic and static propertiesbelong to the blocks rather than the entire program. This idea is based onthe assumption that the same variable can be used for di�erent purposes in theprogram. Although theoretically this is feasible, practically it may not have muchsigni�cance since this is not considered to be a good programming style.9.2 ConclusionsIn this work, a partial evaluator and a post optimizer system for a
ow chart lan-guage has been de�ned and its implementation has been described. The appendixcontains the code for the whole system implemented in the Scheme language.The language L, being a
ow chart language, has been chosen as the objectlanguage for the operations. Although very simple in its syntax and semantics, itproves to be a real programming language since it can simulate any Turing ma-chine ignoring the memory limitations of the underlying computer. The simplicity65

of the language allowed us to study both partial evaluation and post optimizationson the programs in a compact way.The program point specialization technique with a monovariant division algo-rithm has been used to construct the partial evaluator part of ILPOS. It has beenseen that the success of partial evaluation depends on the nature of the programbeing specialized and the arguments that are static.It has been shown that incompletely speci�ed programs cause problems forthe partial evaluation process. Such programs are code portions that are pre-pared with several assumptions in mind, ignoring the generality of the algorithm.Although such codes are perfectly acceptable, the partial evaluation of such pro-grams cause problems in the program point specialization technique. In orderto remedy these problems, the concept of guards have been developed and inte-grated into the system. It has been pointed out that these guards both act asa meta-debugger for the cases when the incomplete speci�cation is by the mis-take of the programmer and as a tool for enabling the partial evaluation of suchprograms.Global data
ow analysis techniques have been implemented for the live vari-able analysis of the programs. This has been used in the removal of the un-necessary computations that are present in the partially evaluated code. It hasalso been shown that the machine minimization algorithms of the classical the-ory of sequential machines can be used to minimize the number of blocks thatare present in an L program. This idea has been elaborated and applied in IL-POS. Another sort of optimization, called linearization, which aims at convertingconditional jumps into unconditional ones has been described and implemented.Notice that linearization is likely after minimization takes place. All these threetechniques constitute the post-optimizer part of ILPOS.The termination problem of the partial evaluation has been studied and theapproaches to the problem has been described. The idea of limiting the codesize for the residual programs has been described and implemented as a part ofILPOS. It has been reminded that the problem of termination is undecidable forL and the solution employed by ILPOS uses a practical approximation idea by66

limiting the output size. The problems associated with this technique and thesolutions has also been described.The computation of de�nite integrals using Simpson's rule has been investi-gated. Partial evaluation has been used successfully to generate a program tocompute the error function automatically from the generic program. Togetherwith this, various combinations of static and dynamic arguments have been con-sidered. It has been observed that di�erent combinations of static argumentsyield signi�cantly di�erent behaviour of the partial evaluator.Apart from these, ILPOS has a lexical analyzer, a parser and an interpreterfor the L language. A logging system has been implemented to accompany thereport generation for the whole process. Also supplied is a symbolic gain analyzersystem that can be used to measure the gain in e�ciency that is obtained by thepartial evaluation and post optimization processes.The contributions of this thesis are as follows: First, an experimental partialevaluation and post optimization environment with all of its supporting utilities isimplemented from scratch. This work combined the concepts of partial evaluationand post optimization techniques into a single package. To the best of the au-thors knowledge, this is the �rst work that implements these ideas together. Theconcept of incomplete speci�cations and the method for handling them throughthe use of guards is also new. Another contribution is the application of �niteautomata minimization algorithm to L programs. Termination handling tech-niques, although quite straightforward, are also developed within this study. Thesymbolic gain analysis and the related utilities are also supporting ideas for theentire system.As a conclusion, it can be said that, program specialization is a promisingarea for run time improvement of programs. The post optimization techniquescan also improve the residual obtained by specialization by removing unnecessarycomputations and equivalent blocks. The system presented in this work aims tobe an experimental system to study these techniques.
67

REFERENCES[1] S. Adams et. al., MIT Scheme User's Manual, Massachusetts Institute ofTechnology, 1995.[2] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniquesand Tools, Reading, MA: Addison-Wesley, 1986.[3] D. Castle, A Uniform Approach for Compile-Time and Run-Time Specializa-tion, LNCS, Lecture Notes in Computer Science, No. 1110, Springer-Verlag,pp. 54-72.[4] W. Clinger et. al., Revised4 Report on the Algorithmic Language Scheme,1991.[5] C. Consel, Program Adaptation based on Program Transformation, ACMComputing Surveys, 28A(4), December 1996.[6] C. Consel, A tour of Schism: a partial evaluation system for higher-order ap-plicative languages, ACM Symposium on Partial Evaluation and Semantics-Based Program Manipulation, pp. 66-77, 1993.[7] C. Consel, Polyvariant binding-time analysis for higher-order, applicativelanguages, In ACM Symposium on Partial Evaluation and Semantics-BasedProgram Manipulation, pp. 145-154, 1993.[8] C. Consel and S. C. Khoo, On-line and O�-line Partial Evaluation: SemanticSpeci�cations and Correctness Proofs, Journal of Functional Programming,5(4), pp. 461-500.[9] C. Consel, C. Pu, and J. Walpole, Incremental specialization: the key to highperformance, modularity and portability in operating systems, in ACM Sym-posium on Partial Evaluation and Semantics-Based Program Manipulation,pp. 44-46, 1993.[10] J. Dean, C. Chambers and D. Grove, Identifying Pro�table Specialization inObject-Oriented Languages, in PEPM 1994, Partial Evaluation and ProgramManipulation Conference, pp. 85-96.[11] D. R. Engler, W. C. Hsieh and M. F. Kaashoek, `C: A Language forHigh-Level, E�cient, and Machine-independent Dynamic Code Generation,POPL 1996, Conference on the Principles of Programming Languages.68

[12] L. Hornof, J. Noy�e, Accurate Binding-Time Analysis for Imperative Lan-guages: Flow, Context, and Return Sensitivity, ACM SIGPLAN Conferencein Partial Evaluation and Semantics-Based Program Manipulation, June1997.[13] N. D. Jones, An Introduction to Partial Evaluation, ACM Computing Sur-veys, Vol. 28, No. 3, September 1996, pp. 480-503.[14] N. D. Jones, C. K. Gomard, P. Sestoft, Partial Evaluation and AutomaticProgram Generation, Prentice Hall, 1993.[15] S. C. Kleene, Introduction to Metamathematics, Princeton, NJ: D. van Nos-trand, 1952.[16] Z. Kohavi, Switching and Finite Automata Theory, 2nd. ed., McGraw-Hill,1978.[17] C. L. Liu, Elements of Discrete Mathematics, Reading, MA: McGraw-Hill,1985.[18] S. S. Muchnick and N. D. Jones (editors), Program Flow Analysis, Reading,Prentice Hall, 1981.[19] G. Muller, E. N. Volanschi and R. Marlet, Scaling up Partial Evaluation forOptimizing the Sun Commercial RPC Protocol, ACM SIGPLAN Conferenceon Partial Evaluation and Semantics-Based Program Manipulation, June1997.[20] F. No�el, L. Hornof, Automatic, Template-Based Run-Time Specialization:Implementation and Experimental Study, Research Report 1065. IRISA,November 1996.[21] R. A. Silverman, Calculus with Analytic Geometry, Prentice Hall, 1985.[22] E. N. Volanschi, G. Muller, and C. Consel, Safe Operating System Specializa-tion: The RPC Case Study, in First Annual Workshop on Compiler Supportfor System Software, Tucson, Arizona, February 1996.

69

APPENDIX A
ILPOS USER MANUAL

ILPOS can run on any computer that has an R4RS (see [4]) compliant Schemeinterpreter installed. The system has been written and tested on a UNIX systemwith MIT Scheme, Release 7.3.0 (beta) (see [1]).To start ILPOS, one must start the Scheme interpreter and load the �le ilpos:s(see appendix D.2). It will automatically load all other �les required for the wholesystem. Alternatively one can run the shell script given in appendix D.1, preparedfor Unix systems. The system will automatically be loaded by this script. Whenthe Scheme prompt appears, one can interact with ILPOS through the followingfunctions:lpe: (lpe inputF ileName outputF ileName commentF ileName)This function is the entry point to the partial evaluator. The �rst argument,inputF ileName is the object L program, the su�x .lp is appended to thisname. Second and the third arguments to the function lpe are optional.If they are not present their names are formed by appending .peo.lp and.peo.log respectively. The second argument outputF ileName is the nameof the �le where the �nal result will be written and commentF ileName isthe name of the �le where all the log messages go. Although not speci�edby any arguments a �le with su�x pe.lp is created containing the residualcode that is not post optimized. 70

li: (li inputF ile)This function is the entry point to the interpreter. The program in inputF ileis interpreted by the L interpreter.sga: (sga inputF ile)This function is the entry point to the symblic gain analyzer. It performsthe symbolic gain analysis on the original, residual and post optimizedresidual programs. The output is written to the �le with su�x .peo.sga.It assumes that the residual and the post optimized residual programs arestored in the same place as the original program and they all begin withthe name inputF ile. The su�xes of these programs must be .lp, .pe.lpand .peo.lp as created by the lpe function.Apart from these main ones, ILPOS has many other functions as can be seenin appendix D. Some of the functions that might be of interest to the user arelisted below:readPgm: Read an L program and lexically analyze it. Returns a list of (to-ken, lexeme) pairs to the caller. Technically it is the lexical analyzer. Seeappendix D.3.parseL: Parse an L program represented as a (token, lexeme) pair (as returnedby readPgm). It returns the abstract syntax tree (AST) of correspondingto the program. See appendix D.4.unparseL: Reverse of the parseL. Given an AST of an L program dump it tothe disk as a plain text �le. See appendix D.5.run: AST counterpart of the li function. Runs a given AST corresponding to anL program. See appendix D.6.ucr: Perform useless code removal on an AST. See appendix D.13.minAst: Perform program minimization on an AST. See appendix D.15.linAst: Perform program linearization on an AST. See appendix D.16.71

bta: Perform binding time analysis on an AST. See appendix D.11.pe: Perform partial evaluation on an AST. See appendix D.12.Notice that all the operations are carried on the related AST and each fun-damental operation returns the modi�ed AST. This enables one to use them incascade. For example one may prefer to run the useless code remover and theminimizer on some program and then dump it back to the disk. Assuming thename of the program is test one may achieve this operation by typing:(unparseL (minAst (ucr (parseL (readPgm "test")))) "test.out")The output will be placed in �le test.out.

72

APPENDIX B
FINITE AUTOMATON SIMULATOR IN L

This appendix contains the source code of the �nite automaton simulator in Lthat has been discussed in section 5.4.# Finite state machine interpreter.# some data:# static args: ("machine" "finals" "startState")# machine:# ((empty a id) (empty b id) (empty 1 num)# (empty 2 num) (empty 3 num) (empty + sign) (empty - sign)# (num 1 num) (num 2 num) (num 3 num)# (id a id) (id b id) (id 1 id) (id 2 id) (id 3 id))# finals:# (id num sign)# start:# empty# some inputs:# (a b 1 2 + 2 3 2 - b a a b 3 2 + 1 2)# (a b a b 1 2 a b 1 2 a b 1 3 2)read(machine, finals, startState, input);start: curState := startState;results := '();matchSoFar := '();matchPoint := 'NOMATCH;goto analyze0;analyze0: finalsIter := finals;goto analyze1;analyze1: if eq(finalsIter, '()) goto proceed else lookMore;lookMore: if eq(curState, hd(finalsIter)) goto recordMatch else look2;look2: finalsIter := rest(finalsIter);goto analyze1;recordMatch: matchPoint := list(curState, matchSoFar, input);73

goto proceed;proceed: if eq(input, '()) goto finish else move;finish: if eq(matchPoint, 'NOMATCH) goto finishNoAdd else finishWithLast;finishWithLast: matchSoFar := hd(rest(matchPoint));newComers := list(hd(matchPoint), matchSoFar);results := append(results, list(newComers));goto finishNoAdd;finishNoAdd: return results;move: curSymbol := hd(input);input := rest(input);matchSoFar := append(matchSoFar, list(curSymbol));machineIter := machine;goto transition;transition: if eq(machineIter, '()) goto notFound else tr1;notFound: curState := 'NOTRANSITION;goto backtrack;tr1: if eq(hd(hd(machineIter)), curState) goto checkMore else tr2;checkMore: if eq(hd(rest(hd(machineIter))), curSymbol) goto found else tr2;tr2: machineIter := rest(machineIter);goto transition;found: curState := hd(rest(rest(hd(machineIter))));goto analyze0;backtrack: if eq(matchPoint, 'NOMATCH) goto finish else back2;back2 : matchSoFar := hd(rest(matchPoint));input := hd(rest(rest(matchPoint)));newComers := list(hd(matchPoint), matchSoFar);results := append(results, list(newComers));matchSoFar := '();matchPoint := 'NOMATCH;curState := startState;goto analyze0;

74

APPENDIX C
SIMPSON'S RULE IN L

This appendix contains the source code of the de�nite integral evaluator programsin L.C.1 The De�nite IntegratorThe �rst �le is the integrator for f(x) = 2x function.# Evaluation of definite integrals using Simpson's Composite Rule# This program evaluates the integral:# ub# /# | f(x) dx, where f(x) is integrated into the code# /# lb# lb and ub are the bounds of integration.# n is half of the number of intervals.# Static inputs: lb, n Dynamic input: ubread(lb, ub, n);# Compute the initial values of integration parameters.init: h := div(sub(ub, lb), mul('2, n));i := '0;res := '0; # res will hold the resultk := div(h, '3);last1 := mul('2, n);last := add(last1, '1);goto integrate;integrate: if eq(i, last) goto finish else goOn;goOn: curX := add(mul(h, i), lb);goto cc1; 75

cc1: if eq(i, '0) goto coef1 else cc2;cc2: if eq(i, last1) goto coef1 else cc3;cc3: if odd(i) goto coef4 else coef2;coef1: curCoef := '1;goto computeF;coef2: curCoef := '2;goto computeF;coef4: curCoef := '4;goto computeF;# now compute f at curX: currently f(x) is 2xcomputeF: f := mul('2, curX);# don't alter the rest of this blockres := add(mul(curCoef, f), res);i := add(i, '1);goto integrate;# return the computed result:finish: return mul(k, res);C.2 Specialization for the Error FunctionThe following program is automatically generated by ILPOS using the previoussection's program for the error function. The static arguments were lb = 0 andn = 10.read(ub);lpe0: h := div(sub(ub, '0), '20);res := '0;k := div(h, '3);curX := add(mul(h, '0), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('1, f), res);curX := add(mul(h, '1), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('4, f), res);curX := add(mul(h, '2), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('2, f), res);curX := add(mul(h, '3), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('4, f), res);curX := add(mul(h, '4), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('2, f), res);curX := add(mul(h, '5), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('4, f), res); 76

curX := add(mul(h, '6), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('2, f), res);curX := add(mul(h, '7), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('4, f), res);curX := add(mul(h, '8), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('2, f), res);curX := add(mul(h, '9), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('4, f), res);curX := add(mul(h, '10), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('2, f), res);curX := add(mul(h, '11), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('4, f), res);curX := add(mul(h, '12), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('2, f), res);curX := add(mul(h, '13), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('4, f), res);curX := add(mul(h, '14), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('2, f), res);curX := add(mul(h, '15), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('4, f), res);curX := add(mul(h, '16), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('2, f), res);curX := add(mul(h, '17), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('4, f), res);curX := add(mul(h, '18), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('2, f), res);curX := add(mul(h, '19), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('4, f), res);curX := add(mul(h, '20), '0);f := exp(sub('0, mul(curX, curX)));res := add(mul('1, f), res);res := mul(res, '1.1283791670955126);return mul(k, res);C.3 SGA of the Error FunctionThe following is the output of the ILPOS-SGA routine. The upper bound wasselected to be 100. 77

Welcome to ILPOS-SGA, Static Gain Analyzer System for ILPOS. (v1.0)Activated on: Monday June 16, 1997, 5:47:17 PMBy user : erkokWorking dir : /home/others/staff/erkok/tez/sonson/odtu/ilpos/SRC/Symbolic analysis performed on:Input : data/SIMPSON/serrf.lpPE file : data/SIMPSON/serrf.pe.lpResidual : data/SIMPSON/serrf.peo.lpSymbolic Analysis Results: (only the relevant entries are printed.)Original PE Only Post-Opts Gain1 Gain2 Opt Gain-------- ------- --------- ------ ------ --------(0) jumps: 146 0 0 inf inf 0(1) assigns: 112 67 67 1.672 1.672 0(2) var refs: 322 110 110 2.927 2.927 0(3)decisions: 82 0 0 inf inf 0(4) eq: 63 0 0 inf inf 0(11) add: 64 42 42 1.524 1.524 0(12) sub: 22 22 22 1 1 0(13) mul: 67 65 65 1.031 1.031 0(14) div: 3 2 2 1.5 1.5 0(15) odd: 19 0 0 inf inf 0(17) others: 22 21 21 1.048 1.048 0# BBlks: 11 1 1 - - 1# Asgns: 14 67 67 - - 1Cost vector is : (2 2 1 2 3 2 2 3 3 3 0 3 3 3 3 2 2 2)Cost of Original : 1741Cost of PE Only : 679Cost of Residual : 679Gain by PE Only : 2.564Gain by Post Opts: 0Overall Gain is : 2.564The improvement : 60.999 %SGA completed successfully.C.4 A Non-terminating specializationThis appendix contains the specialization of the de�nite integral evaluator withrespect to lb = 0, ub = 10. The resulting residual has 226 blocks hence not all ofit is represented here. The following portion of it should give an idea about thestructure of the residual code. 78

read(n);lpe0: h := div('10, mul('2, n));res := '0;k := div(h, '3);last1 := mul('2, n);last := add(last1, '1);if eq('0, last) goto lpe1 else lpe2;lpe1: return mul(k, res);lpe2: curX := add(mul(h, '0), '0);f := mul('2, curX);res := add(mul('1, f), res);if eq('1, last) goto lpe1 else lpe3;lpe3: curX := add(mul(h, '1), '0);if eq('1, last1) goto lpe4 else lpe225;: : : code deleted in between : : :lpe33: curX := add(mul(h, '16), '0);if eq('16, last1) goto lpe34 else lpe210;lpe34: f := mul('2, curX);res := add(mul('1, f), res);if eq('17, last) goto lpe1 else lpe35;lpe35: curX := add(mul(h, '17), '0);if eq('17, last1) goto lpe36 else lpe209;: : : code deleted in between : : :lpe154: lb := '0;i := '72;if odd(i) goto lpe152 else lpe153;lpe155: lb := '0;i := '71;if odd(i) goto lpe152 else lpe153;lpe156: lb := '0;i := '70;if odd(i) goto lpe152 else lpe153;: : : code deleted in between : : : 79

lpe224: lb := '0;i := '2;if odd(i) goto lpe152 else lpe153;lpe225: lb := '0;i := '1;if odd(i) goto lpe152 else lpe153;C.5 Log �le for specializationThe following is the log �le generated for the previous specialization.Welcome to ILPOS, Integrated L Partial Evaluator and Optimizer System. (v1.0)Activated on: Monday June 16, 1997, 7:45:35 PMBy user : erkokWorking dir : /home/others/staff/erkok/tez/sonson/odtu/ilpos/SRC/Input file : data/SIMPSON/s2xN.lpOutput file : data/SIMPSON/s2xN.peo.lpPure PE file: data/SIMPSON/s2xN.pe.lpLog file : data/SIMPSON/s2xN.peo.logInput has:3 formal arg(s)11 basic block(s)13 assignment(s)12 program var(s) : (ub n last h lb last1 curX curCoef f i k res)8 dynamic var(s) : (res f k last curX h last1 n)2 static arg(s) : (lb ub)4 static var(s) : (ub lb curCoef i)Program is specialized with respect to:lb <- 0ub <- 10** Termination Handler Notice:The residual code size exceeded 220 blocksMarking all variables as dynamic and stopping further partial evaluation.Partial Evaluation Completed, residual code has:1 formal arg(s)300 basic block(s)Dead Code Removal Completed, Number of Assignments Removed: 146Minimization Completed:Minimal code has : 226 block(s)Minimization saved us : 74 block(s)Linearization completed, DCR+MIN+LIN loop terminates.Totally 74 block(s) (out of 300) has/have been80

saved by the optimizations after partial evaluation.Totally 146 assignment(s) (out of 530) has/have beenremoved by the dead code remover.Final residual program has 226 block(s) and 384 assignment(s).ILPOS completed successfully.C.6 SGA for Non-terminating specializationThe following is the output of the SGA routine for n = 20.Welcome to ILPOS-SGA, Static Gain Analyzer System for ILPOS. (v1.0)Activated on: Monday June 16, 1997, 8:25:52 PMBy user : erkokWorking dir : /home/others/staff/erkok/tez/sonson/odtu/ilpos/SRC/Symbolic analysis performed on:Input : data/SIMPSON/s2xN.lpPE file : data/SIMPSON/s2xN.pe.lpResidual : data/SIMPSON/s2xN.peo.lpSymbolic Analysis Results: (only the relevant entries are printed.)Original PE Only Post-Opts Gain1 Gain2 Opt Gain-------- ------- --------- ------ ------ --------(0) jumps: 286 160 160 1.788 1.788 0(1) assigns: 211 212 210 0.995 1.005 0.009(2) var refs: 580 567 567 1.023 1.023 0(3)decisions: 162 160 160 1.012 1.012 0(4) eq: 123 121 121 1.017 1.017 0(11) add: 124 123 123 1.008 1.008 0(12) sub: 1 0 0 inf inf 0(13) mul: 126 126 126 1 1 0(14) div: 2 2 2 1 1 0(15) odd: 39 39 39 1 1 0# BBlks: 11 300 226 - - 1.327# Asgns: 13 530 384 - - 1.38Cost vector is : (2 2 1 2 3 2 2 3 3 3 0 3 3 3 3 2 2 2)Cost of Original : 3104Cost of PE Only : 2825Cost of Residual : 2821Gain by PE Only : 1.099Gain by Post Opts: 0.002Overall Gain is : 1.1The improvement : 9.117 %SGA completed successfully. 81

APPENDIX D
SOURCE CODE OF ILPOS

This appendix includes descriptions and the Scheme code of the whole system.The ILPOS source has been divided into 17 �les, each �le is presented in a section.The source code is electronically available upon request. For informationplease contact ferkok,oguztuzng@ceng.metu.edu.tr. You can also visit theweb page http://www.ceng.metu.edu.tr/~erkok for an online version of thisthesis and the source code.D.1 ILPOS loader: ilpos# change the following variable to your MIT-Scheme interpreterMITSCHEME=schemeecho Starting ILPOS, Integrated L Partial Evaluator and Optimizer System, v1.0..echo$MITSCHEME -load ilpos.sechoecho "ILPOS terminated.."D.2 ILPOS driver: ilpos.s;;;--;;;;;; File ilpos: ILPOS: Integrated L Partial evaluator and;;; Optimizer System;;;;;; ILPOS is an experimental system for studying partial evaluation and;;; optimization issues. Partial evaluation is a program transformation;;; technique that makes use of the abstract interpretation where all;;; static information is used in the specialization time to produce an;;; efficient but semantically equivalent residual code. The optimizations82

;;; that are applied to the partially evaluated code includes dead code;;; removal, block minimization and linearization. Dead code removal;;; has to do with removing assignments that assign values to variables;;; that are dead, i.e. whose values are not used after that point. Block;;; minimization exploits the equivalent code concept by creating;;; an equivalence relation among all basic blocks of the program. Clearly;;; each partition defines a unique operational unit and can be represented;;; by a single block. This results in the save of blocks thus achieving;;; space optimization. Linearization is concerned with goto compression,;;; an important property of the residual code: The produced code does;;; not have any unconditional goto statements all of them are compressed;;; through the translation process.;;;;;; ILPOS works on a language called L, which is a flow chart language;;; that can express any algorithm in principle. The data structures;;; allowes is constants and lists of any valid data structure. i.e.;;; nested lists (to arbitrary depth) are allowed.;;;;;;--;;; Load the required files:(load "lexer.s")(load "parser.s")(load "unparser.s")(load "guards.s")(load "llibrary.s")(load "interpreter.s")(load "symbSpeedUp.s")(load "bta.s")(load "lpeval.s")(load "dcr.s")(load "minimize.s")(load "linearize.s")(load "aux.s")(load "util.s")(load "setOperations.s");;; what we have:;;; readPgm : read disk file, display tokens (i.e. lexemes..);;; parseL : parse what's read by readPgm, returns ast;;; unparseL : unparse the ast and flush to disk.;;; run : run an ast;;; dcr : dead code remover;;; minAst : minimizer;;; linAst : linearize the code;;; li : interpret an L program in a file;;; lCV : interpret an L program in a file and construct the;;; cost vector associated with that particular run.;;; bta : binding time analyzer;;; pe : partial evaluator, work on ast;;; lpe : partial evaluator, work on files;;; basic use of the partial evaluator:;;;;;; (lpe inputFileName outputFileName commentFileName);;; 83

;;; which reads the program in file inputFileName and performs;;; all operations and writes the residual code to outputFileName.;;; commentFileName is used for producing statistics on the program;;; and the translation process.(define commentPort 'err);;; entry to whole system: ILPOS: integrated L partial evaluator and optimizer.(define ilpos(lambda fnames(let ((noOfFiles (length fnames)))(case noOfFiles(1 (lpe (string-append (car fnames) ".lp")(string-append (car fnames) ".peo.lp")(string-append (car fnames) ".pe.lp")(string-append (car fnames) ".peo.log")))(2 (lpe (string-append (car fnames) ".lp")(string-append (cadr fnames) ".peo.lp")(string-append (cadr fnames) ".pe.lp")(string-append (cadr fnames) ".peo.log")))(else (error "ILPOS: illegal count of arguments."))))))D.3 Lexical Analyzer for L: lexer.s;;;--;;;;;; File lexer.s: contains functions for lexical analysis;;;;;; The lexical analyzer reads the disk file and performs lexical;;; analysis. all whiteSpace and comments are removed. note that;;; we allow 333aaa as an identifier. All composite lists that;;; may appear in the program is handled through these functions.;;;;;;--(define whiteSpace?(lambda (char)(member char '(#\tab #\space #\newline #\#))))(define punctuation?(lambda (char)(member char '(#\(#\) #\; #\, #\:))))(define quotedLit?(lambda (char)(equal? char #\')));;; Function readPgm: reads the named file, and sends it as a list:(define readPgm(lambda (fileName)(let* ((port (open-input-file fileName))(pgm (readFile port)))(close-input-port port)pgm)));;; Function readFile: given the port no, reads the program into a list,;;; effectively it calls the lexer to collect the symbols.84

(define readFile(lambda (port)(let ((nextObj (lexer port)))(if (equal? nextObj 'done)()(cons nextObj (readFile port))))));;; Function lexer: lexical analyzer for L-programs.;;; it returns the next object from the port, or something;;; that makes eof-object? true, in case file ends.(define lexer(lambda (port)(if (eof-object? (discardWs port))'done(getNext port "" 'nothing))));;; Function discardWs: discard white space from the input:(define discardWs(lambda (port)(let ((lookAhead (peek-char port)))(if (eof-object? lookAhead)lookAhead(if (whiteSpace? lookAhead)(if (equal? lookAhead #\#)(begin (read-char port)(discardComment port)(discardWs port))(begin (read-char port) (discardWs port)))'done)))));;; Function discardComment: skip comments: skip until the next newline(define discardComment(lambda (port)(let ((lookAhead (peek-char port)))(if (eof-object? lookAhead)lookAhead(if (equal? lookAhead #\newline)(begin (read-char port) 'done)(begin (read-char port) (discardComment port)))))));;; Function getNext: collect the next lexeme and return it:(define getNext(lambda (port prev what)(let ((lookAhead (peek-char port)))(cond ((eof-object? lookAhead) prev)((whiteSpace? lookAhead) prev)((quotedLit? lookAhead) (collectConst port "" 0))((punctuation? lookAhead)(if (equal? what 'nothing)(if (equal? lookAhead #\:)(catchAssign (char->string (read-char port))port)(char->string (read-char port)))prev))(else(getNext port 85

(string-append prev(char->string (read-char port)))'something))))));;; Function catchAssign: look if we have :=(define catchAssign(lambda (prev port)(let ((lookAhead (peek-char port)))(if (equal? lookAhead #\=)(string-append prev (char->string (read-char port)))prev))));;; Function collectConst: grasp quoted literals:(define collectConst(lambda (port prev balance)(let ((lookAhead (peek-char port)))(cond ((eof-object? lookAhead) prev)((or (whiteSpace? lookAhead)(equal? lookAhead #\;)(equal? lookAhead #\,))(if (equal? balance 0)prev(collectConstport (string-appendprev (char->string (read-char port)))balance)))((equal? lookAhead #\()(collectConstport (string-appendprev (char->string (read-char port)))(+ balance 1)))((equal? lookAhead #\))(if (= balance 1)(string-append prev(char->string (read-char port)))(if (= balance 0)prev(collectConstport (string-appendprev (char->string (read-char port)))(- balance 1)))))(else (collectConstport (string-appendprev (char->string (read-char port)))balance))))))D.4 Parser for L: parser.s;;;--;;;;;; File parser.s: contains functions for the parser.;;;;;; The parser for L has been implemented as a variant of recursive;;; descent parsing technique. The resulting parse tree is a mit-scheme;;; structure (called pgm) and all the parse tree is represented as a86

;;; structure of structures kind of data structure. These structures;;; can be seen below.;;;;;;--;;; constitutients of the parse tree:(define-structure pgm readBlk basicBlks)(define-structure basicBlk lbl assigns jump)(define-structure assign var expr)(define-structure const type val) ; type: list | id (no numbers!)(define-structure varRef var)(define-structure app rator rands)(define-structure goto lbl)(define-structure condJump expr lbl1 lbl2)(define-structure return exp);;; Parsing stuff:(define parseL(lambda (pgm)(ps0 (instLevel pgm))));;; psK, where k is a number, are the states of the parser.;;; ps0: entry to the program:(define ps0(lambda (pgm)(cond ((null? pgm) (error " syntax: lambda is not in L. "))(else(let ((inst (car pgm)))(if (and (> (length inst) 2)(equal? (car inst) "read")(equal? (cadr inst) "(")) ;) special comment(make-pgm (collectReadVars (cddr inst))(map ps1(basicBlockLevel (cdr pgm) ())))(error " syntax: read statement ill-formed.")))))));;; Fun: collectReadVars: construct the list of variable names:(define collectReadVars(lambda (lst) ; (special comment(if (equal? (last lst) ")")(if (equal? (length lst) 1)()(if (> (length lst) 1)(if (id? (car lst))(cons (car lst) (getRestVars (exceptLast (cdr lst))))(error " syntax: id expected." lst))(getRestVars (exceptLast lst))))(error " syntax: ill-formed id list:" lst))));;; Fun: getRestVars: handles kleene star part:(define getRestVars(lambda (lst)(cond ((null? lst) ())((< (length lst) 2) (error " syntax: wrong id list:" lst))((and (id? (cadr lst)) (equal? (car lst) ","))(cons (cadr lst) (getRestVars (cddr lst))))87

((not (id? (cadr lst)))(error " syntax: not an id: " (cadr lst)))(else (error " syntax wrong id list:" lst)))));;; ps1: parse all basic blocks:(define ps1(lambda (blk)(let* ((blkLen (length blk))(blkJmp (if (equal? blkLen 1)(cddar blk) ; just a jump(last blk))) ; composite(blkLab (caar blk)) ; always there!(blkBod (if (equal? blkLen 1)'() ; empty body(cons (cddar blk)(exceptLast (cdr blk))))))(make-basicBlk (verifyLbl blkLab)(map parseAssign blkBod)(parseJump blkJmp)))));;; Function parseAssign: parse assignments..(define parseAssign(lambda (asgn)(if (not (>= (length asgn) 3))(error "syntax: invalid assignment statement: " asgn)(if (number? (string->number (car asgn)))(error "syntax: invalid identifier: " (car asgn))(if (not (equal? ":=" (cadr asgn)))(error "syntax: invalid operator: " (cadr asgn) asgn)(make-assign (car asgn)(parseExprs (cddr asgn))))))));;; Function parseJump: parse jumps..(define parseJump(lambda (jmp)(let ((tag (car jmp)))(cond ((equal? tag "goto")(if (not (equal? (length jmp) 2))(error "syntax: invalid goto: " jmp)(make-goto (verifyLbl (cadr jmp)))))((equal? tag "return")(if (not (>= (length jmp) 2))(error "syntax: invalid return: " jmp)(make-return (parseExprs (cdr jmp)))))((equal? tag "if") (parseCondJump (cdr jmp)))(else (error "syntax: unrecognized jump: " jmp))))));;; Function parseCondJump: parse if's:(define parseCondJump(lambda (cjmp)(let ((tmp (reverse cjmp)))(cond ((or (not (equal? (cadr tmp) "else"))(not (equal? (cadddr tmp) "goto")))(error (string-append " syntax: else or goto missing"" or misplaced in if ") cjmp))(else (make-condJump (parseExprs (upto cjmp "goto"))88

(verifyLbl (caddr tmp))(verifyLbl (car tmp))))))));;; Function parseExprs: parse expressions..(define parseExprs(lambda (expr)(cond ((and (equal? (length expr) 1)(equal? (string-ref (car expr) 0) #\'))(getConst (list->string (cdr (string->list (car expr))))))((and (equal? (length expr) 1)(not (number? (string->number (car expr)))))(make-varRef (string->symbol (car expr))))(else (parseApp expr))))) ; otherwise an application;;; Function getConst: collect the constant value:(define getConst(lambda (constVal) ; represented as a string(let ((listForm (string->list constVal)))(cond ((equal? (car listForm) #\() ;) special comment(make-const 'listing(flatten (exceptLast (cdr listForm)))))(else (make-const 'singleton constVal))))));;; Function parseApp: parse application..(define parseApp(lambda (app)(if (or (< (length app) 3) ;;; (special comment(not (equal? (last app) ")"))(not (equal? (cadr app) "(")) ;;;) special comment(equal? (string-ref (car app) 0) #\'))(error " syntax: ill-formed application: " app)(if (not (isOperator? (car app)))(error " problem: not a known operator: " (car app))(make-app(car app)(mapparseExprs(map reverse(separateOps(reverse(cons ","(reverse (exceptLast (cddr app)))))))))))));;; Function separateOps: distinguish operands:;;; input is of form: q, r, s, t, (comma is appended extra..)(define separateOps(lambda (ops)(cond ((null? ops) ())(else (let ((fArg (reverse (uptoFarg ops 0))))(cons fArg(separateOps (afterFArg fArg ops))))))));;; Function afterFArg: get after the first Arg, don't include comma(define afterFArg(lambda (firs ops)(letrec ((l1 (+ 1 (length firs)))89

(drop (lambda (lis n)(if (equal? n 0) lis(drop (cdr lis) (- n 1))))))(if (equal? l1 1) '()(drop ops l1)))));;; Function uptoFArg: get upto the first Arg, don't include the;;; following comma(define uptoFArg(lambda (ops npar)(cond ((null? ops) '())((and (equal? (car ops) ",") (equal? npar 0)) '()) ;finished((equal? (car ops) "(") ;;;) spec. comment.(cons (car ops) (uptoFArg (cdr ops) (+ 1 npar)))) ;(spec.com.((equal? (car ops) ")")(cons (car ops) (uptoFArg (cdr ops) (- npar 1))))(else (cons (car ops) (uptoFArg (cdr ops) npar))))))D.5 Unparser for L: unparser.s;;;--;;;;;; File unparser.s: contains functions for unparsing an abstract;;; syntax tree.;;;;;; Unparser maps an abstract syntax tree in to the equivalent;;; concrete syntax.;;;;;; The unparser routines are used for outputting the final residual;;; code to the disk, which is the overall aim after all. Also these;;; functions are used for debugging purposes.;;;;;;--(define unparseL(lambda (ast fileName)(let ((port (open-output-file fileName)))(begin (unparse ast port)(close-output-port port)#t))));;; produce output on port:(define unparse(lambda (ast port)(begin(upRead (pgm-readBlk ast) port) (newline port)(forEach (lambda (blk) (begin (upBlk blk port)(newline port)))(pgm-basicBlks ast)))));;; upRead: output the read Block(define upRead(lambda (vars port)(begin(display "read(" port) ;) special comment(outputVars vars port) ;(special comment90

(display ");" port))));;; outputVars: print out arguments:(define outputVars(lambda (lst port)(cond ((null? lst) ())((null? (cdr lst)) (display (car lst) port))(else (begin (display (car lst) port)(display ", " port)(outputVars (cdr lst) port))))));;; upBlk: unparse basic blocks:(define upBlk(lambda (blk port)(begin (newline port)(display (basicBlk-lbl blk) port)(display ": " port) (newline port) (display "\t" port)(forEach (lambda (asgn) (begin (upAsgn asgn port)(newline port)(display "\t" port)))(basicBlk-assigns blk))(upJmp (basicBlk-jump blk) port))));;; upAsgn: unparse an assignment:(define upAsgn(lambda (asgn port)(begin(display (assign-var asgn) port) (display " := " port)(upExpr (assign-expr asgn) port)(display ";" port))));;; upJmp: unparse a jump(define upJmp(lambda (jmp port)(cond ((condJump? jmp) (begin(display "if " port)(upExpr (condJump-expr jmp) port)(display " goto " port)(display (condJump-lbl1 jmp) port)(display " else " port)(display (condJump-lbl2 jmp) port)(display ";" port)))((goto? jmp) (begin(display "goto " port)(display (goto-lbl jmp) port)(display ";" port)))((return? jmp) (begin(display "return " port)(upExpr (return-exp jmp) port)(display ";" port)))(else (error "something wrong with ast " jmp)))));;; upExpr: unparse an expression(define upExpr(lambda (expr port)(cond ((const? expr) (upConst expr port))91

((varRef? expr) (display (varRef-var expr) port))((app? expr) (begin(display (app-rator expr) port)(display "(" port) ;) special comment(if (not (null? (app-rands expr)))(begin(upExpr (car (app-rands expr)) port))())(forEach (lambda (ex) (begin (display ", " port)(upExpr ex port)))(cdr (app-rands expr))) ;(spec. comment(display ")" port)))(else (error "something wrong with ast " expr)))));;; upConst: unparse a constant(define upConst(lambda (const port)(let ((type (const-type const))(val (const-val const)))(cond ((equal? type 'singleton) (begin (display "'" port)(display val port)))((equal? type 'listing) (begin (display "'" port)(printList val port)))(else (error "unknown constant type " type val))))));;; printList: have to convert strings to symbols:(define printList(lambda (lst port)(letrec ((beautify (lambda (elm)(cond ((list? elm) (map beautify elm))((string? elm) (string->symbol elm))(else elm)))))(display (map beautify lst) port))))D.6 Interpreter for L: interpreter.s;;;--;;;;;; File interpreter.s: contains functions for interpreting L programs.;;;;;; The environment is kept as an associative list and all assignments;;; are handled through the modifications of that list.;;;;;;--(define-structure interpResult val env);;; initial environment: there are no predefined values only the library;;; functions exist in the initial environment.(define initialEnv(list (list 'hd hdL)(list 'tl tlL)(list 'cons consL)(list 'first_instruction firstInstL)(list 'rest restL)(list 'firstsym firstSymL)92

(list 'new_tail newTailL)(list 'eq equalL)(list 'list listL)(list 'transition transitionL)(list 'append appendL)(list 'member memberL)(list 'add addL)(list 'sub subL)(list 'mul mulL)(list 'div divL)(list 'odd oddL)(list 'even evenL)(list 'gt gtL)(list 'lt ltL)(list 'gte gteL)(list 'lte lteL)(list 'exp expL)(list 'sqrt sqrtL)(list 'intdiv intdivL)(list 'inform_sga informSGAL)));;; File interpreter:(define li(lambda (fname) (run (parseL (readPgm fname)))));;; interpreter for L programs:(define run(lambda (ast)(interpResult-val(initiate (pgm-basicBlks ast)(interpResult-env(loadVars (pgm-readBlk ast) initialEnv))))));;; extend initial env through initial reads(define loadVars(lambda (readList env)(make-interpResult 'NOVALUE (gatherEnv readList env))));;; gatherEnv: collect variables:(define gatherEnv(lambda (elms env)(cond ((null? elms) env)(else (gatherEnv (cdr elms)(begin (display (car elms)) (display "? ")(update env (car elms)(normalize (read)))))))));;; normalize: L does not support numbers, in case a number is read convert;;; it to a symbol:(define normalize(lambda (n)(if (number? n) (number->symbol n) n)));;; initiate: start execution:(define initiate(lambda (bblks env) 93

(cond ((null? bblks) (make-interpResult 'NOVALUE env))(else (execute bblks (car bblks) env)))));;; execute: execute the pgm:(define execute(lambda (pgm curBlk env)(let* ((newEnv (performAssigns (basicBlk-assigns curBlk) env))(nextBlkInfo (whereToGo (basicBlk-jump curBlk) newEnv)))(if (equal? (car nextBlkInfo) 'TERMINATE)(make-interpResult (cdr nextBlkInfo) newEnv)(execute pgm (getBlk pgm (car nextBlkInfo)) newEnv)))));;; getBlk: return the matching basic block:(define getBlk(lambda (pgm label)(cond ((null? pgm) (error "No such label: " label))((equal? (basicBlk-lbl (car pgm)) label) (car pgm))(else (getBlk (cdr pgm) label)))));;; performAssigns: evaluate and form the new assignments: return env(define performAssigns(lambda (assigns env)(cond ((null? assigns) env)(else (performAssigns (cdr assigns)(doAssign (car assigns) env))))));;; doAssign: perform a single assignment: return the new environment.(define doAssign(lambda (astmt env)(update env (assign-var astmt) (evalExp (assign-expr astmt) env))));;; whereToGo: execute and decide jumps:(define whereToGo(lambda (jstmt env)(cond ((goto? jstmt) (cons (goto-lbl jstmt) 'NOVALUE))((return? jstmt) (cons 'TERMINATE(evalExp (return-exp jstmt) env)))((condJump? jstmt) (cons((if (evalExp (condJump-expr jstmt) env)condJump-lbl1condJump-lbl2)jstmt) 'NOVALUE))(else (error "Invalid jump: " jstmt)))));;; evalExp: return value of the expression:(define evalExp(lambda (exp env)(cond ((const? exp) (cond ((equal? (const-type exp) 'singleton)(beautify (const-val exp)))((equal? (const-type exp) 'listing)(formList (beautify (const-val exp)) env))(else (error "Unknown const" exp))))((varRef? exp) (lookUp env (symbol->string (varRef-var exp))))((app? exp) (apply (lookUp env (string->symbol (app-rator exp)))94

(map (lambda (e) (evalExp e env))(app-rands exp))))(else (error "Unknown exp type: " exp)))));;; beautifier, convert strings to symbols to make them appear more natural:(define beautify(lambda (elm)(cond ((list? elm) (map beautify elm))((string? elm) (string->symbol elm))(else elm))));;; formList: construct a list from the environment:;;; this is unnecessary, just for compatibility:(define formList (lambda (x y) x))D.7 The L library: llibrary.s;;;--;;;;;; File llibrary.s: contains functions for the run time library;;; of the L language. Adding a new function to the library is easy,;;; the steps to be followed:;;; 1. In the interpreter.s file, add the name of the function;;; and the name of the corresponding one in the library;;; 2. In the llibrary.s file (this one) define that function;;; using scheme.;;; 3. register the name of the L function in the util.s file;;; by adding its name to the list in function isOperator?;;; 4. in the guards.s file, define the corresponding guard.;;; 5. in the symbSpeedUp.s file, update weight costs for them.;;; (if no special care is needed, it will automatically go into;;; the others section, so nothing is needed to be done..);;;;;; that's all folks for adding a new function.;;;;;;--;;; initial environment:(define hdL car) ;bound to hd(define consL cons) ;bound to cons(define firstInstL car) ;bound to first_instruction(define restL cdr) ;bound to rest(define listL list) ;bound to list(define memberL member) ;bound to member(define appendL append) ;bound to append(define newTailL ;bound to newTail(lambda (lab pgm)(cond ((null? pgm) (error "(runtime) No such label: " lab))((equal? (caar pgm)(string->symbol(string-append (number->string lab) ":")))pgm)(else (newTailL lab (cdr pgm))))))(define numberL 95

(lambda (i)(number? (symbol->number i))))(define equalL ;bound to eq(lambda (i1 i2)(or (equal? i1 i2)(equal? (convString i1) (convString i2)))));;; convString: auxilary to equalL above, used to perform a typeless;;; comparison.(define convString(lambda (elm)(cond ((string? elm) (toLowerString elm))((number? elm) (toLowerString (number->string elm)))((symbol? elm) (toLowerString (symbol->string elm)))(else elm))));;; toLowerString: convert all chars to lower case:(define toLowerString(lambda (s)(list->string (map char-downcase (string->list s)))))(define transitionL ;bound to transition(lambda (machine state symbol)(cond ((null? machine) 'NOTRANSITION)((and (equalL state (caar machine))(equalL symbol (cadar machine)))(caddar machine))(else (transitionL (cdr machine) state symbol)))))(define firstSymL ;bound to firstsym(lambda (lst)(cond ((null? lst) 'B) ; return blanks(else (car lst)))))(define tlL ;bound to tl(lambda (lst)(cond ((null? lst) ()) ; return empty list(else (cdr lst)))));;; arithmetic routines:(define (symbol->number x) (string->number (symbol->string x)))(define (number->symbol x) (string->symbol (number->string x)))(define (addL x y) (number->symbol (+ (symbol->number x) (symbol->number y))))(define (subL x y) (number->symbol (- (symbol->number x) (symbol->number y))))(define (divL x y) (number->symbol (/ (symbol->number x)(symbol->number y))))(define (mulL x y) (number->symbol (* (symbol->number x) (symbol->number y))))(define (oddL x) (myodd? (symbol->number x)))(define (evenL x) (not (oddL? x)))(define (gtL x y) (> (symbol->number x) (symbol->number y)))(define (ltL x y) (< (symbol->number x) (symbol->number y)))(define (gteL x y) (>= (symbol->number x) (symbol->number y)))(define (lteL x y) (<= (symbol->number x) (symbol->number y)))(define (sqrtL x) (number->symbol (sqrt (symbol->number x))))(define (expL x) (number->symbol (exp (symbol->number x))))96

(define (intdivL x y) (number->symbol(quotient (symbol->number x) (symbol->number y))))(define (myodd? x)(let ((y (exact->inexact x)))(if (integer? y) (odd? y) #f)))(define SGAstopCount 'err) ; allocate space for flag;;; informSGAL: the interface from the program to the static gain analyzer:;;; parameter flag:;;; if 0: stop counting;;; if 1: start counting;;; if 2: increment flag(define informSGAL ; bound to inform_sga(lambda (flag)(cond ((equalL flag 0) (set! SGAstopCount #t)) ; stop counting((equalL flag 1) (set! SGAstopCount #f)) ; restart counting..((equalL flag 2) (begin (incrCV! searchCV) ; record..(incrCV! internCV)))(else (error "inform_sga: incorrect flag: " flag)))))D.8 Set operations package: setOperations.s;;;--;;;;;; File setOperations.s: contains functions that implement several;;; set operations.;;;;;; supported functions:;;; setUnion (of arbitrary arity), setDifference, setEqual?,;;; isSubset?, setIntersection;;;--;;; setUnion: return the union of any number of sets:(define setUnion(lambda allSets(cond ((null? allSets) ())((null? (cdr allSets)) (car allSets))(else (setUnionAux (car allSets) (applysetUnion (cdr allSets)))))));;; setUnionAux: work on two sets:(define setUnionAux(lambda (s1 s2)(cond ((null? s1) s2)((member (car s1) s2) (setUnionAux (cdr s1) s2))(else (cons (car s1) (setUnionAux (cdr s1) s2))))));;; setDifference: return the difference of two sets:(define setDifference(lambda (s1 s2)(cond ((null? s1) ())((member (car s1) s2) (setDifference (cdr s1) s2))(else (cons (car s1) (setDifference (cdr s1) s2))))))97

;;; setEqual?: return #t if two sets are equal:(define setEqual?(lambda (s1 s2) (and (isSubset? s1 s2) (isSubset? s2 s1))));;; isSubset?: return #t if s1 is a subset of s2(define isSubset?(lambda (s1 s2)(cond ((null? s1) #t)((member (car s1) s2) (isSubset? (cdr s1) s2))(else #f))));;; setIntersection: return the intersection of two sets:(define setIntersection(lambda (s1 s2)(cond ((null? s1) ())((member (car s1) s2) (cons (car s1)(setIntersection (cdr s1) s2)))(else (setIntersection (cdr s1) s2)))))D.9 Commenting and Debugging: aux.s;;;--;;;;;; File aux.s: contains functions for debugging and commenting;;;;;;--;;; gor: see the concrete syntax of a given abstract syntax:(define gor(lambda (expr)(let ((ee (open-output-file "zz")))(begin((cond ((assign? expr) upAsgn)((condJump? expr) upJmp)((goto? expr) upJmp)((return? expr) upJmp)((basicBlk? expr) upBlk)((attr? expr) seeAttr)(else upExpr)) expr ee)(close-output-port ee)(system "cat zz")(system "rm zz")))));;; seeAttr: see the attribute records associated with each basic block,;;; mainly used for debugging in the dead code removal algorithm:(define seeAttr(lambda (attr dummy)(display "Attr: ") (display attr) (newline)(display " Label: ") (display (attr-lbl attr)) (newline)(display " Flag : ") (display (attr-flag attr)) (newline)(display " In : ") (display (attr-in attr)) (newline)(display " Out : ") (display (attr-out attr)) (newline)(display " Def : ") (display (attr-def attr)) (newline)(display " Use : ") (display (attr-use attr)) (newline)))98

;;; mgor: gor for a list of abstract syntax records(define mgor(lambda (lst)(forEach (lambda (elm) (gor elm) (newline)) lst)));;; mdisplay: easier display, for commenting on the screen.(define mdisplay(lambda lst(forEach (lambda (elm) (display elm)) lst)));;; comment: write out the arguments to the comment file:;;; mainly used for producing statistics..(define comment(lambda lst(forEach (lambda (elm) (display elm commentPort)) lst)));;; symbolic gain analyzer comment interface:(define sgaComment(lambda lst(forEach (lambda (elm) (display elm (car lst))) (cdr lst))));;; introduce: introduce yourself:(define introduce(lambda ()(comment"Welcome to ILPOS, Integrated L Partial Evaluator"" and Optimizer System. (v1.0)\n\n""Activated on: " (decoded-time/date-string (get-decoded-time))", " (decoded-time/time-string (get-decoded-time))"\nBy user : "(unix/current-user-name) "\n")));;; sgaIntroduce: introduce yourself to the symbolic gain analyzer:(define sgaIntroduce(lambda (prt)(sgaComment prt"Welcome to ILPOS-SGA, Static Gain Analyzer System for"" ILPOS. (v1.0)\n\n""Activated on: " (decoded-time/date-string (get-decoded-time))", " (decoded-time/time-string (get-decoded-time))"\nBy user : "(unix/current-user-name) "\n")));;; commentForSpecArgs: indicate the specialization arguments and;;; their values:(define commentForSpecArgs(lambda (args env)(forEach (lambda (elm)(comment " " elm" <- "(lookUp env elm) "\n"))args) (comment "\n")));;; several comment functions:;;; comment for environment:(define comment1 99

(lambda (f1 f2 f3 f4 noForm noBlks noAssigns)(comment "Working dir : "(directory-namestring (working-directory-pathname))"\nInput file : " f1 "\nOutput file : " f2"\nPure PE file: " f4"\nLog file : " f3 "\n\nInput has: \n "noForm " formal arg(s)\n " noBlks" basic block(s)\n " noAssigns " assignment(s)\n")));;; comment after completing partial evaluation:(define comment2(lambda (l1 l2)(comment "Partial Evaluation Completed, residual code has: \n "l1 " formal arg(s)\n " l2 " basic block(s)\n\n")));;; comment after completing dead code removal:(define comment3(lambda (n)(comment"Dead Code Removal Completed, Number of Assignments Removed: "n "\n\n")));;; comment after minimization of the code:(define comment4(lambda (l1 l2)(comment "Minimization Completed:\nMinimal code has : "l2 " block(s)\nMinimization saved us : "(- l1 l2) " block(s)\n\n")));;; comment after linearization and canonicalization of the code:(define comment5(lambda (l2 l4 l5 h2 h5)(comment "Linearization completed, DCR+MIN+LIN loop terminates.\n""\n\nTotally " (- l2 l5) " block(s) (out of "l2 ") has/have been\nsaved by the optimizations after ""partial evaluation.\n\nTotally " (- h2 h5)" assignment(s) (out of " h2 ") has/have been\n""removed by the dead code remover.\n\n")));;; final comments on the process:(define comment6(lambda (l5 h5)(comment "Final residual program has " l5" block(s) and " h5 " assignment(s).\n\nILPOS completed ""successfully.\n")));;; howManyAssigns: given an ast return the number of assignments it has:(define howManyAssigns(lambda (ast)(letrec ((howManyAssignsAux(lambda (bblks)(cond ((null? bblks) 0)(else (+ (length(basicBlk-assigns (car bblks)))(howManyAssignsAux (cdr bblks))))))))(howManyAssignsAux (pgm-basicBlks ast)))))100

;;; phasor: apply some phase or phases to some file..(define phasor(lambda ops(unparseL(phasorAux (parseL (readPgm (car ops))) (cdr ops))(string-append (car ops) ".phs"))));;; phasorAux; apply each operator in turn:(define phasorAux(lambda (ast opList)(cond ((null? oplist) ast)(else (phasorAux ((car opList) ast) (cdr opList))))));;; warning: issue a warning regarding incomplete specifications:(define warning(lambda (expr divVs)(comment "** Partial Evaluator Warning: The static expression:\n\t")(upExpr expr commentPort)(comment "\n** has been evaluated with respect to the static ""environment:\n")(forEach (lambda (elm) (comment " " (car elm) " --> "(cadr elm) "\n"))divVs)(comment "** contains an unsafe operation.\n""** Signalling operation is indicated above.\n\n")));;; terminationHandlerReport: if limits are reached, give a report;;; in the log file(define terminationHandlerReport(lambda ()(if terminationReported ()(begin(mdisplay "Termination problem detected, termination handler"" is activated.\n")(comment "** Termination Handler Notice:\n"" The residual code size exceeded "maximumCodeSize " blocks\n"" Marking all variables as dynamic and stopping ""further partial evaluation.\n\n")(set! terminationReported #t)))))D.10 Utility functions: util.s;;;--;;;;;; File util.s: contains functions for general usage, a collection;;; of tools. Mainly used by lexer.s in performing the lexical analysis.;;;;;;--;;; Fun: id? checks if it is an id: (not keyword.)(define id?(lambda (lexeme)(and (not (punctuation? lexeme))101

(not (keyword? lexeme))(not (equal? (string-ref lexeme 0) #\')))));;; Fun: keyword? checks if keyword(define keyword?(lambda (lexeme)(member lexeme '("read" "goto" "if" "else" "return" "quote"))));;; Fun: isOperator?: is it a known function?(define isOperator?(lambda (op)(member op '("hd" "tl" "cons" "new_tail" "firstsym""rest" "first_instruction" "list" "eq""append" "member" "transition" "inform_sga""sub" "add" "mul" "div" "odd" "even" "lt" "gt""lte" "gte" "exp" "sqrt" "intdiv"))));;; Fun: last: return the last element.(define last(lambda (lst)(cond ((null? lst) ())((equal? (length lst) 1) (car lst))(else (last (cdr lst))))));;; Fun: exceptLast: return all but last:(define exceptLast(lambda (lst)(cond ((null? lst) ())((equal? (length lst) 1) ())(else (cons (car lst) (exceptLast (cdr lst)))))));;; Function instLevel: divide the program into instructions:(define instLevel(lambda (pgm)(cond ((null? pgm) ())(else (cons (getFirstInst pgm)(instLevel (skipFirstInst pgm)))))));;; Function getFirstInst: return first instruction:(define getFirstInst(lambda (pgm)(cond ((null? pgm) ())((equal? (car pgm) (char->string #\;)) ())(else (cons (car pgm) (getFirstInst (cdr pgm)))))));;; Function skipFirstInst: return the rest:(define skipFirstInst(lambda (pgm)(cond ((null? pgm) ())((equal? (car pgm) ";") (cdr pgm))(else (skipFirstInst (cdr pgm))))));;; Fun: basicBlockLevel: extract basic blocks:(define basicBlockLevel(lambda (pgm prev)(cond ((null? pgm) ()) 102

((or (member "goto" (car pgm))(member "if" (car pgm))(member "return" (car pgm)))(cons (append prev (list (car pgm)))(basicBlockLevel (cdr pgm) ())))(else (basicBlockLevel (cdr pgm)(append prev (list (car pgm))))))));;; Function upto: gets a list and a key, returns list upto key, not;;; including key:(define upto(lambda (lst key)(cond ((null? lst) '())((equal? (car lst) key) '())(else (cons (car lst) (upto (cdr lst) key))))));;; Function after: gets a list and a key, returns list after key, not;;; including key:(define after(lambda (lst key)(cond ((null? lst) '())((equal? (car lst) key) (cdr lst))(else (after (cdr lst) key)))));;; Fun: verifyLbl: check if given thing is a valid label, if so;;; return it, otherwise raise an error:(define verifyLbl(lambda (lbl) ; essentially it shouldn't be quoted..(if (equal? (string-ref lbl 0) #\')(error " syntax: invalid label: " lbl)lbl)));;; Function flatten: we have a string representing a list,;;; turn it into a real list:(define flatten(lambda (org) ; org is a list(let ((inp (trim org)))(cond ((null? inp) ())((equal? (car inp) '#\() ;) special comment(cons (flatten (exceptLast (toClosing (cdr inp) 1)))(flatten (trim (afterClosing (cdr inp) 1)))))(else (cons (list->string (getWord org))(flatten (afterWord org))))))));;; Function toClosing: return with last closing paranthesis(define toClosing(lambda (strList cnt)(cond ((equal? cnt 0) ())((equal? (car strList) '#\() ;) special comment(cons '#\(;) special comment(toClosing (cdr strList) (+ cnt 1)))) ;(special comment((equal? (car strList) '#\)) ;(special comment(cons '#\)(toClosing (cdr strList) (- cnt 1))))(else (cons (car strList) (toClosing (cdr strList) cnt))))))103

;;; Function afterClosing: return after closed(define afterClosing(lambda (strList cnt)(cond ((equal? cnt 0) strList)((equal? (car strList) '#\()(afterClosing (cdr strList) (+ cnt 1)))((equal? (car strList) '#\))(afterClosing (cdr strList) (- cnt 1)))(else (afterClosing (cdr strList) cnt)))));;; Function getWord: return the first lexeme..(define getWord(lambda (lst)(cond ((null? lst) ())((whiteSpace? (car lst)) ())(else (cons (car lst) (getWord (cdr lst)))))));;; Function afterWord: return except the first lexeme.(define afterWord(lambda (lst)(cond ((null? lst) ())((whiteSpace? (car lst)) (trim (cdr lst)))(else (afterWord (cdr lst))))));;; trim: skip the initial whitespaces:(define trim(lambda (lst)(cond ((null? lst) ())((whiteSpace? (car lst)) (trim (cdr lst)))(else lst))));;; forEach: order dependent map style function(define forEach(lambda (f lst)(cond ((null? lst) ())(else (begin (f (car lst)) (forEach f (cdr lst)))))));;; lookUp: look up a var in the associative list:(define lookUp(lambda (env var)(cond ((null? env) (error "uninitialized variable: " var))((equal? (caar env) var) (cadar env))(else (lookUp (cdr env) var)))));;; update: update and return the new environment:(define update(lambda (env var val)(cond ((null? env) (list (list var val)))((equal? (caar env) var) (cons (list var val) (cdr env)))(else (cons (car env) (update (cdr env) var val))))));;; listDiff: return the difference of lists:(define listDiff(lambda (l1 l2)(cond ((null? l1) '())((member (car l1) l2) (listDiff (cdr l1) l2))104

(else (cons (car l1) (listDiff (cdr l1) l2))))));;; newPgmPoint: return a new label:(define newPgmPoint(lambda ()(symbol-append 'L (generate-uninterned-symbol 'PE))))D.11 Binding Time Analyzer for L: bta.s;;;--;;;;;; File bta.s: contains functions for binding time analysis;;; Binding time analysis refers to the analysis of all the;;; program variables to determine whether they can be marked;;; as static or dynamic. Essentially all the program arguments;;; are dynamic except for those for which the specialization;;; is done. For the rest of the variables the rules are as;;; follows: if a variable appears in the left hand side of an;;; assignment and the right hand side of that assignment contains;;; a variable that is marked as dynamic, that variable becomes;;; dynamic. Note that this is a closure algorithm and the least;;; set that satisfies these properties is the set we are;;; looking for. Once all dynamics are determined, the division;;; is easily found as the difference of all variables from the;;; list of dynamic variables.;;;;;;--;;; bta: perform binding time analysis;;; return a btaRec structure with first field as a list of all;;; program variables which are static, second is the environment;;; containing the initial values of these static variables..(define bta(lambda (prg)(mdisplay "Performing Binding Time Analysis..\n")(let* ((staticArgs (getStaticArgs prg))(division (getDivision prg staticArgs))(ongoingEnv (gatherEnv staticArgs '())))(comment " " (length staticArgs)" static arg(s) : " staticArgs "\n "(length division)" static var(s) : "division "\n\n""Program is specialized with respect to:\n\n")(commentForSpecArgs staticArgs ongoingEnv)(make-btaRec division(pushErrors(setDifference division staticArgs)ongoingEnv)))));;; pushErrors: for each val push an error.. This is used for filling;;; up the initial environment for the partial evaluation phase. Pushing;;; err does not mean anything since these variables are, logically,;;; never used before being defined. In case something like that occurs,;;; this means that the user is referencing to a variable that has not been105

;;; initialized before. The result is that he/she will get a garbage value.;;; Note that if this can be detected at specialization time then a;;; warning will be issued in the log file.(define pushErrors(lambda (lst env)(cond ((null? lst) env)(else (pushErrors (cdr lst) (update env (car lst) 'UNINITIALIZED))))));;; getStaticArgs: from the read list which are static, learn from user(define getStaticArgs(lambda (prg)(begin(display "Arguments : ")(forEach (lambda (elm) (display elm) (display " "))(pgm-readBlk prg))(display "\nStatics Args? ")(read))));;; getDivision: return the division of the whole program variables..;;; i.e. a list containing the names of all static variables.(define getDivision(lambda (prg init)(let ((allVarsInPgm (allVariables prg))(allDyns (dynamicClosure (apply append(map basicBlk-assigns(pgm-basicBlks prg)))(setDifference (pgm-readBlk prg)init))))(comment " " (length allVarsInPgm)" program var(s) : " allVarsInPgm "\n"" " (length allDyns) " dynamic var(s) : "allDyns "\n")(setDifference allVarsInPgm allDyns))));;; allVariables: return the set of all variables of the program:;;; construct the union of all variables in all blocks:(define allVariables(lambda (prg)(setUnion (pgm-readBlk prg)(apply setUnion(map allVariablesInBlk (pgm-basicBlks prg))))));;; allVariablesInBlk: return the set of variables in some block:;;; i.e. the set of variables in assignments and the variables in the;;; expression of the jump.(define allVariablesInBlk(lambda (blk)(setUnion(apply setUnion (map varsInAssign (basicBlk-assigns blk)))(varsInJump (basicBlk-jump blk)))));;; varsInAssign: return the variables in an assignment:(define varsInAssign(lambda (assignment)(setUnion (list (assign-var assignment))(map symbol->string106

(dependents (assign-expr assignment))))));;; varsInJump: return the variables in the jump:(define varsInJump(lambda (jmp)(cond ((return? jmp) (map symbol->string(dependents (return-exp jmp))))((condJump? jmp) (map symbol->string(dependents (condJump-expr jmp))))(else ())))) ; goto has no variables..;;; dynamicClosure: starting from an initial dynamic list, expand through;;; all variables.(define dynamicClosure(lambda (assignsList prev)(computeDyns (map graspDeps assignsList) prev)));;; graspDeps: given an assignment, return a list with first element;;; the assignment variable, second element a list of dependent variables:(define graspDeps(lambda (asgn)(list (assign-var asgn) (map symbol->string(dependents (assign-expr asgn))))));;; computeDyns: given an associative list showing dependencies of variables;;; and an initial set of dynamics, return all variables that are dynamic(define computeDyns(lambda (depList prev)(let ((newDyns (dynPass depList prev)))(if (equal? (length newDyns) (length prev))newDyns(computeDyns depList newDyns)))));;; dynPass: analyze expressions to see which of them can be marked as;;; dynamics, this is an iterative algorithm, easily converted to;;; tail recursion.(define dynPass(lambda (depList olds)(cond ((null? depList) olds)((member (caar depList) olds) (dynPass (cdr depList) olds))((null? (setIntersection (cadar depList) olds))(dynPass (cdr depList) olds))(else (setUnion (list (caar depList))(dynPass (cdr depList) olds))))))D.12 The L Partial Evaluator: lpeval.s;;;--;;;;;; File lpeval.s: contains functions for the partial evaluation of;;; L programs.;;;;;; The main technique applied in partial evaluation is that of program;;; point specialization. According to this technique each basic block;;; of the source program gives us a program point. The idea is that107

;;; when the program executes it passes through a sequence of program;;; points. Of course it may be in the same program point later in time;;; with a different environment. The whole idea is that, given a;;; program point and an environment specifying the values of the;;; static variables of the program we can generate a residual block;;; that uniquely represents that point. Clearly this would remove any;;; operations that are done only on static values, thus achieving the;;; merit of partial evaluation.;;;;;; This idea is implemented as a graph traversal algorithm which considers;;; the nodes of the graph as the program points with values of static;;; variables. The program is interpreted in an abstract sense and the;;; residual code is generated at the same time.;;;;;;--;;; given pgm, partially evaluate it;;; read division and the values of the static variables:;;; bta results stored in btaRec:(define-structure btaRec div vs);;; take care of incomplete specifications...(define incompleteSpecDetected #f)(define incompleteProgramDetected #f);;; take care of termination through limited code size:(define maximumCodeSize 0)(define residualCodeSize 0)(define terminationReported #f)(define maxCodeSizeFactor 20) ; allow at most N times large;;; Partial Evaluator with all operations cascaded.. also produce;;; comments on the translation process.(define lpe(lambda (inFile outFile onlyPeFile comFile)(let ((cmF (open-output-file comFile)))(mdisplay "Reading the program from \"" inFile "\"..\n")(set! incompleteProgramDetected #f)(let ((ast0 (readPgm inFile)))(mdisplay "Parsing the program..\n")(let ((ast1 (parseL ast0)))(set! commentPort cmF)(set! residualCodeSize 0)(set! terminationReported #f)(set! maximumCodeSize ; arrange for termination(* maxCodeSizeFactor(length (pgm-basicBlks ast1))))(introduce)(comment1 inFile outFile comFile onlyPeFile(length (pgm-readBlk ast1))(length (pgm-basicBlks ast1))(howManyAssigns ast1))(mdisplay "Partially Evaluating..\n")(let ((ast2 (pe ast1)))(comment2 (length (pgm-readBlk ast2))108

(length (pgm-basicBlks ast2)))(if incompleteProgramDetected(mdisplay"Program incomplete, see log file.\n") #t)(mdisplay "Writing non-optimized residual to \""onlyPeFile "\"..\n")(unparseL ast2 onlyPeFile)(mdisplay "Removing Dead Code..\n")(let ((ast5 (dcrMinLinLoopast2 #f(length (pgm-basicBlks ast2))(howManyAssigns ast2))))(mdisplay"Writing residual program to \""outFile "\"..\n")(unparseL ast5 outFile)(mdisplay "Partial Evaluator done, ""log file is: \"" comFile "\".")(comment6(length (pgm-basicBlks ast5))(howManyAssigns ast5))(close-output-port cmF))))))));;; dcrMinLinLoop: perform Dead code removal, minimization and Linearization.;;; note that if Linearization does something then there is a further;;; opportunity to remove more dead code and more minimization. so this;;; loop is iterated untill we come out with a program where linearization;;; does not do any good for us.;;; the parameters st1 and st2 are statistic keeping parameters,;;; representing the number of blocks and the number of assignments in;;; the program before this loop is activated.(define dcrMinLinLoop(lambda (ast2 reactivated st1 st2)(if reactivated(comment"Linearization worked, Reactivating DCR+MIN+LIN loop..\n\n") #t)(let ((ast3 (dcr ast2)))(comment3 (- (howManyAssigns ast2) (howManyAssigns ast3)))(mdisplay "Minimizing the program..\n")(let ((ast4 (minAst ast3)))(comment4 (length (pgm-basicBlks ast3))(length (pgm-basicBlks ast4)))(mdisplay "Linearizing and canonicalizing..\n")(let ((ast5 (linAst ast4))(linWorked (isLinearizable? ast4)))(if linWorked(dcrMinLinLoop ast5 #t st1 st2)(begin(comment5st1(length (pgm-basicBlks ast4))(length (pgm-basicBlks ast5))st2(howManyAssigns ast5))ast5)))))))109

;;; the partial evaluator:(define pe(lambda (pgm)(let ((btaRes (bta pgm))) ; perform BTA..(lpeval pgm (btaRec-div btaRes) (btaRec-vs btaRes)))));;; temporary data structure, this structure keeps track of the code;;; generated for the current block that is under consideration.;;; divVs is the division and the values of the static variables.;;; pending gives the list of nodes that are already visited.(define-structure peBB code divVs pending);;; lpeval: partial evaluator for L.;;; inputs: pgm: ast of input;;; div: divison;;; divVs: division and the values of the static variables:;;; returns: ast of the residual pgm.(define lpeval(lambda (prg div divVs)(make-pgm(listDiff (pgm-readBlk prg) div)(mixAux (pgm-basicBlks prg) divVs))));;; mixAux: prepare the pgm for mix:(define mixAux(lambda (bblks divVs)(let ((pp0 (basicBlk-lbl (car bblks))))(mix bblks (list (list (newPgmPoint) pp0 divVs)) '()))));;; mix: the famous mix algorithm:(define mix(lambda (bblks pending marked)(set! incompleteSpecDetected #f) ; indicate that we are fine(cond ((null? pending) ()) ; end of processing(else (set! residualCodeSize (+ residualCodeSize 1))(let* ((nPending (cdr pending))(nMarked (cons (car pending) marked))(bb (getBlk bblks (cadar pending)))(initCodeLbl (caar pending))(bbResult(mixBB (append (basicBlk-assigns bb)(list (basicBlk-jump bb)))nPending nMarkedinitCodeLbl(if (> residualCodeSizemaximumCodeSize)(begin(terminationHandlerReport)()) ; empty divVs(caddar pending)) ; following divVs(if (> residualCodeSizemaximumCodeSize); initializing code(switchingCode (caddar pending))()) ; empty code110

() bblks))(newCode (if incompleteSpecDetected(createCrash bbResult)(peBB-code bbResult))))(cons newCode(mix bblks (peBB-pending bbResult)nMarked)))))));;; mixBB: basic block partial evaluator, heart of the engine:(define mixBB(lambda (bb pending marked codeLbl divVs code jump bblks)(cond ((null? bb) (make-peBB (make-basicBlk codeLblcodejump)divVspending))((null? (cdr bb)) ; then it is the jump:(cond((goto? (car bb)) ; compress the transition(let ((toGo (getBlk bblks (goto-lbl (car bb)))))(mixBB (append (basicBlk-assigns toGo)(list (basicBlk-jump toGo)))pending marked codeLbl divVs code jump bblks)))((return? (car bb))(mixBB (cdr bb) pending marked codeLbl divVs code(make-return(if (isStatic? (return-exp (car bb)) divVs)(evalS (return-exp (car bb)) divVs)(reduce (return-exp (car bb)) divVs))) bblks))((condJump? (car bb))(if (isStatic? (condJump-expr (car bb)) divVs)(let ((toGo ; static conditional, compress(getBlk bblks((if (const-val(evalS (condJump-expr (car bb))divVs))condJump-lbl1condJump-lbl2) (car bb)))))(mixBB (append (basicBlk-assigns toGo)(list (basicBlk-jump toGo)))pending marked codeLbldivVs code jump bblks)); dynamic conditional, go on(if (equal? (condJump-lbl1 (car bb))(condJump-lbl2 (car bb))); to same place, compress the transition(let ((toGo (getBlk bblks (condJump-lbl1 (car bb)))))(mixBB (append (basicBlk-assigns toGo)(list (basicBlk-jump toGo)))pending marked codeLbldivVs code jump bblks)); to different places..(let* ((goLab1 (condJump-lbl1 (car bb)))(goLab2 (condJump-lbl2 (car bb)))(varmi1 (checkOutLabs goLab1 divVs(append pending111

marked)))(varmi2 (checkOutLabs goLab2 divVs(append pendingmarked)))(ne1 (if varmi1(getLabs goLab1 divVs(append pending marked))(newPgmPoint)))(ne2 (if varmi2(getLabs goLab2 divVs(append pending marked))(newPgmPoint))))(mixBB(cdr bb)(extendPending pending varmi1 varmi2ne1 goLab1 ne2 goLab2 divVs)marked codeLbl divVs code(make-condJump(reduce (condJump-expr (car bb)) divVs)ne1 ne2) bblks))))) ; dynamic ok.; jumps ok.(else (error "not a jump: " (car bb)))))(else ; it is an assignment(if (isStaticVar? (assign-var (car bb)) divVs)(mixBB (cdr bb) pending marked codeLbl(update divVs (assign-var (car bb))(const-val(evalS (assign-expr (car bb)) divVs)))code jump bblks)(mixBB (cdr bb) pending marked codeLbl divVs(append code (list (make-assign(assign-var (car bb))(reduce (assign-expr (car bb))divVs))))jump bblks))))));;; switchingCode: returns the code that is needed to switch from the;;; normal operation to the case where all variables are dynamic. This;;; is accomplished by adding a series of assignments of variables to;;; their values at the point of conversion:(define switchingCode(lambda (divVs)(map (lambda (elm) (make-assign (car elm)(make-const(if (list? (cadr elm))'listing 'singleton)(cadr elm)))) divVs)));;; isStatic? returns true or false;;; an expression is static if it is a constant, a var that is static by;;; division or an application of all static arguments.(define isStatic?(lambda (expr divVs)(cond ((const? expr) #t)((varRef? expr) (isStaticVar?(symbol->string (varRef-var expr)) divVs))112

((app? expr) (andAll (map (lambda (elm) (isStatic? elm divVs))(app-rands expr))))(else (error "isStatic?: invalid expression: " expr)))));;; And a list, empty list is true..(define andAll(lambda (lst)(cond ((null? lst) #t) (else (and (car lst) (andAll (cdr lst)))))));;; isStaticVar?: simply is it a member of the division that is determined;;; by the binding time analyzer.(define isStaticVar?(lambda (var divVs)(member var (map car divVs))));;; evalS: expression evaluator: note that we take care of incomplete;;; specifications by enclosing the library functions with guards. If a;;; guard notices that something goes wrong we don't generate a value;;; but rather point out a warning. It is important to note that this;;; may be something that the programmer did on purpose or something;;; that the programmer forgot to handle.(define evalS(lambda (expr divVs)(if (anyViolation? expr divVs)(begin(set! incompleteSpecDetected #t) ; indicate the problem!(set! incompleteProgramDetected #t) ; indicate the problem!; return some erronaus value, just to continue.(make-const 'singleton 'ERR))(evalSAux expr divVs)))) ; otherwise evaluate..;;; evalSAux: now we're safe to evaluate the expression..(define evalSAux(lambda (expr divVs)(let ((val (evalExp expr (append divVs initialEnv))))(make-const (if (list? val) 'listing 'singleton) val))));;; reduce: reducer: This is a combination of an evaluator and a;;; transformer. Mainly, it receives the abstract syntax tree of;;; an expression and yields another one which does not contain;;; any computation that depends only on static arguments. That is,;;; if some subtree is solely static it is replaced by a constant value,;;; but dynamic references are kept alive.(define reduce(lambda (expr divVs)(cond ((const? expr) expr)((and (varRef? expr) (isStaticVar?(symbol->string (varRef-var expr)) divVs))(let ((item (lookUp (append divVs initialEnv)(symbol->string (varRef-var expr)))))(make-const (if (list? item) 'listing 'singleton) item)))((varRef? expr) expr) ; a dynamic variable((and (app? expr) (isStatic? expr divVs)) (evalS expr divVs))((app? expr) ; something dynamic inside..(make-app (app-rator expr)(map (lambda (elm) (reduce elm divVs))113

(app-rands expr))))(else (error "invalid expression: " expr)))));;; checkOutLabs: look if marked contains such a label before:(define checkOutLabs(lambda (lab divVs marked)(orAll (map (lambda (e) (equal? (list lab divVs) e))(map cdr marked)))));;; getLabs: look if marked contains such a label before and return it:(define getLabs(lambda (lab divVs marked)(cond ((null? marked) 'SPECERR)((equal? (list lab divVs) (cdar marked)) (caar marked))(else (getLabs lab divVs (cdr marked))))));;; orAll: empty false(define orAll(lambda (lst)(cond ((null? lst) #f)(else (or (car lst) (orAll (cdr lst)))))));;; extendPending: extend pending with new program points:(define extendPending(lambda (pending v1 v2 l1 o1 l2 o2 divVs)(if incompleteSpecDetected ; no need to consider rest..pending(epAux (epAux pending v2 l2 o2 divVs) v1 l1 o1 divVs))));;; epAux: auxilary to extendPending above.(define epAux(lambda (pending exists lbl old divVs)(if exists pending(enlarge pending lbl old divVs))));;; enlarge: return union:(define enlarge(lambda (pending lbl old divVs)(if (orAll (map (lambda (e) (equal? e (list lbl old divVs)))(map cdr pending)))pending(cons (list lbl old divVs) pending))));;; anyViolation?: goven an expression, is there any problem with;;; evaluation it statically at this time:(define anyViolation?(lambda (expr divVs)(if (isSafe? expr divVs) #f(begin (warning expr divVs) #t))));;; isSafe?: given the expression, is it safe to evaluate it?;;; being unsafe for an expression means the following:;;; if it is a constant: no such thing, a constant is always safe..;;; varRef : it is not defined in the environment,;;; i.e. it is used before being assigned any value;;; app : one of the arguments is unsafe.114

(define isSafe?(lambda (expr divVs)(cond ((const? expr) #t)((varRef? expr) (let ((there (member (symbol->string(varRef-var expr))(map car(appenddivVsinitialEnv)))))(if (equal?(lookUp (append divVs initialEnv)(symbol->string(varRef-var expr)))'uninitialized)(begin(comment "** Warning: Unbound var "(varRef-var expr) "\n")#f))))((app? expr) (and (andAll (map (lambda (elm)(isSafe? elm divVs))(app-rands expr)))(safeApplication?(app-rator expr)(map(lambda (elm)(evalExp elm(append divVsinitialEnv)))(app-rands expr)))))(else (error "invalid expression: " expr)))));;; createCrash: create a crash node corresponding to an incomplete;;; specification result:(define createCrash(lambda (bbResult)(let ((oldCode (peBB-code bbResult)))(make-basicBlk(basicBlk-lbl oldCode) ()(make-return (make-const 'singleton 'run_time_crash))))))D.13 The Useless Code Remover: ucr.s;;;--;;;;;; File dcr.s: contains functions for dead code removal;;;;;; The algorithm for dead code removal consists of identifying live;;; variables at each basic block and removing assignment statements;;; that attach values to the dead variables. This is done via the;;; computation of def (defines) and use (uses) sets at each basic;;; block. def set corresponds to the variables that are defined;;; before being used in that basic block. use is the set of;;; variables that are used before being defined. In and Out sets;;; serve our purpose in finding live variables. In set of a basic;;; block is the set of variables that must be live when that block115

;;; is being executed. Out set shows which variables should be;;; evaluated, clearly it is the union of the in sets of the reachable;;; blocks from the current block. The algorithm terminates by removing;;; those assignments which are not necessary within the basic block;;; under consideration.;;;;;;--;;; defSet: given a basic block compute its def set;;; which are used in the live variable analysis(define defSet(lambda (bblk)(defSetAux (basicBlk-assigns bblk) ())));;; defSetAux: compute def set:(define defSetAux(lambda (assignList usedSet)(cond ((null? assignList) ())(else(let*((curVar (string->symbol (assign-var (car assignList))))(tempList (dependents (assign-expr (car assignList))))(newUsed (setUnion tempList usedSet))(rest (defSetAux (cdr assignList) newUsed)))(if (member curVar newUsed) ; found before?rest(setUnion (list curVar) rest)))))));;; useSet: given a basic block compute its use set:(define useSet(lambda (bblk)(useSetAux (append (basicBlk-assigns bblk) ; consider both(list (basicBlk-jump bblk))) ; assigns and jump())));;; useSetAux: compute use set:(define useSetAux(lambda (instList defd)(cond ((null? (cdr instList)) ; it is the jump(if (return? (car instList))(setDifference(dependents (return-exp (car instList)))defd)(setDifference ; condJump(dependents (condJump-expr (car instList)))defd)))(else (setUnion(setDifference(dependents (assign-expr (car instList))) defd)(useSetAux (cdr instList)(setUnion(list (string->symbol(assign-var (car instList))))defd)))))));;; dependents: given an expression return the set of dependents:116

(define dependents(lambda (expr)(cond ((const? expr) ()) ; a constant depends on nothing((varRef? expr) (list (varRef-var expr)))((app? expr) (apply setUnion (map dependents (app-rands expr))))(else (error "invalid expression: " expr)))));;; dcr: dead code remover, receive an ast return another;;; ast which have no dead code:(define dcr(lambda (prg)(make-pgm (pgm-readBlk prg)(eliminateDeads(pgm-basicBlks prg)(dcrAux (pgm-basicBlks prg)(prepareDefAndUse (pgm-basicBlks prg)))))));;; attr is associated with each basic block keeping the in out def and;;; use sets:(define-structure attr lbl flag in out def use);;; prepareDefAndUse: return a list of attr structures for basicBlocks(define prepareDefAndUse(lambda (allBlocks)(map (lambda (blk)(make-attr(basicBlk-lbl blk) #f ; not changed() 'ERR ; out not defined yet(defSet blk)(useSet blk)))allBlocks)));;; dcrAux: given program compute in and out sets(define dcrAux(lambda (bblks attrList)(let ((newAttr (alterAttrList bblks attrList attrList)))(if (orAll (map attr-flag newAttr)) ; empty list must be false(dcrAux bblks (map resetFlag newAttr))(map attr-out newAttr))))) ; return out lists;;; resetFlag: reset flag to #f, the rest is copied along..(define resetFlag(lambda (elm)(make-attr(attr-lbl elm) #f(attr-in elm) (attr-out elm)(attr-def elm) (attr-use elm))));;; alterAttrList: compute in and outs alter flag correspondingly(define alterAttrList(lambda (bblks iterateAttr oldAttr)(cond ((null? bblks) oldAttr)(else (alterAttrList (cdr bblks) (cdr iterateAttr)(singleBlk (car bblks)(car iterateAttr)oldAttr))))))117

;;; singleBlk: compute in and out list at this particular block:(define singleBlk(lambda (blk curAttr oldAttrs)(let ((newOut (let ((nexts (successors (basicBlk-jump blk))))(if (null? nexts)(dependents (return-exp (basicBlk-jump blk)))(setUnion (dependents (condJump-expr(basicBlk-jump blk)))(computeOut nexts oldAttrs))))))(updateAttr oldAttrs (setUnion (attr-use curAttr)(setDifferencenewOut(attr-def curAttr)))newOut (attr-lbl curAttr)))));;; successors: return the labels of the successor nodes:(define successors(lambda (jmp)(cond ((return? jmp) ()) ; no successor of return((condJump? jmp) (list (condJump-lbl1 jmp)(condJump-lbl2 jmp)))(else (error "invalid jump: " jmp)))));;; computeOut: out set of a node:(define computeOut(lambda (succs attrList)(cond ((null? succs) ())(else (setUnion (getInSet (car succs) attrList)(computeOut (cdr succs) attrList))))));;; getInSet: return the in set of a node in attrList(define getInSet(lambda (name attrList)(cond ((null? attrList) (error "something wrong with attributes"))((equal? (attr-lbl (car attrList)) name)(attr-in (car attrList)))(else (getInSet name (cdr attrList))))));;; updateAttr: update attr list, update flag if necessary(define updateAttr(lambda (oldList newIn newOut which)(cond ((null? oldList) ())((equal? (attr-lbl (car oldList)) which)(cons (updateThisAttr (car oldList) newIn newOut)(cdr oldList)))(else (cons (car oldList)(updateAttr (cdr oldList)newIn newOut which))))));;; updateThisAttr: update a particular attribute record:(define updateThisAttr(lambda (old newIn newOut)(make-attr(attr-lbl old)(not (setEqual? newIn (attr-in old)))118

newIn newOut (attr-def old) (attr-use old))));;; eliminateDeads: using out sets remove unnecessary assignments:(define eliminateDeads(lambda (bblks outLists)(map removeDeadAssigns bblks outLists)));;; removeDeadAssigns: return only the necessary part:(define removeDeadAssigns(lambda (blk out)(let ((newBlk (make-basicBlk(basicBlk-lbl blk)(deadAssign (basicBlk-assigns blk) out(cdr (append (basicBlk-assigns blk)(list (basicBlk-jump blk)))))(basicBlk-jump blk))))(if (equal? (length (basicBlk-assigns blk))(length (basicBlk-assigns newBlk)))newBlk ; iteration complete(removeDeadAssigns newBlk out))))) ; go on..;;; deadAssign: remove or retain assignments:;;; to remove an assignment it should assign to a variable;;; that is not in the out set of that basic block, but that;;; variable should also be not referenced within the same basic;;; block, after that assignment takes place.;;; i.e. let the assignments be:;;; a := 3;;;; b := a+2;;;; and say a is dead but b is live. removing the dead assignment;;; a would not help in this case since b would take a wrong;;; value in that case.(define deadAssign(lambda (assigns out checkList)(cond ((null? assigns) ())((or (member (string->symbol (assign-var (car assigns))) out)(furtherUsed (string->symbol (assign-var (car assigns)))checkList))(cons (car assigns)(deadAssign (cdr assigns) out (cdr checkList))))(else (deadAssign (cdr assigns) out (cdr checkList))))));;; furtherUsed: a var may not be in out, but may be used in some;;; other point in the same basic block:(define furtherUsed(lambda (var checkList)(member var (apply setUnion (map collectDepends checkList)))));;; collect depends: return dependents..(define collectDepends(lambda (instr)(cond ((assign? instr) (dependents (assign-expr instr)))((condJump? instr) (dependents (condJump-expr instr)))((return? instr) (dependents (return-exp instr)))(else (error "invalid instruction " instr)))))119

D.14 Guard system of ILPOS: guards.s;;;--;;;;;; File guards.s: this file contains guards with respect to the;;; library functions, i.e. when they will go wrong..;;;;;;--;;; safeApplication?: is the function safe for these data?(define safeApplication?(lambda (rator rands)(if ((selectGuard rator) rands) #t(begin (comment "** Warning the call <" rator "> has problems.\n")#f))));;; define guards:;;; head guard: single arity, argument must be non empty list.(define headGuard(lambda (elm)(and (equal? (length elm) 1)(list? (car elm))(not (null? (car elm))))));;; consGuard: arity: 2, second must be list.(define consGuard(lambda (elm)(and (equal? (length elm) 2)(list? (cadr elm)))));;; appendGuard: arity: n, all must be lists(define appendGuard(lambda (elm)(andAll (map list? elm))));;; mustbeListGuard: single arity list.(define mustbeListGuard(lambda (elm)(and (equal? (length elm) 1)(list? (car elm)))));;; eqGuard: arity: 2(define eqGuard(lambda (elm)(equal? (length elm) 2)));;; noGuard: nothing imposed:(define noGuard(lambda (elm) #t));;; twoArgNumsGuard: two arguments, both must be numbers:(define twoArgNumsGuard(lambda (elm)(and (equal? (length elm) 2)(numberL (car elm))(numberL (cadr elm)))))120

;;; divGuard: two arguments, both must be numbers, second non-zero:(define divGuard(lambda (elm)(and (equal? (length elm) 2)(numberL (car elm))(numberL (cadr elm))(not (equalL (cadr elm) '0)))));;; oneArgNumGuard: two arguments, both must be numbers:(define oneArgNumGuard(lambda (elm)(and (equal? (length elm) 1)(numberL (car elm)))));;; oneArgNumPosGuard: one arg, number, positive(define oneArgNumPosGuard(lambda (elm)(and (equal? (length elm) 1)(numberL (car elm))(>= (symbol->number (car elm)) 0))));;; selectGuard: for each function specify the guard to be used:(define selectGuard(lambda (func)(cond ((equal? func "hd") headGuard)((equal? func "cons") consGuard)((equal? func "first_instruction") headGuard)((equal? func "rest") headGuard)((equal? func "list") noGuard)((equal? func "member") consGuard)((equal? func "append") appendGuard)((equal? func "new_tail") noGuard)((equal? func "eq") eqGuard)((equal? func "transition") noGuard)((equal? func "firstsym") mustbeListGuard)((equal? func "tl") mustbeListGuard)((equal? func "add") twoArgNumsGuard)((equal? func "mul") twoArgNumsGuard)((equal? func "sub") twoArgNumsGuard)((equal? func "div") divGuard)((equal? func "intdiv") divGuard)((equal? func "odd") oneArgNumGuard)((equal? func "even") oneArgNumGuard)((equal? func "lt") twoArgNumsGuard)((equal? func "gt") twoArgNumsGuard)((equal? func "lte") twoArgNumsGuard)((equal? func "gte") twoArgNumsGuard)((equal? func "inform_sga") noGuard)((equal? func "sqrt") oneArgNumPosGuard)((equal? func "exp") oneArgNumGuard)(else (error "guard undefined for" func)))))
121

D.15 Code minimizer of ILPOS: minimize.s;;;--;;;;;; File minimize.s: contains functions for minimization of the program.;;;;;; The minimization algorithm is very much like the finite state;;; machine minimization algorithms that appear in the literature.;;; We define an equivalent code concept as follows: two basic;;; blocks are operationally equivalent if they make the same;;; assignments to same variables, i.e. some sort of structural;;; equivalence. Then we say that two blocks are equivalent if;;; they are code equivalent and their jumps are to those blocks which;;; are also code equivalent. Note that this signals a closure algorithm.;;;;;; Clearly this definition defines an equivalence relation on the;;; blocks of the program. Once those equivalence classes are found;;; all the program is transformed into an equivalent code that only;;; has N blocks where N is the number of equivalence classes. This;;; clearly improves the efficiency.;;;;;; One improvement to the minimization of the blocks is the following:;;; the analysis of codes to determine whether they are equivalent is;;; not as good as it can be. We look at exact structural equivalence.;;; This can be improved by allowing more flexible equivalence definitions.;;; But note that this is a difficult problem since, essentially, you;;; are trying to determine whether two functions (i.e. basic blocks);;; compute exactly the same function. This problem is an unsolvable problem;;; for any arbitrary two Turing Machines. Of course the current problem is;;; somewhat simpler but not at all tricky. Of course one may offer a;;; better algorithm that applies some checks for enabling the;;; identification of operationally equivalent blocks.;;;;;;--;;; minimize the ast using equivalent code concept:(define minAst(lambda (ast)(let ((piFinal (computePi (findFlow (pgm-basicBlks ast))(pgm-basicBlks ast))))(make-pgm (pgm-readBlk ast)(reducePgm (pgm-basicBlks ast) piFinal)))));;; findFlow: extract flow of the program, i.e. which blocks are;;; followed by which.(define findFlow(lambda (bblks)(map (lambda (blk)(list (basicBlk-lbl blk)(nextStates (basicBlk-jump blk))))bblks)));;; nextStates: which states follow this block?(define nextStates(lambda (jmp)(cond ((condJump? jmp) (list (condJump-lbl1 jmp)(condJump-lbl2 jmp)))122

((return? jmp) ()) ; no successor of return..(else (error "invalid jump: " jmp)))));;; computePi: return the partition of equivalent states:(define computePi(lambda (flow bblks)(let ((pi0 (computePi0 (map car flow) bblks)))(computePiAux pi0 flow))));;; computePiAux: start from pi0 and find final partition;;; the main algorithm is that two blocks are in the same;;; block in the ith partition if they were in the same;;; block in the (i-1)st partition and their next states are;;; in the same block in the (i-1)st partition. The algorithm;;; stops when ith and (i+1)st partitions are the same.(define computePiAux(lambda (piN flow)(let ((piN+1 (nextPi piN flow)))(if (equal? (length piN+1) (length piN))piN(computePiAux piN+1 flow)))));;; computePi0: find initial partition:;;; two nodes are in the same partition if they are code equivalent(define computePi0(lambda (states bblks)(genPi0 (list (list (car states))) (cdr states) bblks)));;; genPi0: construct initial partition by inspecting the code..(define genPi0(lambda (partSoFar rest bblks)(cond ((null? rest) partSoFar)(else (genPi0 (place partSoFar (car rest) bblks)(cdr rest)bblks)))));;; place: place a node in a partition(define place(lambda (soFar elm bblks)(cond ((null? soFar) (list (list elm)))((isEquivalent? (caar soFar) elm bblks)(cons (cons elm (car soFar)) (cdr soFar)))(else (cons (car soFar) (place (cdr soFar) elm bblks))))));;; isEquivalent?: are these two codes semantically equivalent?;;; two blocks are semantically equivalent if they have the same;;; assignments + they terminate with return with the same expression;;; or they terminate with a conditional jump with the same expression;;; no matter what their jumps are(define isEquivalent?(lambda (l1 l2 bblks)(let ((blk1 (getBlk bblks l1))(blk2 (getBlk bblks l2)))(and (equal? (length (basicBlk-assigns blk1))(length (basicBlk-assigns blk2)))(sameJump? (basicBlk-jump blk1) (basicBlk-jump blk2))123

(sameExpr? (getJumpExpr (basicBlk-jump blk1))(getJumpExpr (basicBlk-jump blk2)))(equal? (map assign-var (basicBlk-assigns blk1))(map assign-var (basicBlk-assigns blk2)))(andAll (map sameExpr?(map assign-expr (basicBlk-assigns blk1))(map assign-expr (basicBlk-assigns blk2))))))));;; sameJump?: both if or both return(define sameJump?(lambda (j1 j2)(or (and (return? j1) (return? j2))(and (condJump? j1) (condJump? j2)))));;; getJumpExpr : return the expression associated with the jump(define getJumpExpr(lambda (jmp)(cond ((return? jmp) (return-exp jmp))((condJump? jmp) (condJump-expr jmp))(else (error "invalid jump: " jmp)))));;; sameExpr? are the expressions same?(define sameExpr?(lambda (exp1 exp2)(cond ((and (const? exp1) (const? exp2))(equal? (const-val exp1) (const-val exp2)))((and (varRef? exp1) (varRef? exp2))(equal? (varRef-var exp1) (varRef-var exp2)))((and (app? exp1) (app? exp2))(and(equal? (app-rator exp1) (app-rator exp2))(andAll (map sameExpr? (app-rands exp1) (app-rands exp2)))))(else #f))));;; nextPi: given a partition, refine it to find next..(define nextPi(lambda (curPi flow)(apply append (map (lambda (block) (refine block flow curPi))curPi))));;; refine: given a block in a partition, refine it..(define refine(lambda (block flow prevPi)(refineAux (list (list (car block))) (cdr block) flow prevPi)));;; refineAux: place new nodes..(define refineAux(lambda (prev rest flow prevPi)(cond ((null? rest) prev)(else (refineAux (refineInsert prev (car rest) flow prevPi)(cdr rest) flow prevPi)))));;; refineInsert: place or create new block:(define refineInsert(lambda (prev elm flow prevPi)(cond ((null? prev) (list (list elm)))124

((successorsInSameBlock? elm (caar prev) flow prevPi)(cons (cons elm (car prev)) (cdr prev)))(else (cons (car prev) (refineInsert (cdr prev)elm flow prevPi))))));;; successorsInSameBlock? check if the next states are in the same block..(define successorsInSameBlock?(lambda (l1 l2 flow prevPi)(letrec ((search(lambda (l f)(cond ((null? f) (error "something wrong"))((equal? l (caar f)) (cadar f))(else (search l (cdr f)))))))(let ((next1 (search l1 flow))(next2 (search l2 flow)))(cond ((and (null? next1) (null? next2)) #t)((or (null? next1) (null? next2)) #f)(else (and(isTogether? (car next1)(car next2) prevPi)(isTogether? (cadr next1)(cadr next2) prevPi))))))));;; isTogether?: are these two in the same block of the partition(define isTogether?(lambda (l1 l2 partition)(cond ((null? partition) #f)((and (member l1 (car partition))(member l2 (car partition))) #t)(else (isTogether? l1 l2 (cdr partition))))));;; reducePgm: reduce the program to have the minimum number of states:(define reducePgm(lambda (bblks pi)(reducePgmAux bblks pi (allFalse (length pi)))));;; allFalse: return a list of length n with all true :(define allFalse(lambda (n)(cond ((equal? n 0) ())(else (cons #f (allFalse (- n 1)))))));;; reducePgmAux: reduce the program by generating only the necessary code:(define reducePgmAux(lambda (bblks pi used)(cond ((null? bblks) ())(else (let* ((blockNo (indexInPi (basicBlk-lbl (car bblks))pi 0))(done (isDone? blockNo used)))(if done(reducePgmAux (cdr bblks) pi used)(cons (xformBlock (car bblks) blockNo pi)(reducePgmAux (cdr bblks) pi(alterUsedused blockNo)))))))))125

;;; indexInPi: where does this label go in pi:(define indexInPi(lambda (lbl pi cnt)(cond ((null? pi) (error "something wrong with pi"))((member lbl (car pi)) cnt)(else (indexInPi lbl (cdr pi) (+ cnt 1))))));;; isDone?: is the nth entry true?(define isDone?(lambda (n lst)(cond ((equal? n 0) (car lst))(else (isDone? (- n 1) (cdr lst))))));;; alterUsed: change n'th entry to #t(define alterUsed(lambda (lst n)(cond ((equal? n 0) (cons #t (cdr lst)))(else (cons (car lst) (alterUsed (cdr lst) (- n 1)))))));;; xformBlock: transfer the block into the equivalent minimized form:(define xformBlock(lambda (blk no pi)(make-basicBlk(string-append "lpe" (number->string no))(basicBlk-assigns blk)(xformJump (basicBlk-jump blk) pi))));;; xformJump: transfer jumps:(define xformJump(lambda (jmp pi)(cond ((return? jmp) jmp)(else (make-condJump (condJump-expr jmp)(constNewLabel (condJump-lbl1 jmp) pi)(constNewLabel (condJump-lbl2 jmp) pi))))));;; constNewLabel: return new label name:(define constNewLabel(lambda (old pi)(string-append "lpe" (number->string (indexInPi old pi 0)))))D.16 Code linearizer of ILPOS: linearize.s;;;--;;;;;; File linearize.s: contains functions for linearization and;;; canonicalization of the residual code.;;;;;; The minimization procedure gives us a minimum program (in the;;; sense that it contains the minimum number of basic blocks).;;; Due to the equivalent block concept it may turn around that;;; a conditional jump statement may jump to the same (i.e;;; semantically equivalent one) blocks. This is exploited by;;; the minimizer by jumps to a node that represents the;;; equivalence class of those two blocks. Clearly such a;;; dynamic conditional jump is equivalent to a goto without126

;;; any regard to the test expression. The linearization;;; functions analyze the program for such conditional jumps and;;; convert them to goto's. After this process there comes the;;; idea of goto transition since no residual code need to have;;; unconditional goto's (same idea as used in the partial evaluator).;;; So another pass through the program compresses all these goto's.;;;;;; It is clear that this process will not be needed too much. This;;; essentially requires the program to jump into equivalent states;;; according to some dynamic condition. Nevertheless this analysis;;; must be done because of two reasons: 1. to be complete, 2. strange;;; static data may result in many dead code that is removed and;;; thus making inequivalent states equivalent.;;;;;; After linearization one more pass is made for canonicalization. This;;; pass ensures the labels to be from lpe0 to some lpeN by relabeling;;; all the basic blocks. This phase also removes any block that becomes;;; inaccessible by all the transformations that are done by the;;; previous phases. So the resulting code becomes well-labeled and,;;; in a sense, fully-connected with respect to the static data;;; that it has been specialized for.;;;;;;--;;; linAst: given an ast first linearize then canonicalize and return;;; a new ast for the resulting program:(define linAst(lambda (ast)(make-pgm (pgm-readBlk ast)(canonize(onlyReachables (linearize (pgm-basicBlks ast)))))));;; linearize: check and linearize the basic blocks:(define linearize(lambda (bblks)(if (orAll (map compressable? (map basicBlk-jump bblks)))(let ((allGotos (map convertToGoto bblks)))(compressAll allGotos allGotos))bblks)));;; isLinearizable?: is the program linearizable?(define isLinearizable?(lambda (ast)(orAll (map compressable?(map basicBlk-jump (pgm-basicBlks ast))))));;; compressable?: is the block compressable? i.e. does it have a;;; conditional jump that jumps to the same block?(define compressable?(lambda (jmp)(cond ((return? jmp) #f)((condJump? jmp) (equal? (condJump-lbl1 jmp)(condJump-lbl2 jmp)))(else (error "something wrong with jump: " jmp)))));;; convertToGoto: change the if to a jump if it is a compressible block127

;;; this saves the time for computing the dynamic expression at run time,;;; but creates goto's to be compressed later.(define convertToGoto(lambda (blk)(if (compressable? (basicBlk-jump blk))(make-basicBlk(basicBlk-lbl blk) ; copy along.(basicBlk-assigns blk) ; copy along.(make-goto (condJump-lbl1 (basicBlk-jump blk))))blk)));;; compressAll: compress the goto transition;;; attach the assignments of the blocks that are direct followers of;;; this block, the classical goto compression stuff:(define compressAll(lambda (bblks whole)(cond ((null? bblks) ())((goto? (basicBlk-jump (car bblks)))(cons (attachFollowers (car bblks) whole)(compressAll (cdr bblks) whole)))(else (cons (car bblks) (compressAll (cdr bblks) whole))))));;; attachFollowers: construct a new block by attaching the followers:(define attachFollowers(lambda (blk whole)(if (goto? (basicBlk-jump blk))(let ((follower (getBlk whole (goto-lbl (basicBlk-jump blk)))))(attachFollowers(make-basicBlk(basicBlk-lbl blk)(append (basicBlk-assigns blk) ;attach assignments(basicBlk-assigns follower)) ;to old ones..(basicBlk-jump follower)) whole))blk))) ; return if no follower exists;;; onlyReachables: the above process may lead to some states;;; which become unreachable, remove them: apply a classical;;; reachable set algorithm:(define onlyReachables(lambda (bblks)(keepOrRemoveBlocks bblks(computeReachables(list (basicBlk-lbl (car bblks)))bblks))));;; computeReachables: which nodes are reachable?;;; starting from initial node, add, in each pass, the accessible;;; nodes to our initial set until no new node is added.(define computeReachables(lambda (initSet bblks)(let ((newSet (setUnioninitSet ; add to initials(apply setUnion(map ; whatever follows..(lambda (lbl) (whatFollows lbl bblks))initSet)))))128

(if (equal? (length initSet) (length newSet)) ; any change?initSet ; no: finished(computeReachables newSet bblks))))) ; yes: go on..;;; whatFollows: what follows this block?;;; inspect the labels in goto's and condJumps..(define whatFollows(lambda (lbl bblks)(let ((theJump (basicBlk-jump (getBlk bblks lbl))))(cond ((return? theJump) ())((goto? theJump) (list (goto-lbl theJump)))((condJump? theJump) (list (condJump-lbl1 theJump)(condJump-lbl2 theJump)))(else (error "something wrong with jump: " theJump))))));;; keepOrRemoveBlocks: if a block is reachable keep it otherwise remove:(define keepOrRemoveBlocks(lambda (bblks reachables)(cond ((null? bblks) ())((member (basicBlk-lbl (car bblks)) reachables)(cons (car bblks) (keepOrRemoveBlocks (cdr bblks) reachables)))(else (keepOrRemoveBlocks (cdr bblks) reachables)))));;; canonize: make the labels appear numbered from 0 to N-1 where N is;;; the number of blocks in the final residual program..(define canonize(lambda (bblks)(let ((lblList (map basicBlk-lbl bblks)))(map (lambda (blk) (renameBlk blk lblList)) bblks))));;; renameBlk: rename the block canonically:(define renameBlk(lambda (blk nameList)(make-basicBlk(xformName (basicBlk-lbl blk) nameList) ; change the name of block(basicBlk-assigns blk) ; no change in assignments(let ((jmp (basicBlk-jump blk)))(cond ((return? jmp) jmp) ; take care of jumps.((goto? jmp) (make-goto (xformName (goto-lbl jmp)nameList)))((condJump? jmp) (make-condJump(condJump-expr jmp)(xformName (condJump-lbl1 jmp)nameList)(xformName (condJump-lbl2 jmp)nameList)))(else (error "illegal jump: " jmp)))))));;; xformName: return the canonical name: the new name is formed by attaching;;; a number to the generic name lpe, the number corresponds to the index;;; of that name in the reachable list..(define xformName(lambda (old nameList)(string-append "lpe" (number->string (returnIndex old nameList 0)))));;; returnIndex: return the place of the elm:129

(define returnIndex(lambda (old lst cnt)(cond ((null? lst) (error "something wrong in returnIndex"))((equal? (car lst) old) cnt) ; found..(else (returnIndex old (cdr lst) (+ cnt 1))))))D.17 The Symbolic Gain Analyzer: symbSpeedUp.s;;;--;;;;;; File symbSpeedUp.s: contains functions for collecting statistics;;; on the running times of the L programs.;;;;;; The symbolic speed-up will be determined by comparing the;;; corresponding vectors for the original and specialized programs.;;; The cost vector (CV) for an L program is a vector of 10 elements,;;; each showing a different counts on that particular run. The elements;;; are as follows:;;;;;; jumps, assignments, variable references, decisions, eq call,;;; hd call, rest call, list call, append call, search, intern, other calls;;;;;; other calls entry is the total number of calls to the library;;; functions other than eq, hd, rest, list and append.;;;;;; the search entry is slightly different. It is used to simulate;;; no cost searches and only applied in the SGA analysis phase.;;; intern shows the internal communication and has nothing to do with;;; the actual analysis.;;;;;;--;;; indices into the CV vector:;;; to add a new index:;;; 1. define an index for it;;; 2. alter the CV definitions 2 times below to include them, all 0's part;;; i.e. increment the index count by 1.;;; 3. in recordLibCall, include this new function;;; 4. in printAllResults, include the output line;;; 5. alter weightsSGA vector to reflect the speed up(define jumpCV 0)(define assignCV 1)(define varRefCV 2)(define decisionCV 3)(define eqCV 4)(define hdCV 5)(define restCV 6)(define listCV 7)(define appendCV 8)(define searchCV 9)(define internCV 10)(define addCV 11)(define subCV 12)(define mulCV 13)(define divCV 14) 130

(define oddCV 15)(define evenCV 16)(define othersCV 17);;; allZeros: produce a list of all zeros:(define allZeros(lambda (n)(cond ((equal? n 0) ())(else (cons '0 (allZeros (- n 1)))))));;; the CV vector: the number of 0's must be: last index + 1.(define CV (allZeros 18)) ; initial value..;;; File analyzer:(define lCV(lambda (fname)(lCVAst (parseL (readPgm fname)))));;; Ast analyzer:(define lCVAst(lambda (ast)(begin (set! CV (allZeros 18)) ; reset(let ((val (runCV ast)))(list val CV)))));;; run the program and construct CV:(define runCV(lambda (ast)(interpResult-val(initiateCV (pgm-basicBlks ast)(interpResult-env(loadVars (pgm-readBlk ast) initialEnv))))));;; initiate: start execution:(define initiateCV(lambda (bblks env)(cond ((null? bblks) (make-interpResult 'NOVALUE env))(else (executeCV bblks (car bblks) env)))));;; executeCV: execute the pgm, record modifications into CV:(define executeCV(lambda (pgm curBlk env)(let* ((newEnv (performAssignsCV (basicBlk-assigns curBlk) env))(nextBlkInfo (whereToGoCV (basicBlk-jump curBlk) newEnv)))(if (equal? (car nextBlkInfo) 'TERMINATE)(make-interpResult (cdr nextBlkInfo) newEnv)(begin (incrCV! jumpCV)(if (condJump? (basicBlk-jump curBlk))(incrCV! decisionCV) #t)(executeCV pgm (getBlk pgm (car nextBlkInfo))newEnv))))));;; whereToGoCV: execute and decide jumps:(define whereToGoCV(lambda (jstmt env)(cond ((goto? jstmt) (cons (goto-lbl jstmt) 'NOVALUE))131

((return? jstmt) (cons 'TERMINATE(evalExpCV (return-exp jstmt) env)))((condJump? jstmt) (cons((if (evalExpCV (condJump-expr jstmt) env)condJump-lbl1condJump-lbl2)jstmt) 'NOVALUE))(else (error "Invalid jump: " jstmt)))));;; performAssignsCV: evaluate and form the new assignments: return env(define performAssignsCV(lambda (assigns env)(cond ((null? assigns) env)(else (performAssignsCV (cdr assigns)(doAssignCV (car assigns) env))))));;; doAssignCV: perform a single assignment: return the new environment.(define doAssignCV(lambda (astmt env)(incrCV! assignCV)(update env (assign-var astmt) (evalExpCV (assign-expr astmt) env))));;; evalExpCV: return value of the expression, update CV accordingly..(define evalExpCV(lambda (exp env)(cond ((const? exp) (cond ((equal? (const-type exp) 'singleton)(beautify (const-val exp)))((equal? (const-type exp) 'listing)(formList (beautify (const-val exp)) env))(else (error "Unknown const" exp))))((varRef? exp) (begin(incrCV! varRefCV)(lookUp env (symbol->string (varRef-var exp)))))((app? exp) (applyCV(app-rator exp)(lookUp env (string->symbol (app-rator exp)))(map (lambda (e) (evalExpCV e env))(app-rands exp))))(else (error "Unknown exp type: " exp)))));;; applyCV: first record the used function then apply it:(define applyCV(lambda (fnName fn args)(recordLibCall fnName)(apply fn args)));;; recordLibCall: increment according to the function name:(define recordLibCall(lambda (fnName)(incrCV! (cond ((equal? fnName "eq") eqCV)((equal? fnName "hd") hdCV)((equal? fnName "rest") restCV)((equal? fnName "list") listCV)((equal? fnName "append") appendCV)((equal? fnName "inform_sga") internCV)((equal? fnName "add") addCV)132

((equal? fnName "sub") subCV)((equal? fnName "mul") mulCV)((equal? fnName "div") divCV)((equal? fnName "odd") oddCV)((equal? fnName "even") evenCV)(else othersCV)))));;; incrCV!: increment the entry by 1:(define incrCV!(lambda (which)(if SGAstopCount #t ; then do not do anything..(letRec ((alterCV (lambda(which what)(if (equal? which 0)(cons (+ 1 (car what)) (cdr what))(cons (car what)(alterCV (- which 1) (cdr what)))))))(set! CV (alterCV which CV))))));;; document results as a list: sga: symbolic gain analyzer..(define sga(lambda (fname)(let ((sgaPort (open-output-file (string-append fname ".peo.sga"))))(mdisplay "Preparing for gain analysis on \"" fname "\"..\n")(sgaIntroduce sgaPort)(set! SGAstopCount #f)(let* ((f1 (string-append fname ".lp"))(f2 (string-append fname ".pe.lp"))(f3 (string-append fname ".peo.lp"))(ast1 (parseL (readPgm f1)))(ast2 (parseL (readPgm f2)))(ast3 (parseL (readPgm f3)))(bblk1 (length (pgm-basicBlks ast1)))(bblk2 (length (pgm-basicBlks ast2)))(bblk3 (length (pgm-basicBlks ast3)))(noas1 (howManyAssigns ast1))(noas2 (howManyAssigns ast2))(noas3 (howManyAssigns ast3)))(sgaComment sgaPort"Working dir : "(directory-namestring(working-directory-pathname))"\n\nSymbolic analysis performed on:\n\n""Input : " f1 "\nPE file : " f2"\nResidual : " f3 "\n\n""Symbolic Analysis Results: ""(only the relevant entries are printed.)\n\n")(mdisplay "Analyzing \"" f1 "\"..\n")(let ((stat1 (cadr (lcvAst ast1))))(mdisplay "Analyzing \"" f2 "\"..\n")(let ((stat2 (cadr (lcvAst ast2))))(mdisplay "Analyzing \"" f3 "\"..\n")(let* ((stat3 (cadr (lcvAst ast3)))(gainList(determineGain(append stat1 (list bblk1 noas1))133

(append stat2 (list bblk2 noas2))(append stat3 (list bblk3 noas3))))(costs (map (lambda (elm)(list (car elm)(cadr elm)(caddr elm)))gainList))(onlyCosts (reverse(cddr (reverse costs)))))(mdisplay "Writing SGA results to \""fname ".peo.sga\"..")(printAllResults gainList sgaPort)(sgaCommentsgaPort"\nCost vector is : " weightsSGA"\n\nCost of Original : "(findCost (map car onlyCosts) weightsSGA)"\nCost of PE Only : "(findCost (map cadr onlyCosts)weightsSGA)"\nCost of Residual : "(findCost (map caddr onlyCosts)weightsSGA)"\n\nGain by PE Only : "(findOverallGain(map car onlyCosts)(map cadr onlyCosts))"\nGain by Post Opts: "(diffCost(map car onlyCosts)(map cadr onlyCosts)(map caddr onlyCosts))"\n\nOverall Gain is : "(findOverallGain(map car onlyCosts)(map caddr onlyCosts))"\nThe improvement : "(percentImpro (map car onlyCosts)(map caddr onlyCosts)))(sgaComment sgaPort " %\n\nSGA completed ""successfully.\n")(close-output-port sgaPort))))))));;; determineGain: merge lists with analysis results..(define determineGain(lambda (l1 l2 l3)(cond ((null? l1) ())(else (cons (singleGainList (car l1) (car l2) (car l3))(determineGain (cdr l1) (cdr l2) (cdr l3)))))));;; singleGainList: perform operations on a single pair:(define singleGainList(lambda (v1 v2 v3)(let* ((properDiv (lambda (a b)(if (and (equal? a 0) (equal? b 0)) "-"(if (equal? b 0) "inf"134

(exact->inexact (/ a b))))))(r1 (properDiv v1 v2))(r2 (properDiv v1 v3)))(list v1 v2 v3 r1 r2 (if (and (number? r1) (number? r2))(- r2 r1)(if (and(equal? r2 "inf")(equal? r1 "inf"))0 "-"))))));;; printAllResults: display in tabular form:(define printAllResults(lambda (l prt)(sgaComment prt " Original PE Only Post-Opts"" Gain1 Gain2 Opt Gain\n")(sgaComment prt " -------- ------- ---------"" ------ ------ --------\n")(singleLinePrint prt "(0) jumps:" l 0)(singleLinePrint prt "(1) assigns:" l 1)(singleLinePrint prt "(2) var refs:" l 2)(singleLinePrint prt "(3)decisions:" l 3)(singleLinePrint prt "(4) eq:" l 4)(singleLinePrint prt "(5) head:" l 5)(singleLinePrint prt "(6) rest:" l 6)(singleLinePrint prt "(7) list:" l 7)(singleLinePrint prt "(8) append:" l 8)(internInfo prt "(9) search:" l 9)(internInfo prt "(10) intern:" l 10)(singleLinePrint prt "(11) add:" l 11)(singleLinePrint prt "(12) sub:" l 12)(singleLinePrint prt "(13) mul:" l 13)(singleLinePrint prt "(14) div:" l 14)(singleLinePrint prt "(15) odd:" l 15)(singleLinePrint prt "(16) even:" l 16)(singleLinePrint prt "(17) others:" l 17)(sgaComment prt " # BBlks:") (printLineInfo prt (findLine l 18))(sgaComment prt " # Asgns:")(printLineInfo prt (findLine l 19))))(define properDiv(lambda (a b)(if (and (equal? a 0) (equal? b 0)) "-"(if (equal? b 0) "inf"(exact->inexact (/ a b))))));;; printLineInfo: print info for that line:(define printLineInfo(lambda (prt line)(sgaComment prt (goodNum (car line)) (goodNum (cadr line))(goodNum (caddr line)) " - -"(goodNum (properDiv (cadr line) (caddr line)))"\n")));;; goodNum: format the number:(define goodNum(lambda (n) 135

(placeInStr(if (not (number? n))n ; don't change(let ((rep (fluid-let ((flonum-unparser-cutoff '(absolute 3)))(number->string n))))(if (equal? (string-ref rep (- (string-length rep) 1))#\.)(list->string (reverse (cdr (reverse(string->list rep)))))(if (equal? (string-ref rep 0) #\.)(string-append "0" rep) rep)))))));;; placeInStr: put it in a string of length 10:(define placeInStr(lambda (s)(letrec ((genEmpty (lambda (k)(if (zero? k)"" (string-append" " (genEmpty (- k 1)))))))(if (> (string-length s) 10) s(string-append (genEmpty (- 10 (string-length s))) s)))));;; findLine: return that Line:(define findLine(lambda (l c)(cond ((equal? c 0) (car l))(else (findLine (cdr l) (- c 1))))));;; internInfo: just single numbers:(define internInfo(lambda (prt prompt l which)(let ((thatLine (findLine l which)))(if (not (zero? (car thatLine))) ; if 0, then irrelevant.(sgaComment prt prompt(goodNum (car thatLine)) (goodNum 0) (goodNum 0)" - - -" "\n")#t)))) ; return value not used..;;; singleLinePrint: single Line statistics:(define singleLinePrint(lambda (prt prompt l which)(let ((thatLine (findLine l which)))(if (not (zero? (car thatLine))) ; if 0, then irrelevant.(begin(sgaComment prt prompt)(forEach (lambda (elm) (sgaComment prt (goodNum elm)))thatLine)(sgaComment prt "\n"))#t)))) ; return value not used..;;; dotProduct: compute dot product:(define dotProduct(lambda (lst1 lst2)(cond ((null? lst1) 0)(else (+ (* (car lst1) (car lst2))136

(dotProduct (cdr lst1)(cdr lst2)))))));;; findCost: return formatted dot product:(define findCost(lambda (l1 l2)(string-trim (goodNum (dotProduct l1 l2)))));;; findOverallGain: compute and just divide:(define findOverallGain(lambda (l1 l2)(string-trim (goodNum(let ((val (properDiv (dotProduct l1 weightsSGA)(dotProduct l2 weightsSGA))))(if (number? val) (exact->inexact val) val))))));;; diffCost: compute the difference of costs:(define diffCost(lambda (l1 l2 l3)(let ((pr1 (dotProduct l1 weightsSGA))(pr2 (dotProduct l2 weightsSGA))(pr3 (dotProduct l3 weightsSGA)))(if (= pr3 0) (goodNum "inf")(string-trim (goodNum (- (exact->inexact (/ pr1 pr3))(exact->inexact (/ pr1 pr2)))))))));;; percentImpro: percentage of the improvement:(define percentImpro(lambda (c1 c2)(let ((pr1 (dotProduct c1 weightsSGA))(pr2 (dotProduct c2 weightsSGA)))(string-trim (goodNum(- 100 (exact->inexact (/ (* 100 pr2) pr1))))))));;; define the weight vector:(define weightsSGA '(2 ; jump2 ; assign1 ; varref2 ; decision3 ; eq2 ; hd2 ; rest3 ; list3 ; append3 ; search0 ; intern3 ; add3 ; sub3 ; mul3 ; div2 ; odd2 ; even2)) ; others
137

