A PARTIAL EVALUATOR AND POST-OPTIMIZER FOR A FLOW CHART
LANGUAGE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

LEVENT ERKOK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF
MASTER OF SCIENCE
IN

THE DEPARTMENT OF COMPUTER ENGINEERING

JULY 1997

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Tayfur Oztiirk
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Fatog Yarman Vural
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Halit
Oguztiiziin
Supervisor

Examining Committee Members

Assoc. Prof. Dr. Adnan Yazic

Assist. Prof. Dr. Cem Bozgahin

Assist. Prof. Dr. Ilyas Cicekli

Assist. Prof. Dr. Halit Oguztiiziin

Assist. Prof. Dr. Goktiirk Ucoluk

ABSTRACT

A PARTIAL EVALUATOR AND POST-OPTIMIZER FOR A
FLOW CHART LANGUAGE

Erkok, Levent
MSc., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Halit Oguztiiziin

July 1997, 137 pages

In this thesis, the concept of partial evaluation and post optimization techniques
has been studied and a system, called ILPOS, implementing the ideas on a flow
chart language is developed. The effects of specialization and optimizations, in-
cluding useless code removal and program minimization are discussed. A method
for handling incomplete specifications is discussed in the context of partial eval-
uation. The termination problem of partial evaluation is studied and the ILPOS

solution to the problem is described.

Keywords: Partial Evaluation, Program Specialization and Optimization, Pro-

gram Termination.

1l

0Z

AKIS SEMASI TiPI BIR DIL ICIN BIR KISMi HESAPLAYICI VE
EN IYILEYICI

Erkok, Levent
Yiiksek Lisans, Bilgisayar Miithendisligi Bolimii
Tez Yoneticisi: Yrd. Doc¢. Dr. Halit Oguztiiziin

Temmuz 1997, 137 sayfa

Bu tez caligmasinda, kismi hesaplama ve en iyileme teknikleri incelenmis ve bu
fikirler akig semasi tipi bir dil iizerinde uygulanarak ILPOS isimli bir sistem ile
ortaya konmustur. Program ozellestirme ve en iyileme teknikleri, gereksiz pro-
gram parcacigl yok edilmesi ve program ufaltilmasi konular tartigilmigtir. Eksik
tanimlamalarin durumu ve bunlarin kismi hesaplama icersindeki durumlari ince-
lenmis ve ILPOS tarafindan kullanilan metod aciklanmigtir. Kismi hesaplamada

program sonlanmasi problemi ve ¢oziimi incelenmistir.

Anahtar Kelimeler: Kismi Hesaplama, Program Ozellegtirme ve En iyileme, Pro-

gram Sonlanmasi.

v

ACKNOWLEDGMENTS

I would like to thank to my supervisor Mr. Halit Oguztiiziin for his guidance
and help throughout the study. Many thanks go to my colleague Mr. M. Ugur
Yilmaz for his help on every sort of problem that I have met. Special thanks go
to Ms. Sengiil Vurgun and to my family for their invaluable encouragement and
support. I also wish to express my gratitude to other colleagues and friends for

their help and understanding.

TABLE OF CONTENTS

ACKNOWLEDGMENTS o oo

TABLE OF CONTENTS oo

LIST OF FIGURES o .

CHAPTER
1 INTRODUCTIONo s
1.1 Program Specialization and Optimization Techniques . . .
1.2 Recent Literature on Partial Evaluation
1.3 ILPOS Overview
2 THE LANGUAGE L oo ...

2.1
2.2
2.3

Syntax of Lo
Semanticsof L,

Other featuresof L

PARTIAL EVALUATION

3.1
3.2

Semantic formulation of Partial Evaluation

The motivation for using Partial Evaluation

PARTIAL EVALUATION FOR THE L LANGUAGE

4.1
4.2
4.3
4.4
4.5
4.6

Program point specialization for L
How to perform PPS
Transition Compression
Binding Time Analysis
PPS algorithm and ILPOS

Handling Incomplete Specifications

vi

© o0 O O W N ==

4.6.1 Guardso

4.6.2 Guards in ILPOS00

4.7 Computational Complexity of Partial Evaluation

5 POST OPTIMIZATIONS
5.1 Useless Code Removal,
5.1.1 Notion of useless code and useless variables . . .

5.1.2 Global Data Flow Analysis for L.

2.2 Program minimization
5.3 Linearization and Canonicalization
5.3.1 Linearization
5.3.2 Canonicalization

5.4 The need for post optimizations
5.5 Computational Complexity of Post Optimizations.
6 TERMINATION OF PARTIAL EVALUATION
6.1 Infinite partial traces
6.2 Coping with non-termination
6.3 ILPOS termination handler
7 LOGGING AND GAIN ANALYZER PARTS OF ILPOS
7.1 Logging system of ILPOS
7.2 Symbolic Gain Analysis
8 A CASE STUDY: DEFINITE INTEGRALS
8.1 Definite Integration
8.2 Simpson’s Formula
8.3 Programming the Simpson’s Composite Rule in L.
8.4 Obtaining the Erf function Integrator Automatically . . .
8.5 Other Specializations
8.6 Remarks on the case study
9 FINAL THOUGHTS AND CONCLUSIONS
9.1 Final remarks and future work

9.2 Conclusionso

REFERENCES

APPENDICES

A ILPOS USER MANUAL,

vil

FINITE AUTOMATON SIMULATORINL 73

SIMPSON'S RULE IN L 75
C.1 The Definite Integrator 75
C.2 Specialization for the Error Function 76
C.3 SGA of the Error Function 7
C4 A Non-terminating specialization 78
C.5 Log file for specialization 80
C.6 SGA for Non-terminating specialization 81
SOURCE CODE OF ILPOS 82
D.1 ILPOS loader: ilpos 82
D.2 ILPOS driver: ilpos.s 82
D.3 Lexical Analyzer for L: lexer.s. 84
D.4 Parser for L: parser.s 86
D.5 Unparser for L: unparser.s 90
D.6 Interpreter for L: interpreter.s 92
D.7 The L library: llibrary.s 95
D.8 Set operations package: setOperations.s 97
D.9 Commenting and Debugging: aux.s. 98
D.10 Utility functions: util.so 101
D.11 Binding Time Analyzer for L: bta.s. 105
D.12 The L Partial Evaluator: Ipeval.s 107
D.13 The Useless Code Remover: ucr.s 115
D.14 Guard system of ILPOS: guards.s. 120
D.15 Code minimizer of ILPOS: minimizess 122
D.16 Code linearizer of ILPOS: linearize.s 126
D.17 The Symbolic Gain Analyzer: symbSpeedUp.s. 130

viil

1.1

2.1
2.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
5.3
0.4
2.5
5.6
2.7
5.8
5.9
5.10
5.11
5.12
5.13

6.1
6.2
6.3
6.4

7.1

LIST OF FIGURES

The ILPOS module chart 5t
Syntax of the language L 7
An example L program: searcho 9
A specialization exampleo 11
Specialized search program o000 15
Uncompressed residual code for search 20
Initial form of compressed search program 21
Compressed form of specialized search program 21
Algorithm for preparing a program for PPS 24
Algorithm for Trace Construction 25
Algorithm for code generation 26
An example of an incomplete specification 27
Traces of an incomplete specification 29
Residual program for an incompletely specified program 30
Sample warning of guards in the log file. 30
An L program demonstrating useless codes 34
PPS producing useless code o000 34
Algorithm for computing successors of a block 36
Algorithm for computing live variables 37
An example of a used useless variable 37
UCR applied to the specialized code 38
Algorithm for program minimization 40
An L program matching two lists 41
PPS applied to matcher program 42
Program graph for the specialized program 43
Program graph for the minimized program 43
Final form of matcher program 44
An all states accepting minimal program 46
Russian Peasant’s algorithm 49
RPA specialized forao oo 49
Infinite partial traces 50
RPA specialized for b 53
Result of symbolic gain analysison RPA 58

X

CHAPTER 1

INTRODUCTION

ILPOS, an acronym for Integrated L Partial evaluator and post Optimizer System,
has been developed in this thesis to study the program specialization technique
called partial evaluation and various post optimization techniques on the result-
ing residual programs. The system implements all these operations on a flow

chart language called L.

1.1 Program Specialization and Optimization Techniques

Program specialization and optimization techniques have always been a challeng-
ing and active research area in computer science. This section briefly introduces
the techniques used in ILPOS.

Partial Evaluation is a program specialization technique aiming the use of
the whole static information about the program at the specialization time. As
discussed later, a partial evaluator accepts some program written in a high level
language and produces another program, again in the same language, as its out-
put. This output is called the residual program. The intended transformation is
such that the execution time of the residual program is less than the execution
time of the original program, thus achieving a certain speed-up. The main theme
of partial evaluation is the usage of the static arguments of the programs. The
residual program will be free of such static parameters and it will only depend

on the dynamic part of the input.

Post optimization techniques aim at the production of more efficient programs
in terms of both time and space. Removal of useless code is one such technique
which employs the idea of no nonsense computation. The main idea is to avoid any
computation that has no effect on the output of the program. Such optimizations
rely on the flow analysis of the programs. ILPOS employs a flow analyzer for the
language L. which collects the information needed by the useless code remover.
The main usage of useless code removal is for gaining time efficiency through the
removal of useless code portions.

Program minimization is another technique aiming at space efficiency. As it
will become clear later on, the language L is very suitable for such a minimization.
The idea of minimization has been adopted from the formal language theory where
it is applied to the reduction of finite state machines.

Briefly, ILPOS is an experimental system for studying these program spe-
cialization and optimization techniques. The language under consideration is a
flow chart language called L. This thesis describes the operation of ILPOS and
describes the functions of its modules as they are needed. The structure of the
thesis is as follows: First recent literature is summarized and an overview of
ILPOS is given. This is followed by the description of the L language and its
properties. Then the concept of partial evaluation is given and the technique of
partial evaluation for L is described. The thesis will continue with the post opti-
mizations that are implemented by ILPOS. After this, termination problem and
its solution is discussed. The discussion will continue with the description of the
symbolic gain analyzer system and a case study on definite integrals. Throughout

the discussion several examples will be given to demonstrate the ideas.

1.2 Recent Literature on Partial Evaluation

The earliest work on partial evaluation dates back to 1967. The term partial
evaluation has been used in those days for the discussion of computation with
incomplete information. Since then, a huge literature has been formed. A detailed
guide to the literature can be found in chapter 18 of [14]. Here some pointers to

the literature not listed there is given.

For the principals of partial evaluation, a very recent work in binding time
analysis techniques is given in [12] by L. Hornof et.al. Correctness proofs for
on-line and off-line partial evaluators by C. Consel et. al. is also an important
work in the foundations of the area, see [8]. Another recent study for the program
adaptation techniques has been done by C. Consel in [5].

The idea of program specialization has also been applied to operating systems.
A work that applies the ideas to a commercial system by G. Muller et. al.
appeared recently in [19]. Another paper describing the applications to operating
systems is by E. N. Volanschi et. al, see [22] for details. A paper by C. Consel
et. al. describes the incremental specialization techniques as they are applied to
operating systems, see [9] for details.

Functional languages has always been a first choice for partial evaluation
research. A partial evaluator for Scheme, called Schism, see [6], and binding time
analysis techniques for such languages, see [7], is among the research areas. The
message dispatching problems of object oriented programming languages has also
been addressed. A work by Jeffrey Dean et. al, see [10], analyses the topic.

Another important point of work is that of code generation on the fly. In this
approach, the code is generated at the run time whenever partial evaluation is
useful. This direction of research has become very popular in recent years. Works
describing compile time and run time specialization techniques can be found in
(3, 20]. An interesting programming language work has been done by Dawson R.
Engler with the tick-c language, see [11]. This language, a descendant of C, has

special constructs for run time code generation.

1.3 ILPOS Overview

ILPOS has been entirely implemented in the Scheme language and works under
MIT Scheme, Release 7.3.0 (beta) and is freely available. See appendix D for the
details of getting it. It is R4RS (see reference [4]) compliant. ILPOS is composed

of the following modules:

e L interpreter system

— L lexical analyzer
— L parser and unparser
— L interpreter

x L library manager

x Expression Evaluator
e Partial Evaluator system

— Binding Time Analyzer
— Partial Evaluator

x Incomplete Specification Handler
x Code Generator
x Expression Reducer

x Termination Handler
e Post Optimizer System

— Useless Code Remover
x L flow analyzer
— Program Minimizer

— Linearizer and Canonicalizer
e (Gain Analysis System

— Symbolic Analysis Runner

— Statistics Collector
e Documentation system, the log file generator

All the modules of ILPOS will be explained together with the ideas that they
implement throughout this thesis. The source code for all these modules are
supplied in the appendix. Figure 1.1 shows the modules and their relations in a

graphical format.

yrep a[npowt SOJTI oYL 1T 01nS1]

Termination
Handler

Incomplete }
Specification |

Y

Program Point
Specializer

L Interpreter
P Manager Handler
************************* g Y
B . (Code Genaraor)
SGA Partial Evaluator

1 Binding Time
l Analyzer

Y —_— =

Useless Cod Program @@
Remover Minimizer Linearizer

A

Y

Global Flo T

Analyzer Canonicalizer
Post Optimizer

CHAPTER 2

THE LANGUAGE L

ILPOS, being an experimental system, demonstrates the ideas on a toy flow chart
language called L. Although very simple, it proves to be a real programming
language since any Turing machine can be simulated by an L program, up to the

allowed memory limits of the underlying computer.

2.1 Syntax of L

The syntax of L has been given in [14]. ILPOS uses the same syntax with some
little modifications. The syntax of L in extended BNF notation, as employed by
ILPOS is given in Figure 2.1.

Syntactically, L is a free indentation language in the sense that any white
space is welcome unless it breaks up some intended token. The user is free to
format the input file in any way s/he likes. Tokens are separated by white space
(blank, tab or newline). Comments are also welcome, any string of characters
that follow a # character up to the next newline is assumed to be a comment
and ignored by the lexical analyzer. There is no predefined limit on the length of
identifiers or the range of the numbers that are written as literals.

Notice that L does not have the concept of user defined functions. The built-in
functions are listed under the <Op> category in the grammar. On the other hand,

one can easily add new functions to the library, i.e. to the built-in collection, using

the underlying implementation language Scheme. To make the lexical analyzer
and the parser recognize this new function, it is not necessary to modify them.
The lexical analyzer and the parser has been prepared in such a way that the
addition of the name of the new function to an existing functions list handles
the rest automatically (see appendix D.7 for a description of how to do this). In
this way, a new library function can be added to the system without altering the

internals of the lexical analysis and the parsing systems of ILPOS.

<Program> = read (<VarList>); <BasicBlock>"
<VarList> = A | <Var> <VarListRest>
<VarListRest> 1=, <Var> <VarListRest> | A
<BasicBlock> = <Label> <Assignment>* <Jump>
<Assignment> = <Var> := <Expr> ;
<Jump> = goto <Label> ;
| if <Expr> goto <Label> else <Label> ;
| return <Expr> ;
<Expr> := <Constant>
| <Var>
| <Op> (<ExprList>)
<ExprList> = A | <Expr> <ExprListRest>
<ExprListRest> 1=, <Expr> <ExprListRest> | A
<Constant> =" <Val>
<Op> = hd | rest | cons | list | member | append | eq
| add | sub | mul | div | odd | even | informSGA
| gte|gt |lte| 1t |sqrt | exp
<Label> = <Id> | <Number>
<Val> = <Number> | <Id> | <List>
<List> = (<Val>*)
<Id> = <L> (<L>|<D>)*
<Number> = <D>* (. <D>")?
<D> =0[1]...]9
<L> = the ascii character set

Figure 2.1: Syntax of the language L

2.2 Semantics of L

Being a flow chart language, the semantics of L is quite straightforward. Any L
program has a single entry point which is the read block that must appear at
the top. The termination of an L. program must necessarily be caused by some
return statement, no other sort of termination is provided. This means that
any program in L computes some value and returns it to the caller. This feature
nicely fits in our interpretation of programs as functions.

An L program is composed of a sequence of blocks each of which is capable of
making any number of assignments. A block is always terminated either by a con-
ditional or an unconditional jump to some other block, or by a return statement
which causes the program to cease the execution. Upon the start of the execu-
tion, the read block is activated and the initial values of the variables listed in the
read list is read from the standard input. Then the first block takes the action,
performing some assignments and then jumping to some other block. Notice that
the read block does not have any jumps, control passes to the textually following
block automatically. Execution goes in this fashion until it reaches some return
statement or the program crashes for some reason!. It is also possible that the
program may loop forever without ever returning a value.

All variables are assumed to be global and a reference to some variable that
has not been initialized before crashes the program. There is no variable declara-
tion, the first assignment to some variable name automatically creates a storage
location for it. An L variable is dynamically typed. The same variable can assume
any valid L data type, i.e. numbers, constants or Scheme like lists at different
points in the execution of the program. As each assignment is executed, the store
is updated to reflect the new values of the variables.

An example L program is depicted in Figure 2.2. As usual, hd and rest are the
main list processing functions. This program searches the namelist for a specific
name and returns the value corresponding to it in the valuelist. This operation

is typical of a symbol list search in a compiler. Notice that the case when name

! For example, some library routine may crash or program may jump to some block that is
not present.

is not in namelist is ignored by the program. This is done deliberately and the

consequences are investigated in Section 4.6.

simple L program, searching two parallel lists.
read(namelist, valuelist, name);

search: if eq(name, hd(namelist)) goto found else cont;
cont: valuelist := rest(valuelist);

namelist := rest(namelist);

goto search;
found: return hd(valuelist);

Figure 2.2: An example L program: search

2.3 Other features of L

There are no side effects in L, meaning that any library routine is evaluated
solely for the value it produces, not for any other purpose?. This feature is
particularly important as it allows the partial evaluator to regard library calls as
ordinary values, rather than commands that may affect the internal store in some
undetectable manner. The store of an executing L program can only be altered
through the assignment statements present in the basic blocks.

As indicated before, L supports the list data structure. A list can be of any
depth and may contain constants or numbers in it. Also, L supports arbitrarily
large integer numbers and arithmetic operations on them.

The L interpreter supplied within ILPOS has been designed to accommodate
easy extension of the L library. Any user can add new functions to the library
by adding its definition to the llibrary.s file (See Section D.7). Note that the
definition must be given in the Scheme language and it must be free of any side

effects. For a reference of Scheme see [1, 4].

2 This explains the reason for having no output functions in L.

CHAPTER 3

PARTIAL EVALUATION

Consider some mathematical function f having two arguments. It is obvious
that one can obtain another function, say g, which has only one argument and
obtained by freezing one of the arguments of f to some known fixed value. For
example let f(x,y) = 2! 4+ zy and set z to 4. Now, g is a function of y only and
its definition is g(y) = 24 4+ 4y. Note that for all computations of the function
f where the value of x is 4, one can use the ¢ function instead of it and obtain
the same result much more easily. Technically we say that ¢ is the projection
(or restriction) of f with respect to x = 4. In logic, the same idea follows with
currying.

Now consider what would happen when the same idea is carried over to pro-
grams written in some language. In essence, any program can be thought of as
a function that maps its arguments to the corresponding output value. This is a
trivial consequence of the Church-Turing thesis indicating that any computable
function can be computed by a Turing machine and a Turing machine is nothing
but a transformer of its initial tape contents (i.e. arguments) to a final tape (i.e.
the output).

In fact this idea has been investigated by Kleene in 1952 with his famous
s-m-n theorem [15]. Although Kleene’s formulation had nothing to do with the
efficiency of such a specialization process, his work signals the existence of such

specialized Turing machines. For a recent survey of the topic, see [13].

10

To illustrate the concept of partial evaluation, consider the programs in Fig-

ure 3.1 written in a hypothetical programming language.

f(n,x) =ifn=0then 1
p= elseif even(n) then f(n/2, x)"2
elsex * f(n-1, X)

A two input
program

Specialize with respect to n=5:

Po= | 15(x) =x* ((x"2)"2)

Figure 3.1: A specialization example

The program p simply raises its argument x to the power n. The program ps
is a specialized form of the original program raising its argument x to the power
5. Clearly one can use ps instead of p whenever the second argument is known to
be 5 and this would allow an efficient computation since there would be no tests
etc. that must be performed at the run time. The merit of partial evaluation lies

in the generation of such residual programs from the original ones automatically.

3.1 Semantic formulation of Partial Evaluation

Consider some program p written in some language L. Then, the notation [p],
is used to denote the meaning of the program p. This can be considered as
the transfer function (or input/output function) corresponding to the program
p. Now assume that p has n input arguments and consider that p is run with

arguments ay, as, . .. a,. Then the notation [p] a1, as, ..., a,] denotes the output

11

of the program with respect to these inputs, i.e.:
result = [p]lar, ag, ..., ay)

The program p may go into an infinite loop, which is, in general, undetectable
due to the halting problem, and in such a case result is simply undefined.

Using these notational conventions one can describe the partial evaluation
process in a more concise way. Historically, the partial evaluator programs has
been given the name miz, a short for mixed computations. Suppose that p is
an n argument program written in some language L. Furthermore assume that
the k£ of its arguments are static. By static we mean that its value is known
at the specialization time, i.e. the program will be specialized with that fixed
specific value. By this discussion the remaining n — k arguments are assumed to
be dynamic, i.e. their initial values will not be available until run time. Without
any loss of generality and for the sake of notational convenience, we can assume
that these k static arguments are the first k of the program arguments®. Let’s
denote ay, as,...,a; by s, 89,...5; (reminding that they are static) and denote
Aks1y Aty -« -, 0y Dy di,dy, ..., d, (reminding that they are dynamic). Now the

entire computation of program p with these inputs can be given as:

result = [p]r[s1,S2, -« Sk, dr,doy ..., dy k]

Now assume that we partially evaluate program p with respect to its static
inputs and obtain the program p,.s, denoting residual p. This computation is

expressed as (assuming mix is written in language M):

Pres = Hmlr]]M[pa 81,82, ..+, Sk]

Note that p,. is again a program in the language L. Now this residual program

is run with the dynamic input only, i.e.:

result = [pres|i[di, da, ..., dn k]

! Note that this does not impose any restriction on the process since one can always reorder
the arguments in this way.

12

It is clear from the definition of partial evaluation that this result is the same
as that obtained by running the original program on all of the inputs, i.e. the

following equation, known as the mix equation, holds:

[p].[S, D] =

[riclulp. S} | (D

Pres

3.2 The motivation for using Partial Evaluation

Clearly, performing partial evaluation on some source program has some cost
associated with it. The required transformation is not straightforward in the
sense that it requires extensive analysis of the source program. This will become
clear when the technique for partial evaluation is explained later on. If the static
part of the input does not change frequently and the program is run for the
changing values of the dynamic variables a lot of times, then specialization will
give us good results.

More precisely, let £, denote the time required for running the program p.
Assume that p has a set of static inputs and the residual program obtained by
partially evaluating p with respect to them is p,.s. Let the specialized program
be run « times. Then the ratio:

a X t,(all inputs)

tmiz (P, static inputs) + « x t,, . (dynamic inputs)

gives us the gain that we obtain by partial evaluation. For partial evaluation to be
useful, this ratio must be greater than 1. Note that as « gets larger the significance
of the specialization time gets smaller. So one should think of specialization when
a is a large value and the produced residual code runs faster than the original
one. The second condition is much easier to satisfy as it will be shown later by
examples. When « is low, the specialization time must also be considered.

Another motivation for partial evaluation is that of the trade off between effi-
ciency versus generality. People tend to write programs more and more general,
i.e. using as much parameters as possible. This tendency results in highly read-
able and modular codes. Although this is desirable, the resulting programs are
often 'more than needed’ and run slower than their equivalent, although perform-

ing a more specific task, programs. Partial evaluation bridges this gap in the sense

13

that more general programs are automatically transformed into specialized, and
thus more efficient, programs. This achieves efficiency without loosing generality
and modularity.

A typical example of this fact can be given as follows: Function calls, in
general, are bottlenecks for efficiency, yet they make programs much structured.
One can stick to function calls and let the partial evaluator unfold them, and in
fact specialize them, to get efficient versions without sacrificing any modularity
in the programs.

Partial evaluation has found place in many fields of computer science. These
applications range from computer graphics to neural networks, from scientific
computing to database query optimizations. A guide to such applications can be

found in Chapter 13 of [14].

14

CHAPTER 4

PARTIAL EVALUATION FOR THE L
LANGUAGE

Consider the search program presented in Figure 2.2. We can think of that L
program either as a stand alone program or as a module of a larger one. In any
case assume that we know, at the specialization time, that the value of namelist
is ’(a b ¢ d) and the value of name is 'c. Also assume that we do not know the
value of the valuelist. This scenario is not artificial, in the senses that it describes
exactly what happens when some interpreter refers to the value of some variable
in the symbol list. It is clear that the program, at this stage, is equivalent to the

program in Figure 4.1.

read(valuelist);

1pe0: valuelist rest(valuelist);
valuelist rest(valuelist);
return hd(valuelist);

Figure 4.1: Specialized search program

It is clear that the specialized version of the program is free of any tests that

the original should make. Also the resulting program is a linear one, in the sense

15

that it does not jump to any other blocks, so there is no jump cost. As the
namelist gets longer and name is found towards the end of the list, the gain
would be much more apparent.

The aim of partial evaluation for L language is to obtain these programs
automatically. ILPOS handles this specialization using a technique called program

point specialization as explained in the subsequent section.

4.1 Program point specialization for L

Consider the interpretation of some program p in L. A program that is being
executed is called a process. Each point in the lifetime of a process can be
described with a tuple (pp, store). Here pp denotes the program block that the
process is currently in and store denotes the values of the program variables.
Clearly, a program that has just executed its read block and is at the beginning
of its first basic block can be described as (ppy, storeg). Similarly, a process
that executes its ith block with the values of variables denoted as store; will be
represented by (pp;, store;).

Observe that, within each basic block of an L program, the execution is nec-
essarily linear. This means that the control can not pass to some other block
without performing all the assignments of the current block. Using this notation,

an L program in execution can be represented as:
(ppo, storeg) — (pp1, storey) — ... — (ppy, store,)

where the block corresponding to pp, terminates with a return statement. In
this notation, each pp; is an element of the basic blocks of the current process
for 0 <14 < n. Note that pp; may be the same as pp;, corresponding to the same
basic block in the process. This sequence of transitions is called the trace of the
process.

Notice that we can obtain a unique trace of an L program if we know all
the input arguments. In such a case the L program is equivalent to a program
that has a single block returning the overall result. Now assume that we know

only a part of the input arguments. In this case, we can define a partial trace

16

representing the moves of the program. It is clear that in a partial trace the
items in the sequence need not be unique. This is due to the fact that some block
may end up with a conditional if statement resulting in two different execution
paths. For instance, assume that [y is a block that ends with a conditional jump
statement such as:

if eq(a, ’()) goto 11 else 12; Then:

(L1, storey) if eq(a, ’()) evaluates to true,
(I3, store,) otherwise.

(lo, store;) — {

This assumes that the conditional expression can not be evaluated at the
specialization time because the value of @ is not known!. It is clear that the set
of all such traces correspond to all possible execution paths of the program.

Now consider that some program L is given and we have a program to produce
all partial traces corresponding to that program. If some of the arguments to the
program are known in advance then this information can be used to cut down
some of the traces of the original program into a set of traces which are possible
with respect to the known data values. By this means, we have a way of simulating
the original program without knowing all the values of the variables.

Exactly in this point does the concept of program point specialization (PPS)
is introduced. The main idea is to produce a new program whose set of all
possible traces is exactly equivalent to the partial traces of the original program
with respect to the values of the known arguments at the specialization time.
The name PPS follows from the fact that the residual program consists of a set

of blocks which are the specialized versions of the blocks in the original program.

4.2 How to perform PPS

In this section the example program given in Figure 2.2 will be used to demon-
strate how one can apply PPS to obtain a residual program.
Again assume that we want to specialize the search program with respect to

the values namelist — ’(a b ¢ d) and name —' ¢. We construct the partial trace

! In fact store, is exactly equivalent to store, since L does not allow any side effects.

17

of the program with respect to this known arguments step by step.

At the start of the program, we are in block search. This program point
is represented in our tuple notation as: (search, {(a b ¢ d), ¢}). Note that
the second element of the tuple is the store of the known values, namelist and
name respectively. Now we run our partial evaluator (the program that obtains
all possible partial traces) starting with this program point. The method is to
generate code for the current block with respect to the known store and then
obtain the successors of this block. Looking at the program, the partial evaluator
determines that it can execute the conditional jump with no difficulty since it
involves only the known values. Since the condition turns out to be false, the
successor node is cont. Up to now, the partial evaluator found out that the
execution path that leads to the found block is impossible with the given start

values so it cuts down that branch obtaining the following start of the chain:
(search, {(a b ¢ d), c¢}) — (cont, {(a b ¢ d), c})

At the same time the following code is generated for the initial block:

(search, {(a b c d), c}) : goto (cont, {(a b c d), c});

It is important to note that the label in the goto statement is annotated with
the store associated with the program at that point. At this point the partial
evaluator looks for the code in block cont. It sees that there are two assign-
ments and the second one can be executed at the specialization time. It up-
dates its store by executing that assignment and assigns namelist the new value
(b ¢ d). The partial evaluator notices that it can not handle the first assignment
at this time. Upon examining the jump statement associated with the block, the

partial evaluator generates the following code for this program point:

(cont, {(a b c d), c}) : valuelist := rest(valuelist);

goto (search, {(b c d), c});

At this point partial evaluator knows that it needs the code for the program point

(search, {(b ¢ d), c}) and looks if it had already generated it before. Checking

18

the partial trace that it had generated so far, it determines that this is an entirely

new program point, so it extends the trace with this new item to obtain:
(search, {(a b ¢ d), c¢}) = (cont, {(a b ¢ d), ¢}) = (search, {(b ¢ d), c})

The code generated for (search, {(b ¢ d), c}) follows the same lines as de-

scribed. The result is:
(search, {(b ¢ d), c}) : goto (cont, {(b c d), c});

Again looking at the partial trace, (cont, {(b ¢ d), c}) is found to be a new

program point, giving the chain:

(search, {(a b ¢ d), ¢}) — (cont, {(a b cd), c}) =
(search, {(b ¢ d), ¢}) — (cont, {(b ¢ d), ¢})

Similarly the following code is generated:

(cont, {(b ¢ d), c}) : valuelist := rest(valuelist);

goto (search, {(c d), c});

The generation of this code extends the partial trace to:

(search, {(a b ¢ d), ¢}) = (cont, {(a b ¢ d), c}) — (search, {(bcd), ¢}) —
(cont, {(b ¢ d), ¢}) — (search, {(c d), c})

Proceeding as before, the partial evaluator finds out that the program point

(search, {(c d), c}) generates the following code:
(search, {(c d), c}) : goto (found, {(c d), c});

producing the partial trace:

(search, {(a b ¢ d), ¢}) = (cont, {(a b cd), ¢}) — (search, {(b cd), c}) —

(cont, {(b ¢ d), c¢}) — (search, {(c d), c¢}) — (found, {(c d), c})
Finally the code for (found, {(c d), c¢}) is produced as:

(found, {(c d), c}) : return hd(valuelist);

19

This describes the end of the computation since the partial evaluator has come
to a return statement and it has no items in the partial chain that remains
to be elaborated. So the whole partial chain corresponds to the actions of the
residual program. Combining all the codes that the partial evaluator produced

one obtains the program in Figure 4.2.

(search, {(a b c d), c}) : goto (cont, {(a b c d), c});
(cont, {(a bcd), c}) : valuelist := rest(valuelist);

goto (search, {(b ¢ d), c});
(search, {(b ¢ d), c}) : goto (cont, {(b c d), c});
(cont, {(bcd, c}) : valuelist := rest(valuelist);

goto (search, {(c d), c});
(search, {(c d4), c}) : goto (found, {(c d), c});
(found, A{(c d), c}) : return hd(valuelist);

Figure 4.2: Uncompressed residual code for search

This completes the actions of the partial evaluator. It successfully produced
the residual code that depends only on the value of the valuelist argument.

It should be noted that the illustrative example chosen here was a very simple
one. It never produced choices in the continuation of the partial trace. However,
as indicated before, this is not always the case. In case there exists more than
one continuation from a program point, the partial evaluator takes notes of each
of them and expands in both branches. This will allow the correct generation
of all the possible program paths thus ensuring the correctness of the produced

residual code.

4.3 Transition Compression

The last section described how a PPS partial evaluator can produce residual
programs. The example gave us the residual in Figure 4.2. Previously it has
been indicated that a specialized form of the same program would appear as in

Figure 4.1. Inspecting the program given in Figure 4.2, one notices that each

20

block is terminated with a goto statement. It is clear that one can always copy
the designated block after the goto statement (and by removing the goto) and
still obtain an equivalent program. This procedure is called transition compres-
sion. Applying the technique to program in Figure 4.2 one gets the program in

Figure 4.3.

(search, {(a b c d), c}) : valuelist := rest(valuelist);
valuelist := rest(valuelist);
return hd(valuelist);

(cont, {(abcd, c}) : valuelist rest(valuelist);

valuelist := rest(valuelist);
return hd(valuelist);
(search, {(b ¢c d), c}) : valuelist := rest(valuelist);
return hd(valuelist);
(cont, {(b c d), c}) : valuelist := rest(valuelist);
goto (search, {(c d), c});
(search, {(c d4), c}) : return hd(valuelist);
(found, {(c d), c}) : return hd(valuelist);

Figure 4.3: Initial form of compressed search program

A simple reachability analysis on this program reveals that starting at (search,
{(abcd), c}) no other block is reachable. So we can delete the remaining blocks.
Finally by adding the initial read block, reading only the value of the valuelist

one obtains the final code as in Figure 4.4.

read(valuelist);

(search, {(a b c d), c}) : valuelist := rest(valuelist);
valuelist := rest(valuelist);
return hd(valuelist);

Figure 4.4: Compressed form of specialized search program

21

Notice that the program in Figure 4.4 is isomorphic to the program in Fig-

ure 4.1 up to a relabeling of the blocks.

4.4 Binding Time Analysis

It is clear from the previous discussion that PPS technique involves the genera-
tion of specialized versions of the program points that are present in the subject
program. In doing this, it sometimes generates code for the corresponding state-
ment in the original program or it updates the internal store to reflect the actions
of the program. For this reason, the decision concerning whether a statement
should produce code is an important issue in PPS.

Naturally, the partial evaluator attempts to generate as few code as possible.
In order to achieve this goal, it must know which statements can be evaluated
at the specialization time and which must be transferred to the residual code. It
is apparent that some statement can be evaluated at the specialization time if
it depends only on the static variables of the program. Then the question is to
determine which variables are static given the list of the known arguments. This
analysis is called the binding time analysis (BTA).

In the previous section, the only program variables were those that are read
through the read block of the associated program. Of course this is not always the
case, the program may contain other variables. The aim of BTA is to construct
the so called division which gives all the static variables of the subject program.

Simple minded? definitions for a static variable and a static expression can be
given as follows:

Definition 4.1: A dynamic variable of an L. program can be defined as follows:

1. All the variables that are in the read list of the program but not specified

as known are dynamic.

2. Let v := « be an assignment in the program. If « is not a static expression

then v is dynamic.

2 The term simple minded will become clear when termination of partial evaluation is

discussed.

22

3. No other variable is dynamic unless 1 or 2 is satisfied.

Definition 4.2: A variable v is called static if it is not dynamic.
Definition 4.3: An expression « of an L program is called a static expression if

and only if the followings hold:
e (r is a constant,
e (v is a static variable, or
e « is of form op(ay, ay, ... «a,) where each expression «;,1 < i < n is static.

Definition 4.4: An expression « of an L program is called a dynamic expression

if it is not static.

The main idea in BTA algorithm is to apply these definitions on the subject
program to come up with the division. Note that the BTA described here assumes
that a variable is either static or dynamic in all parts of the program under con-
sideration. The division constructed by these algorithms, and hence by ILPOS,
are monovariant divisions in this sense. Of course, this is not necessarily the case
and a polyvariant division can be computed which will exhibit the change in the
division for each block separately. For the details of polyvariant divisions see [14].

As mentioned before, the analysis performed by the binding time analyzer
gives the specializer the required information for making the decision of generating
code for a program statement. The partial evaluator attempts to generate code
for a statement if it determines that the expression it involves is dynamic (by
definition 4.4). If an expression is static, it is computed at the specialization time
and the store is updated.

The last definition concerning the division constructed by BTA is that of
finiteness:

Definition 4.5: A division is said to be finite if it allows the partial evaluator
to generate a finite residual program.

As it will be explained later, unfortunately, finiteness is not guaranteed with

these definitions.

23

4.5 PPS algorithm and ILPOS

Equipped with the previous discussions, a naive description of the PPS algorithm
will be given in this section. The PPS algorithm can be thought in 3 parts: the
initialization part, the trace construction part and the code generator part.

The initialization part of the PPS algorithm, as depicted in Figure 4.5 includes

the binding time analysis of the source program.

{Given the list of input arguments vspe. and their starting values which are
known at the specialization time, construct the residual program by the pro-
gram point specialization technique, initialization part}

1. Let vgy, be the set of variables which appear in the read list but not
N Vgpec-

2. Apply definition 4.1 with the initial set v4,, to compute the set of all
dynamic variables that appear in the program.

3. Let vyq be the set of all program variables which are not marked as
dynamic by step 2.

4. Let storey be the store containing the variables in vy, together with
their initial values. If some variable in this set is not an input argument
then let its value be FRR indicating that it is a not yet initialized
variable.

5. Let T'race = {(ppy, storeg)} where ppq is the name of the first block in
the program. Let Residual = ¢.

Figure 4.5: Algorithm for preparing a program for PPS

The initialization algorithm aims to find the division of the program variables.
To do this, it examines every assignment in the program to find out the variables
which are dynamic. Initially the set of input variables (i.e. those variables in the
read list) which are not specified to be static are included in the list of dynamic
variables. Then, for all assignments, whenever the right hand side contains a
dynamic variable, the left hand side is also included in the list. This closure
algorithm is applied until the set of dynamic variables cease to change. The

set difference of all program variables and these dynamic variables gives us the

24

set. of all static variables of the source program. After this analysis the trace

construction part is activated whose algorithm is given in Figure 4.6.

{PPS algorithm, trace construction part. }

1. Select an element {(pp;, store;)} in Trace and mark it as processed. If
no unmarked element exists goto step 5.

7

2. Let curCode =" (pp;, store;) :

3. Let curBB be the basic block corresponding to pp;. Apply the
codeGeneration algorithm of Figure 4.7 to cur BB.

4. Let Residual = Residual U curCode, Go to step 1.
5. Relabel all the blocks in Resitdual to identifiers.

6. Initialize RestdualCode to a read statement containing only those in-
put arguments which are dynamic.

7. Append each element of Residual to ResidualCode.

8. Apply transition compression of section 4.3 to ResidualCode.

9. Output ResidualCode as the partially evaluated code.

Figure 4.6: Algorithm for Trace Construction

The trace construction algorithm explores all possible program points emanat-
ing from the starting program point. The algorithm tries to find out all possible
continuations from a given configuration and elaborates them as code segments
in the residual program. The main engine of the algorithm goes with the code
generation part as depicted in Figure 4.7.

ILPOS employs these algorithms with a change in step 8 of the trace con-
struction part (Figure 4.6) to implement PPS for language L. ILPOS employs
transition compression on the fly instead of a separate phase for compression.
Remember that a goto is said to be compressed if the upcoming block is put in
place of it. This has the advantage of both saving an extra phase and eliminating

the need for a reachability analysis as done in section 4.3. This is due to the fact

25

that, a new residual block is generated only if it is reachable.

{PPS algorithm, code generation part. }

1. For each assignment v := « in cur BB do the followings:

e if v is static by division then compute a with respect to store;.
Update store; to reflect the change in v.

e if v is dynamic then reduce the expression « to obtain [with
respect to store;. Let curCode = curCode o ”v := 3;” where o is
the concatenation operator.

2. According to the jump statement of curCode do the following:

o If the jump is a goto then let curCode = -curCode o
7 goto(ppj, store;)” where pp; is the label of the goto. Let Trace =
Trace U {(ppj, store;)}.

e [f the jump is a return then let its expression be a. If « is static
then compute its value into § otherwise reduce it to expression 3.
Let curCode = curCode o "return (3;”.

e if the jump is a conditional jump of the form: if o goto [y else [y,
then proceed as follows:

— if « is static then compute its value. If it evaluates to true
then let curCode = curCode o goto(ppy, store;) otherwise let
curCode = curCode o goto(pp;, store;) where ppy, and pp, are
the program points corresponding to [; and [. In each case let
Trace = Trace U {(ppy, store;)} where pp; is ppy if a = true
and pp; otherwise.

— if @ is dynamic then reduce it to 3. Let curCode = curCode o
"if B goto (ppx, store;) else (pp;, store;);” where ppy, and pp;
are the program points corresponding to [; and [5 respectively.
Let Trace = Trace U {(pp, store;), (pp;, store;)}.

Figure 4.7: Algorithm for code generation

The algorithm for PPS refers to the concept of reducing an expression with
respect to some store. The definition of a reduced expression follows:
Definition 4.6: An expression is reduced if it is,

e 3 constant

26

e a variable v marked as dynamic by division

e an application op(ey, €9, ..., €,) and each of ¢;,1 <i < n is reduced and at

least one of ¢;, 1 <7 < n is a dynamic expression.

Notice that the reduced form of a static expression is equivalent to a constant. Us-
ing this definition, ILPOS employs an expression reducer which, given a dynamic
expression, returns the equivalent reduced expression with respect to the current
store associated with the block. The reduced expression is either a constant or

an application with dynamic variables in it.

4.6 Handling Incomplete Specifications

an incompletely specified L program:
read(names, name);

look: if eq(name, hd(names)) goto ok else cont;

cont: names := rest(names);
goto look;
ok: return names;

Figure 4.8: An example of an incomplete specification

Consider the L program given in Figure 4.8. The intended meaning of the program
is to find the first occurrence of name in the names list and return the rest of the
list starting with it. However, there is an assumption on the contents of names.
The programmer assumes that it necessarily contains name?®. This is a completely
acceptable program in the sense that the programmer might have made sure that
name would occur in names by some other means. Since it is guaranteed to be
there, the programmer saved a test of emptiness. Programming in this way has

nothing wrong with it as far as the programmer is aware of it*.

3 In case name does not exist, the program will crash at run time, since it will attempt to
take the rest of an empty list.

4 Notice that it may also be the case that the test for emptiness might have been forgotten
by mistake.

27

Although nothing is wrong with this style, such programs cause problems
when they are partially evaluated. Assume that this program is partially eval-
uated with respect to the known input argument names = ’(a b). The partial

traces obtained are as follows:

e Trace corresponding to name = a:

(look, {(a b)}) — (ok, {(a b)})

e Trace corresponding to name = b:

(look, {(a b)}) = (cont, {(a b)}) —= (look, {(b)}) = (ok, {(b)})

e Trace corresponding to neither:

(look, {(a b)}) — (cont, {(a b)}) — (look, {(b)})
— (cont, {(b)}) — (look, {()}) - CRASH

In terms of the graph of partial traces this situation is depicted in Figure 4.9.
Since the last path in trace results in a crash the entire partial evaluation
process fails. Of course this is not acceptable since the program and its static
data is well formed. Unfortunately PPS can not handle this situation. To remedy

the problem ILPOS uses guards.

4.6.1 Guards

The problem specified above is the result of applying a library routine to some
value for which that routine is not defined. In the above example the library
function hd was applied to ’() resulting in crash.

In general, all library functions implement some partial function. It is this
partiality that causes the problems®. If the partial evaluator knows for every
library function the values at which they are undefined then it can handle such
incomplete specifications correctly. The idea is to check whether some application

is safe for its arguments. To do this we define guards:

28

(look, {(ab)})

(ok, {(ab)}) (cont, {(ab)})
(look, {(b)})
PN
(ok, {(b)}) (cont, {(b)})
(look, {()})
V

CRASH

Figure 4.9: Traces of an incomplete specification

Definition 4.7: A guard for a library function is another function which returns
true if the corresponding function is defined at some argument, false otherwise.
For instance a guard for hd function is a function returning false if the

argument is an empty list or a non-list and true otherwise.

4.6.2 Guards in ILPOS

The library supported with L contains many functions each of which is equipped
with their guards. As mentioned before, ILPOS has an extendible library and
the user is supposed to supply guards with the new functions all defined in the
Scheme language.

Whenever the ILPOS partial evaluator attempts to evaluate some application
that is static, it first calls the associated guard to check whether the application
is safe. If the operation is determined to be safe then PPS goes accordingly.
Otherwise an incomplete specification is signaled and the code in curCode (see

algorithm in Figure 4.7) is set to "return run time crash;". This guarantees

5 For example, hd is a partial function since it is not defined for an empty list.

29

that if the residual code reaches to this block, it will indicate the crash to the
user as the original would do. Using this method, ILPOS generates the residual

program in Figure 4.10 for the above example.

read (name) ;

lpe0: if eq(name, ’a) then lpel else 1lpe2;
lpel: return ’(a b);

lpe2: if eq(name, ’b) then 1lpe3 else lpe4;
lpe3: return ’(b);

lpe4: return run_time_crash;

Figure 4.10: Residual program for an incompletely specified program

Noticing that this may be something intended or something that is forgotten
by mistake, the ILPOS log generator adds to its output log a record for its
action. The corresponding function call and the static argument is recorded with
a suitable warning message. The log generator is described later in section 7.1.
In this case, it will contain the a warning message as in Figure 4.11. A similar

message is issued on the screen to notify the online user.

**x Warning the call <hd> has problems.
*x Partial Evaluator Warning: The static expression:
hd (names)
** has been evaluated with respect to the static environment:
names --> ()
*x contains an unsafe operation.
** Signaling operation is indicated above.

Figure 4.11: Sample warning of guards in the log file

30

4.7 Computational Complexity of Partial Evaluation

As described in the previous sections of this chapter, partial evaluation is com-
posed of a sequence of separate phases. In this section, the computational com-
plexity of these algorithms will be discussed.

Any source program that is subject to partial evaluation must first be read
from the disk and parsed into an abstract syntax tree. Once represented in
this form, all operations are carried out as transformations of the parse tree
corresponding to the program.

First of all, binding time analysis is performed on the program. This analysis
starts with a set of dynamic variables as found by the set difference of the program
arguments and the static parameters. The BTA algorithm iterates over all the
assignments to find out if it can add the name of a new variable into the dynamic
variables list (see Figure 4.5). Assuming there are n,,, variables in the program,
this iteration can be made at most n,,. times. Notice that this is the worst
case since it assumes that only one variable is marked as dynamic through each
iteration. In each iteration, a number of assignment statements are checked for
analysis. We can safely assume that the number of assignments is at most a
constant times the number of blocks in the program. That is, we measure the
size of the program as a function of its number of blocks. Then, the number
of iterations for BTA is ¢; - n where n is the number of blocks in the program.
This altogether counts for ¢; - n - n,, operations, when counted for all variables
that appear in the program. Roughly speaking, the BTA algorithms amounts
to a nested loop structure and assuming n,,, is a linear function of n (as in the
number of assignments), the worst case complexity of BTA turns out to be O(n?).

After BTA is performed, the trace construction algorithm is activated (see
Figure 4.6). It is not possible to give a complexity measure at this point since the
algorithm simulates the actions of the source program on the static arguments. It
can be said that the complexity is at least the complexity of the source program
as all of its actions are imitated. Certainly, more operations are performed by the
code generator (see Figure 4.7) and other book keeping parts. A rough analysis of

the algorithms reveal that the complexity of the PPS algorithm need not be more

31

than a constant times the complexity of the source code, since for each possible
configuration either the computation is imitated or a code portion is generated.
Code generation is merely a copying of the original instructions where all the
static parts are evaluated and substituted in function calls whenever they are a
part of a dynamic call. Again, roughly speaking, the complexity of the whole
PPS algorithm is a factor of the complexity of the source program.

As noted above, giving precise analysis of the complexity of the partial eval-
uation is not an easy one. The main complication arises from the fact that the
input to the partial evaluator is not an ordinary data (as a list, number, struc-
ture etc.) but just another executable program. Also notice that, as it will be
indicated in chapter 6, the partial evaluator may even not terminate in certain

cases. The analysis given here assumes that this is not the case.

32

CHAPTER 5

POST OPTIMIZATIONS

ILPOS has two main components: the partial evaluator and the post optimizer.
The previous sections investigated PPS for L. In this chapter the post optimizer
system employed by ILPOS will be discussed.

The post optimizations performed by ILPOS has three components: useless

code remover, program minimizer and program linearizer.

5.1 Useless Code Removal

Useless code removal (UCR) is a classical optimization technique which aims at

”no nonsense computation”. This section describes the need and the method for

UCR in ILPOS.

5.1.1 Notion of useless code and useless variables

The notion of useless code and useless variables have been widely studied in the
literature. In the context of partial evaluation, useless code and useless variables
arise as the result of specialization of a large and modular program which performs
many tasks. The specialization gets rid of the irrelevant parts of a huge program
but it may leave some code portions which, in general, arrange the relationships
between the modules of the original program. Although these code portions are

a part of the residual code, they have no effect on the semantics of the final code.

33

It is very difficult, if not impossible, to give a real example to demonstrate
the ideas since it would be a very big program. To illustrate the ideas consider

the L program given in Figure 5.1.

read(a, b);

start: c¢ := add(a, b);

if eq(a, ’0) goto first else second;
first: return b;
second: return c;

Figure 5.1: An L program demonstrating useless codes

Assume that a is static with initial value 0. The PPS algorithm produces the

residual code in Figure 5.2.

read(b) ;

(start, {0}): c := add(’0, b);
return b;

Figure 5.2: PPS producing useless code

It is clear that the computation add(’0, b) and assignment to ¢ are useless.
Technically, ¢ is called a useless variable and the assignment ¢ := add(0, b) is
called a useless code. Following definitions formalize the problem:

Definition 5.1: Let b be a block in an L program. Then the set of all reachable
blocks from b is said to be the successors of b. This set is called succ,. By
definition b € succy,.

Definition 5.2: Let v and w be two variables. We say that v directly depends

on w if there exists an assignment v := « where « contains w. By definition

34

v depends on itself. The relation depends is defined as the reflexive-transitive

closure of the directly depends relation.

Definition 5.3: Let v be a variable occurring in some block b. Let the set of
all nodes which are reachable from b be succ, and let contribute, be the set of
all return statements occurring in succ,. Then v is called a live variable in a
block b if some variable contained in at least one of the expressions in contribute,,
depends on v. A variable is said to be useless in some block if it is not live.

Definition 5.4: An assignment is said to be a useless code in some block if its

left hand side is a useless variable in that block.

It is clear that performing the computation of a useless code does not do
anything sensible. Deleting all such code from a program is the process of useless
code removal. This analysis has been deeply investigated in the literature, see
2, 18] for details.

These ideas have been integrated into ILPOS through a data flow analyzer as

explained in the following section.

5.1.2 Global Data Flow Analysis for L

Global data flow analysis (GDFA) is the process of collecting useful information
from the text of a program without actually running it. As described in the
previous section, determination of useless variables is an example of such an
analysis.

Notice that the syntax of L is very clear in the sense that the blocks of an L.
program directly correspond to the definition of a basic block! in flow analysis
literature. ILPOS employs GDFA to determine the useless variables occurring
in blocks. This section explains these ideas more concretely. To begin with, an
algorithm for computing the successors of a block is given in Figure 5.3. This

algorithm has been referenced in the definition of a live variable and widely used

in GDFA.

1 A basic block is a sequence of instructions which are executed sequentially with no jumps.

35

{Given an L program and a block b that appears in the program, return the
set of all blocks that are reachable from b }

1. Let succ = {b}.

2. Select an element ¢ of succ that is not marked as processed. If no such
block exists goto step 5. Mark ¢ as processed.

3. According to the jump statement of ¢ do one of the followings:

e If the jump is a goto 1 then let succ = succU {l}.

e [f the jump is a if o goto 11 else 12 then let succ = succ U
{11,12}

e [f the jump is a return do nothing
4. Go to step 2

5. succ 1s the set of all successors of b.

Figure 5.3: Algorithm for computing successors of a block

To compute the set of live variables for each block, ILPOS uses the following
definition:

Definition 5.5: Let b be some block in an L. program. Define in;, to be the set
of variables live at the ”point immediately before” block b. Define out, to be the
set of variables live at the ”point immediately after” block b. Let def, be the set
of variables which are assigned values in b "before they are used” and let usey,
be the set of those which are "used before assigned”. Using set notation these
definitions amount to the equations:

For any block b,
iny = use, U (outy, — defy)
outy = U 1My
pEsucey

These equations simply say the following: The variables which must be live
(i.e. has some effect on the computations on block b) are either those that are
referenced without being defined (usey), or those that must be live at the exit of
the block and not defined in the block. Similarly the variables which must be live

at the exit of b are those variables which are useful in any of the successors of b.

36

When these two equations are solved simultaneously for all the blocks in the
program the in, sets denote the live variables of each block. To solve these
equations ILPOS uses several algorithms. The algorithm computing de f and use
sets is a trivial one which explore all the assignments and variables involved in
the block. The algorithm in Figure 5.4 is used to compute in and out sets given
def and use sets. After computing the in sets by the algorithm in Figure 5.4,
ILPOS activates the useless code remover to remove any assignment to a variable

that does not occur in the in set of the block that the assignment resides in.

{Given an L program together with def and use sets for each block, com-
pute the in and out sets for all blocks}

1. For each block b let iny, = ¢.
2. Let changed = false

3. For each block b compute out, using the equation following definition
5.4. Then compute in, and compare it with its old value. If in, changes
from the previous iteration then let changed = true.

4. If changed = true then goto 2 else goto 5

5. The current value of in, is the set of live variables at block b.

Figure 5.4: Algorithm for computing live variables

Note that in doing so one must be careful to delete only those assignments to
useless variables which does not have any contribution to a live variable in the

block. For example, let some program has a block as in Figure 5.5

a := add(k, 4);
¢ := mul(a, k);
a := sub(c, 5);
return c;

Figure 5.5: An example of a used useless variable

37

In this block ¢ is a live variable while a is useless. It is clear that it is safe to
remove the second assignment to a while the UCR must save the first assignment.
This is due to the fact that the value of a is used in the definition of the live
variable ¢. ILPOS takes care of such situations.

When applied to program in Figure 5.2, these algorithms produce the following
results: us€siart = Mgpart = OUtsiars = {b}, defsars = {c}. Upon determining
that ¢ is a useless variable the assignment is removed yielding the program in

Figure 5.6.

read(b) ;

(start, {0}): return b;

Figure 5.6: UCR applied to the specialized code

5.2 Program minimization

Consider the text of an L. program. One may view any L program as a finite
graph. We have the following definition for the graph of an L. program:
Definition 5.6: Let p be an L program and b be a block in it. Then immediate

successors of b is defined according to its jump statement j, as follows:

e if j is a goto statement in the form goto 1 then the immediate successor

of b is the set {l}.

e if jis an if statement in the form if o goto 11 else 12 then the immediate

successors of b is the set {/1,(2}.
e if j is a return statement then immediate successors of b is ¢.

Definition 5.7: The graph of an L program is a directed graph G = (V, E), with

edge labels where V and F are defined as follows:

38

e Let V be the set of all blocks in the program. Note that V' is always finite

since any L program has a finite number of blocks.

e Let F contain an edge from some node v; to vy if and only if vy is an

immediate successor of vy in the corresponding L program.

The labels are either goto (corresponding to a goto block), or T or F correspond-
ing to the possible outcomes of the expression of the conditional jump. Notice
that if the block is terminated with a return statement then it does not have
any Successors.

When viewed as a graph, an L program is much like a finite state automaton.
In fact, it is natural to think an L program as a Moore type finite automaton
where the node corresponding to its first block is the start state, see [16] for
details of such machines.

Based on this analogy, it turns out that we can apply the results from fi-
nite automata theory to L programs. ILPOS uses the concept of a minimum
state finite automata to minimize the number of states in an L. program. The
minimization process for a finite automaton is described in [17, 16].

Definition 5.8: An L program is said to be in its minimal form if there are no
two blocks which are equivalent.

Definition 5.8 makes use of the concept of equivalent blocks. We define this
equivalence as follows:

Definition 5.9: Two blocks of an L program are equivalent if they are code
equivalent and their immediate successors are equivalent.

And code equivalence is defined as:

Definition 5.10: Two blocks of an L. program are code equivalent if they have
the same sequence of assignments, assigning same expressions to same variables,
and they both terminate with the same kind of jump?.

It is clear that definition 5.10 defines an equivalence relation on the blocks

of an L program. Furthermore, by the definition of an equivalence relation, it

2 In fact this definition is more restricted then needed. The assignments need not be in
the same order but they must be permutations of each other resulting in the same results. The

more restricted version is used in ILPOS for the sake of implementation efficiency.

39

induces a partition on the set of nodes. Apparently this partition gives us the

equivalent blocks which may be replaced with a single representative block.
Keeping the analogy of an L. program and the properties of its graph, the

graph partitioning algorithm in Figure 5.7 may be used to find out a minimal set

of blocks which is equivalent to the original program.

{Given the graph of an L program, find the partitions of the nodes to construct
the minimal program}

1. Construct the initial partition my corresponding to the graph. In 7y two
nodes are in the same block if and only if they are code equivalent.

2. Let i =0
3. Let1=7+1

4. Construct m; as follows. Two nodes are in the same block of m; if
they are in the same block of the partition m; _; and their immediate
successors are in the same block of m;_;

5. If m; # m;_1 goto 3 else goto 6

6. 7; is the final partition.

Figure 5.7: Algorithm for program minimization

Using the algorithm in Figure 5.7, ILPOS constructs the minimal graph corre-
sponding to a given L. program. After finding the partition it converts this graph
back to a plain L program. In doing so, a representative node is chosen for each
block in the partition. All the jumps are arranged to reflect correct label names.

To illustrate the effects of UCR and program minimization, consider the pro-
gram in Figure 5.8.

The program constructs the list, called result, of those elements of a and b
which are at the same index. Notice that the list is reversed. For instance, if a
is (28719 2532) and bis (1 8 123 19 8 2) then (19 8) is returned. The
program has been specialized with respect to the static argument a — (2 3) .

The resulting residual code given in Figure 5.9.

40

read(a, b);

init : result:=’();

goto start,;
start : if eq(a, ’()) goto finish else contl;
contl : if eq(b, ’()) goto finish else cont2;
cont2 : if eq(hd(a), hd(b)) goto same else notsame;
same : result := cons(hd(a), result);

goto notsame;
notsame: a:=rest(a);

b:=rest(b);

goto start;
finish: return result;

Figure 5.8: An L program matching two lists

When UCR is applied to this program the assignments in blocks 1pe8, 1pe9,
1lpeb5 and lpel2 are removed.

After UCR, minimization is run on the program. The program graph corre-
sponding to the program in Figure 5.9, as constructed by ILPOS;, is depicted in
Figure 5.10. Notice that the nodes are labeled as i for 1pei. The nodes having
two children are those terminated with a conditional jump, those that are leaf
are terminated with returns. There is no node having a single child since all
such nodes, which correspond to a direct goto jump, are eliminated by the tran-
sition compression algorithm. The edge labels are marked as T and F in Figures
5.10 and 5.11, they correspond to the true and false cases of the conditional
expression respectively.

The minimizer constructs the following partitions (Using ¢ for 1pei):

This identifies that blocks 1pe2, 1pel0, 1pel3 and lpe6, 1lpe9 are identical.
Replacing them with a single block and relabeling one gets a residual code having

only 10 blocks. The resulting graph is depicted in Figure 5.11.

41

read(b) ;

lpel: if eq(b, ’()) goto lpe2 else lpe3;
lpe2: return ’();
1pe3: if eq(’2, hd(b)) goto lpe4 else lpe5;
lpe4: b := rest(b);

if eq(b, () goto lpe6 else lpe7;
lpe6: return ’(2);
1lpe7: if eq(’3, hd(b)) goto 1lpe8 else 1lpe9;
1pe8: b := rest(b);

return ’(3 2);
lpe9: b := rest(b);

return ’(2);
1lpe5: b := rest(b);

if eq(b, ’()) goto 1lpel0 else lpell;
lpel0: return ’();
lpell: if eq(’3, hd(b)) goto lpel2 else 1lpel3;
lpel2: b := rest(b);

return ’(3);
1lpe13: b := rest(b);

return ’();

Figure 5.9: PPS applied to matcher program

Notice that the nodes 9, 10 and 13 disappear and all links to them are replaced
by links to nodes 6, 2 and 2 respectively. Blocks 6-9 and 2-10-13 have merely the
same effect on the program. The resulting L. program is presented in Figure 5.12.
Labels in this program has been rearranged by the canonicalizer described in the

subsequent section.

5.3 Linearization and Canonicalization

The last phase that is applied in ILPOS is the linearization and the canonical-
ization phase. They are not intended to achieve great optimizations but they

complete the whole cycle.

5.3.1 Linearization

After minimization is applied to some L code, it may turn out that the labels of a

conditional jump statement come out to be the same. This is the case whenever

42

the upcoming blocks turn out to be equivalent. In such a case, that conditional
jump simply resolves into a goto statement, since whatever the decision is, the
jump will be to the same block in both cases. The aim of linearization is to check

for such jumps and convert them to goto’s.

Figure 5.10: Program graph for the specialized program

Figure 5.11: Program graph for the minimized program

43

read(b) ;

1lpe0: if eq(b, ’()) goto lpel else lpe2;

lpel: return ’();

lpe2: if eq(’2, hd(b)) goto lpe3 else lpe7;

lpe3: b := rest(b); if eq(b, ’()) goto lped4 else lpeb;
lpe4: return ’(2);

lpeb: if eq(’3, hd(b)) goto lpe6 else lpe4;

lpe6: return ’(3 2);

lpe7: b := rest(b); if eq(b, ’()) goto lpel else 1lpe8;
1lpe8: if eq(’3, hd(b)) goto lpe9 else lpel;

lpe9: return ’(3);

Figure 5.12: Final form of matcher program

The algorithm for linearization consists of a simple scan of the blocks checking
for such linear jumps. Whenever one is found, it is directly converted to a goto.
After this is done, a need for transition compression arises as described before.
ILPOS applies a reachability analysis which constructs the equivalent code with
no goto’s in the resulting program.

Notice that, when a code is linearized there is a chance of removing more
useless code. This is the case since when a jump is removed, the test expression
also gets deleted. This has the effect of changing the out set (see section 5.1.2)
of a block which changes the set of live variables associated with it. In order to
handle this case, ILPOS sends the code back to the UCR routine if linearization
achieves any compression. Note that the loop is completed with minimization and
linearization again. ILPOS terminates this loop whenever the program linearizer

can not find any such conditional statements.

5.3.2 Canonicalization

After ILPOS completes all the phases described above, the time comes to print
out the final tailored code to the disk. Before doing so, ILPOS rearranges all
the labels that appear in the program to start from zero and increase as the text

of the program goes on. This phase is just for formatting purposes and is not

44

intended to achieve any optimization.

5.4 The need for post optimizations

The examples given in the previous sections for useless code removal and min-
imization may suggest that they are not too much useful. Although the ef-
fectiveness of these optimizations depend highly on the program that has been
specialized, we can say that such optimizations are far away from being useless.

It is well known that, PPS can produce many useless code in the specialization
of most programs which are beyond some certain level of complexity. Consider
applying PPS to some program that has been written in a parametric way, such
that the program performs many different tasks with respect to a set of parame-
ters. When specialized with respect to a subset of these parameters, PPS would
produce many computations related to other parameters. Although this directly
corresponds to what the original program would do in an ordinary run, such
computations do not do anything useful on the result of the program. Removing
these computations becomes, then, a very useful optimization.

Program minimization generally results in space gains. Clearly a minimal
program would occupy less space both in the disk and in the memory. When the
language is an interpreted one, as is the case for L, this means small programs to
be processed by the interpreters.

As an example on the gains from post optimizations consider the following test
performed by ILPOS: An L program for simulating a finite state automaton has
been prepared®. The program had two inputs, first: the machine to be simulated,
second: the input list to be processed. When specialized with PPS technique
with respect to a machine having 15 states, the program produced a program
having 135 basic blocks. The original program had 19 basic blocks. When the
code has been minimized it resulted in a 24 block program saving 111 blocks.

The same test had been repeated with a machine whose states were all accept-
ing. The machine was a 2 state automaton. PPS resulted in a 17 block program

which has been reduced to 6 blocks by the minimizer. Then linearization has

3 The source code of this program can be seen in appendix B.

45

been applied, which removed some conditional if statement. The useless code
remover and minimizer has been rerun automatically by ILPOS on the program
giving a 3 blocks program as the final product. The resulting program is given

in Figure 5.13.

read (input) ;
1lpe0: if eq(input, ’()) goto lpel else lpe2;
lpel: return ’1;
lpe2: input := rest(input);
if eq(input, ’()) goto lpel else lpe2;

Figure 5.13: An all states accepting minimal program

As seen the residual just scans through the input string and returns a 1 indi-
cating the acceptance. Notice that, no matter how large is the original machine,
the residual program would be same as the one given above, as far as all states
are accepting (or rejecting). Although such a machine is practically not useful it
helps to demonstrate the need and the power of the post optimizations after the

program point specialization on the source programs.

5.5 Computational Complexity of Post Optimizations

In this section, the computational complexities of the algorithms used in the post
optimizer will be discussed.

One fundamental operation used in the post optimization procedures is the
computation of the successors of a certain block in a program (see Figure 5.3).
This algorithm is a simple transitive closure algorithm whose complexity is clearly
O(n) where n is the number of blocks in the program. This corresponds to the
worst case when all other blocks are reachable from the node under consideration.

The live variable analysis algorithm of Figure 5.4 depends on the generation
of in, out, def and use sets of all blocks. The def and use sets are computed just

by the analysis of the assignments of the related block while in and out depend

46

on the corresponding sets of other blocks. It is clear that these sets will contain
the names of the variables in the program, so at the worst case each variable
name will be included by one of these sets, requiring the analysis of assignments
throughout the program. This suggests an algorithm of complexity O(n?), where
n is the number of blocks in the program, as all blocks are searched for. As before,
the number of variables has been assumed to be a linear function of the number
of blocks in a program.

Once the live variable analysis is completed, all that remains to be done
for useless code removal is to scan through the program to remove assignments
to useless variables in their corresponding blocks, amounting to an algorithm of
complexity O(n-m) where m is the average number of assignments in the program
for each block.

The other stage in post optimizations is that of program minimization. Pro-
gram minimization algorithm of Figure 5.7 uses the concept of code equivalence
among two blocks. The definition of code equivalence has been supplied before.
According to that usage, the code equivalence can be checked in O(m) time where
m is the number of assignments in the blocks to be compared. In each iteration
of the minimization algorithm the partition is either refined or stays the same,
upon which it terminates. So after at most n — 1 iterations the final partition
would be found. Incorporating all these ideas, it turns out that the minimization
algorithm is essentially a O(n?) algorithm.

The linearization and canonicalization algorithms consist of scanning the

whole program for various information and can be thought of as O(n) algorithms.

47

CHAPTER 6

TERMINATION OF PARTIAL EVALUATION

The definition of an algorithm includes the constraint that, for all inputs, it should
terminate after a finite number of steps. It is known that the partial evaluation,
in its pure form as defined here, may not terminate. In this chapter the causes

of the problem and the solution implemented in ILPOS is described.

6.1 Infinite partial traces

In describing the PPS technique the concept of the partial traces had been in-
troduced. The examples were chosen such that the graph of the partial traces
is always finite for a given program and its static data. However this is not
necessarily the case, it may turn out that the graph is infinite.

To clarify the topic, consider the Russian Peasant’s Algorithm (RPA) for the
multiplication of two numbers, given in Figure 6.1. The algorithm proceeds by
halving the value of a¢ and doubling the value of b each time through the loop
until @ becomes 1. Notice that the value of b is changed under the control of the
variable a.

Consider the specialization of the RPA with respect to a static value of a
where b is taken to be dynamic. Clearly the residual code will consist of a single
block which multiplies b by 2 several times and adds as required in the algorithm.
The result turns out to be exactly as expected and depicted when a is 10 in

Figure 6.2.

48

Russian peasant’s algorithm for multiplication

read(a,b);
init: result := ’0; goto start;
start: if odd(a) goto oddCase else process;

oddCase: result := add(result, b);
goto process;
process: if eq(a, ’1) goto finish else goOn;
goOn: a := intdiv(a, ’2); b := mul(b, ’2);
goto start,;
finish: return result;

Figure 6.1: Russian Peasant’s algorithm

read(b) ;

lpe0: result := ’0;
b := mul(b, ’2);
result := add(result, b);
b := mul(b, ’2);
b := mul(b, ’2);
result := add(result, b);
return result;

Figure 6.2: RPA specialized for a

The specialization for RPA works fine for this case. On the other hand consider
the specialization of the same algorithm where b is static but a is dynamic. The
tree of the partial traces are given in Figure 6.3. As seen in the tree of the partial
traces the tree has an infinite number of nodes. The PPS algorithm constructs
this graph on the fly and generates code for each block. Since the graph never
terminates the process of generating code for the residual will never stop, thus

causing the non-termination of partial evaluation.

49

(init, { 10, UNDEF})

(start, {10, O})

4/\

(oddCase, {10, 0}) (process, {10, 0})

(process, {10, 10}) (finish, {10,0}) (goOn, {10,0})

(finish, {10, 10}) (goOn, {10, 10}) (start, { 20, O})
(start, { 20, 10}) .

Figure 6.3: Infinite partial traces

In summary, it can be said that partial evaluation will not terminate when the
graph of the partial traces is infinite. From the programmers point of view,
the problem is caused by the changes in a static variable under the control of
a dynamic variable. As seen in the Figure, there will be an infinite number of
specialized versions of the same node with respect to the values of the static
arguments. Notice the nodes with label start in the Figure, they are the roots

of the subtrees which will never terminate.

6.2 Coping with non-termination

As mentioned before, to be a real algorithm, the partial evaluator must always
terminate. Termination is known to be a difficult problem in the literature of
computer science, specifically the problem of halting is known to be undecidable
for the general setting of Turing machines. The language L and the paradigm it

presents is of no exception and we can not expect to cope with the problem in

20

its entirety.

There can be two ways of viewing the problem of non-termination: first caused
by the nontermination of the original program, second caused by the problems in
the binding time analysis.

The first sort of nontermination corresponds exactly to the halting problem.
If the original program run with its static data will not terminate, then the
partial evaluator that tries to specialize it with respect to those arguments will
also not terminate. Notice that, in this case, the non-termination problem of the
underlying program causes the non-termination of the partial evaluator. Since
the question is undecidable there is not too much to be done and ILPOS does
(and can) not do anything for this case. It simply tries to construct the residual
without ever stopping!.

The second sort of problem is the one that the RPA algorithm has. Although
there is nothing wrong in the algorithm, the process of partial evaluation does
not terminate. There are two main approaches for the handling of this sort of
non-termination: improving the binding time analyzer or limiting the residual
code size.

Notice that, in the RPA algorithm, the partial evaluator might have detected
that the choice of b as a static parameter, while a is dynamic, would cause the
termination problem and might reject b as static. The definition for dynamic
and static variables employed by ILPOS (given in section 4.4) can not handle
these constraints. The implementation of a BTA that can handle such situations
requires analysis of the loops involved with respect to the data changes. Such
an approach is described in chapter 14 of [14]. This analysis is not easy to
perform and depends on the concepts of monotonically decreasing and increasing
properties of the functions called in the program being specialized. The main
point is to mark enough number of variables as dynamic in order to ensure the
finiteness of the resulting partial trace graph. It is noted that the computation of
the minimum set that must be marked as dynamic in order to ensure finiteness

is not computable. The approach yields such a set, although not necessarily the

! In fact this warns the user about the problem and the partial evaluator works as a ”meta-
debugger”.

ol

minimal, which would ensure the finiteness of the resulting partial trace graph.
This method has the disadvantage of not specializing the subject program at all
or poor specialization. For instance, the RPA algorithm when only b is dynamic
would not be specialized at all. The residual would contain an initial block
assigning the initial static value of b to the variable b, and then the original
program itself. Due to these reasons and the high cost of implementation and
run-time inefficiency, ILPOS uses the second style for handling non-termination:

limiting the code size.

6.3 ILPOS termination handler

The approach employed by ILPOS is a more practical one, limiting the code size of
the residual to a maximum number of elements that is determined by the number
of blocks in the original program. Whenever the specialization starts, the ILPOS
PPS module keeps track of the number of blocks that is generated for the residual
program. The ILPOS termination handler guarantees that the generation of the
residual will eventually stop after this number exceeds the predefined limit?. This
section explains how this works.

Consider the operation of the PPS module. It constructs the graph of the
partial traces on the fly and generates code for each block. At any time during
the process of specialization, there are a number of blocks that has been processed
and put into the residual code, and a number of blocks that still remains to be
specialized. The ILPOS termination handler monitors the number of blocks that
has been already generated and gets activated when this number exceeds the
current limit allowed. From this point on, the remaining blocks which must be
specialized should be processed without producing any new blocks.

Since the generation of new blocks are forbidden from this point on, the
termination handler marks all variables as dynamic. This must be done carefully
since after this marking, the assignments to the variables that are newly promoted
to the dynamic class would generate code in the residual program. In order

to ensure the correctness, each such block should contain an initial assignment

2 Currently this is 20 times the original program size; the factor can be altered at will.

52

list, assigning the values of the static values to their variables. Notice that,
since ILPOS uses transition compression on the fly, the upcoming blocks will be
concatenated to the current one with no problems.

By this method, the generation of the new blocks is eventually stopped and the
PPS algorithm is guaranteed to terminate, unless there is a termination problem

of the first sort described above

read(a);

1pe0: if odd(a) goto lpel else lpel2;
lpel: if eq(a, ’1) goto lpe2 else lpe3;
lpe2: return ’10;
lpe3: a := intdiv(a, ’2);

if odd(a) goto lpe4 else lpell;
lpe4: if eq(a, ’1) goto lpeb else lpe6;
lpeb: return ’30;

lpe6: b := ’20;
result := ’30;
a := intdiv(a, ’2);

b := mul(b, ’2);

if odd(a) goto 1lpe7 else 1lpelO;
lpe7: result := add(result, Db);

if eq(a, ’1) goto 1lpe8 else 1lpe9;
lpe8: return result;
lpe9: a := intdiv(a, ’2);

b := mul(b, ’2);

if odd(a) goto 1lpe7 else 1lpelO;
lpel10: if eq(a, ’1) goto lpe8 else lpe9;

lpell: b := ’20;

result := ’10;

if eq(a, ’1) goto 1lpe8 else 1lpe9;
lpel2: b := ’10;

result := ’0;

if eq(a, ’1) goto 1lpe8 else 1lpe9;

Figure 6.4: RPA specialized for b

In order to illustrate the idea, the RPA algorithm has been specialized when

b is static. The value of b has been taken to be 10. The resulting residual is given

23

in Figure 6.4. The maximum code size factor has been set to 1, i.e. activating
the termination handler just after 6 blocks (the size of the original program) are
generated. This is just for the sake of demonstration.

There are a number of points to be pondered on the residual program. First of
all, the number of blocks is 12. This means that when the termination handler is
activated there had been 6 blocks already generated and 6 or less blocks waiting
to be specialized. The termination process created another 6 originated from the
remaining ones. It is not possible to say how many were there and how many were
newly generated by the inspection of the residual but, for this specific example,
all was in the list waiting to be processed. The second point is that the blocks
lpe6, 1pe7, 1lpell and lpel2 are the blocks where the variables result and b
are switched from static to dynamic. The assignments indicate these transitions
clearly. Another point is the general structure of the residual code, it contains
some return statements, returning numbers, corresponding to the parts that
are totally specialized and it has some blocks simulating the computation of the
product of the numbers according to the RPA algorithm.

The original specialization, where the code size factor was 20, activated the
termination handler after the generation of 120 blocks and the residual contained

165 blocks. The residual had the same properties as the prototype given above.

o4

CHAPTER 7

LOGGING AND GAIN ANALYZER PARTS
OF ILPOS

ILPOS is an interactive system for performing partial evaluation and post op-
timization experiments on the flow-chart language I.. The previous discussions
described the internals of the ILPOS. In this section the log system and the

symbolic gain analyzer is described.

7.1 Logging system of ILPOS

ILPOS has two sorts of reporting systems. The first is the messages that are
printed on the screen throughout the stages of computation. At each stage the
user is given information on what the system is currently doing and on the status
of the partial evaluation and the post optimization process. Along with this
data, a log file is produced (with the suffix peo.log) containing the information
regarding the whole process. It first lists the environment, file names, date etc.
Then the statistical information regarding the input program (i.e. number of
arguments, blocks, assignments, variables etc.) are given. This information is
followed by the static arguments and their initial values. After this comes the
messages of the guard system and the termination system, if any. The statistics
for the residual code, before the post optimizations are activated, is also presented.

The residual code which is not post optimized is dumped to the disk with the

)

suffix pe.1lp. Then the post optimizer is activated and the messages related to the
useless code remover, minimizer, linearizer and canonicalizer routines are given
in the log. At each stage, the operations performed are summarized in the log
file. When all the operations are completed, the final residual code is dumped to
the disk with the suffix peo.1lp and the statistics related to this last file is given
in the log.

The main purpose of the log file is to keep track of the operations that are
performed by ILPOS; it also serves as a notifier of the achievements of the different

phases of the entire system on the subject program.

7.2 Symbolic Gain Analysis

The main motivation for partial evaluation and the post optimizations has been
defined to be the speed-up that is obtained by these processes. The usual way of
measuring the speed-up is to measure the running times of the original and the
residual code and then dividing them. The ILPOS L interpreter can be used for
this purpose!. Another kind of efficiency analysis is defined as the symbolic gain
analysis. Rather than measuring the real time spent on executing the programs,
one may collect information on the operations that are performed by the pro-
gram. This approach is more useful when one needs information on the specific
achievements. The ILPOS SGA is a utility that automates such analysis.

The main idea is to count the number of jumps, assignments, variable refer-
ences, decisions and library calls that are made for a particular execution. Notice
that these are the basic operations that the interpreter performs for executing
the program. The library calls can also be divided into classes, calculating the
count for each such call. Once all these counts are available, one can associate a
cost to the program easily. This cost is computed as the dot product of a cost
vector and the vector formed by these counts. The cost vector is a simple vector
of weights that associate importance factors to each operation. The weights in
this vector can be altered at will.

The ILPOS Symbolic Gain Analyzer System (SGA) has been designed with

! The entry point to the interpreter is the 1i function.

26

these points in mind. It keeps counts on the above mentioned operations. Func-
tion calls are counted specifically for designated functions? while all other calls
are listed under the heading other calls. The SGA system has a feature of
turning off and on the statistics collecting features. The special library function
inform_sga switches these activities on and off. This call is provided in order to
collect realistic information on the simulation of data structures not supported
by L3. In addition to these counts, the system reports the number of blocks,
assignments etc. that are present in the residual code produced.

When the ILPOS SGA is activated, it writes its output log to a file with
suffix peo.sga. The measurements are done on three programs, first the original
program with no specialization, second the partially evaluated code, third the
code that is both partially evaluated and post optimized. Together with the log
file generated, these two files constitute a source of information for the process of
specialization and its consequences.

To illustrate the output of the SGA, the RPA algorithm (Figure 6.1) has
been specialized with respect to a = 9987654321123456789. The variable b has
been chosen as dynamic. Then the SGA has been run with the value of b =
123456789987654321. The resulting SGA file is given in Figure 7.1.

The numbers in the parenthesis show the index of the entry in the cost vector
given in the figure. The first three columns indicate the counts for each file. The
Gainl column is formed by dividing the values in column 1 by column 2, and
Gain2 column is formed by those of column 1 by column 3. The last column is
the difference of the Gain2 and Gainl columns, this is intended to indicate the
gains by post optimizations only.

Notice that the post optimizations gain us nothing here, since the residual
program has only a single block (i.e. no minimization is possible) and it has only

shift and add actions (i.e. no useless code).

2
3

Designated functions can be user specified, see appendix D.17 for details.

For instance, L does not support random access arrays. Such a data structure may be
simulated by a list which enforces sequential search. Thus, when an application uses a list to
simulate an array and wants to perform a direct access, it first informs SGA to stop keeping
statistics and when it is done (i.e. when linear search is complete) it reactivates the SGA to go
on keeping counts. It is also possible to keep count of such calls, they are reported under the
heading intern calls.

o7

Welcome to ILPOS-SGA, Static Gain Analyzer System for ILPOS.

Activated on: Wednesday June 5, 1996, 3:20:57 PM

By user

Working dir

. erkok
: /homel/erkok/tez/imp/ilpos/

Symbolic analysis performed on:

Input
PE file

Residual :

: data/RPA/rpa.lp
: data/RPA/rpa.pe.lp

data/RPA/rpa.peo.lp

(v1.0)

Symbolic Analysis Results: (only the relevant entries are printed.)

Original PE Only Post-0Opts Gainl Gain2

0 jumps: 225 0 0 inf inf
(1) assigns: 160 97 97 1.649 1.649
(2) var refs: 321 130 130 2.469 2.469
(3)decisions: 128 0 0 inf inf
(4 eq: 64 0 0 inf inf
(11) add: 33 33 33 1 1
(13) mul: 63 63 63 1 1
(14) div: 63 0 0 inf inf
(15) odd: 64 0 inf inf

BBlks: 6 1 1 - -

Asgns: 4 97 97 - -

Cost vector is

Cost of
Cost of
Cost of

Gain by
Gain by

Overall

The improvement

Original :
PE Only
Residual

PE Only
Post Opts:

Gain is

(221232233303333222)

2144

: 612
: 612

: 3.503

0

: 3.503
: 71.455 9,

SGA completed successfully.

Opt Gain

= O 0O OO OO OO O

Figure 7.1: Result of symbolic gain analysis on RPA

28

CHAPTER 8

A CASE STUDY: DEFINITE INTEGRALS

This chapter is devoted for a case study on definite integrals. First, the Simpson’s
technique for evaluating definite integrals is described and an L program for
computing them is given. The program is specialized to get the program for
computing the er f function. Different combinations of static arguments are tried

and the effects are discussed.

8.1 Definite Integration

A definite integral is one whose lower and upper bounds are numeric values. For

instance,
b
| flayds

is the integral of the function f(z) between the points a and b, where a,b € R.
By definition, the value of the integral is the area of the region enclosed by the
curve f(z) and the lines y = 0, * = a and = = b in the cartesian space'.

A definite integral can be evaluated mainly in two ways. The first one is the
analytical method, which tries to find the function F'(x) whose derivative yields
f(z) and then computes the integral by the formula F'(b) — F'(a). Unfortunately,

this is not always possible; there are functions whose integral can not be found

analytically. The er f function, defined later in this chapter, is one such example.

1" The theory of integration is well developed and can be found in any standard undergrad-

uate text, see [21] for instance.

29

Sometimes the derivation of F'(z) may be possible but very expensive. In such
cases one considers numerical approximation techniques. A very well known

method is that of Simpson’s integration method as described in the next section.

8.2 Simpson’s Formula

A very standard method for approximating the value of definite integrals is the
Simpson’s composite rule, which computes the area under the curve by a series
of simple area calculations. The main idea is to divide the region into small
intervals and sum up the areas of these regions to approximate the area of the
entire region. The details of the method can be found in [21]. The formula that

is going to be employed in this case study is:

b b—a &
/ f(z)dx =~ o > (Yaio + 4Y2i1 + yai)
Ja i
where,
b—a .
yi = f(2), T; =a+ 9 !
n

Here n is half of the number of intervals used for the approximation. The
accuracy of the result increases as n gets larger. In open form, the formula can
be written as:

b—a
6n

/abf(T)dT ~

[(Yo+Yon) +2(Yo+ys+. . .+ Yon o) +4(y1+ys+. . .+ Yon 1)]

where g; and x; is the same as before. This form is programmed in L as described

in the subsequent section.

8.3 Programming the Simpson’s Composite Rule in L

The program to compute definite integrals has four different arguments: the lower
bound (Ib), the upper bound (ub), number of intervals (n) and the function to
be integrated (f). The first three arguments are read from the outer world while

the function argument is directly coded in the program for the sake of simplicity

60

and due to the limitations of L. This implies that each new function should be
coded into the L program supplied for integration?.
The program for computing definite integrals using Simpson’s rule is given in

appendix C.1. The function integrated in that program is f(z) = 2z.

8.4 Obtaining the Erf function Integrator Automatically

In this section we want to use program in appendix C.1 to automatically generate

a program for computing the erf function defined as:
2 T
erf(er) = — [e " dt
/() NG /

The error function (erf) is used in statistics and other sciences, see [21] for
details. An interesting property of erf is that it is not elementary, which implies
that it can not be written with a finite number of operators and other ordinary
functions (i.e. without using the integration sign).

First, we modify the program in appendix C.1 to compute the integral we
desire. Recall that the function should be coded directly into the program. The

changes to the program are minor. The computeF block starts with:

computeF: f := exp(sub(’0, mul(curX, curX)));

This is the only place that needs to be altered for a new function. Apart from
the integration, the error function has another constant factor (2/4/m7). To take

this factor into account we add the following line to the final block:

finish: res := mul(res, div(’2, sqrt(’3.141592653589793));

Notice that this last change is only particular to the er f function.

If we inspect the erf function, we see that the lower bound is fixed at 0.
Therefore b is the natural candidate for specialization. We also fix n (half of the
number of intervals) at 10 and we obtain the program in appendix C.2. When

we look at the residual program we notice that the output simply computes the

2 Another approach might be coding the function in Scheme and putting it into the library
and then calling it.

61

increment value h and starting from 0 (the lower bound) computes the function
at exactly 21 (2n+1 with n = 10) points. In the meantime it keeps on adding the
values to the result in accordance with the Simpson’s method. Finally the factor
2/y/m is multiplied and the result is returned. Notice that the numeric value of
this factor is computed and placed into the program.

Once we have specialized the integrator program for error function computa-
tion, we want to look at the gain we have obtained automatically by the system.
The results of the symbolic gain analysis is given in appendix C.3. The upper
bound (ub) used for performing the analysis was 100. The static gain analyzer

gives an improvement over 60%.

8.5 Other Specializations

The previous choice of the static variables (i.e. b and n) gave us good results.
Remember that the residual code turned out to be linear. Other variations of
static variables is possible. One option is to keep [b dynamic while ub and n are
static. The resulting residual code is very similar to the previous specialization,
we again get a single block program.

Another interesting set of static data is where [b and ub are static and n is
dynamic. This residual will be helpful if somebody wants to analyze the precision
of the Simpson’s method with respect to the number of intervals. When special-
ized with respect to [b = 0, ub = 10 and n dynamic, we meet the termination
problem. ILPOS generates the program in appendix C.4. The residual code has
226 blocks so not all of it is presented in the appendix. Also, in this case, post-
optimizations help us. The useless code remover removed 146 assignments while
the code minimizer got rid of 74 blocks. The log file is presented in appendix C.5.

The residual behaves as follows: first it computes the increment, i.e. length
of each interval (see block 1pe0). Although it knows [b and ub, notice that, n
determines the length of intervals. After the increment is computed the code for
computing the value of the function at the next point is emitted. Once this is
done the residual code checks whether it is done, i.e. it compares the current

index to the number of points to be computed. If they match, a return statement

62

is executed (see the jumps of blocks 1pel, 1pe2 and so on). Otherwise similar
operations take place for the following point. Unfortunately, there is no point that
the specialization can stop as n can be arbitrarily high. The code is goes similarly
until the previous threshold for code size is reached. Once this point is crossed
the termination handler is activated and all the variables are marked dynamic.
This stops further specialization successfully. See blocks 1pe154, 1pe155 and so
on for the effect of this process.

The output of the SGA for n = 20 is presented in appendix C.6. The reported

improvement is about 9% in this case.

8.6 Remarks on the case study

Simpson’s rule for evaluating definite integrals is a very well known technique
for numeric integration. This case study showed us how we can obtain efficient
versions of the programs using this rule provided we know the number of intervals
and one of the upper or lower bounds. It has also provided us with a case where
termination problem occurs within partial evaluation. The error function has
been used to obtain a specialized integrator. Since the formula for erf specifies
the lower bound to be 0, it appears as a natural candidate for specialization. Also,
when n is dynamic, we have seen that post-optimizations helped us to remove

many useless assignments and blocks.

63

CHAPTER 9

FINAL THOUGHTS AND CONCLUSIONS

Previous chapters described the entire system and the ideas employed in it. This
chapter first summarizes the work, including future directions and then concludes

the thesis.

9.1 Final remarks and future work

The residual code generated by ILPOS has several characteristics. First of all
it does not have any unconditional jump statements, all blocks terminating with
such jumps are compressed. There are no static variables remaining in the resid-
ual, all static variables are embedded into the specialized blocks and all labels
are rearranged and put in order.

With these points in mind, it is possible to think specialization in its two
extremes: when there are no static arguments and when all arguments are static.

In the first case, the specialization is meaningful in the sense that all uncon-
ditional goto’s would be removed from the code. Also, any static computation
would be done in the specialization time. This is like filling up a list with values,
computing some number which does not depend on the input arguments etc. Also
the labels will get arranged.

The other extreme, where all arguments are static, the residual code would
resolve into a single block program returning that particular value computed by

the whole process, provided that the original program terminates with these input

64

arguments.

As far as the L language defined here is concerned, ILPOS seems to be mature
with its all facilities for partial evaluation using the program point specialization
technique, useless code removal using the data flow analysis technique and pro-
gram minimization based on the theory of sequential machines. However, it is
possible to study the partial evaluation with a stronger language. Most impor-
tantly the addition of partially static structures to the L. language seems to be
a fruitful direction for future work. A partially static structure is a composite
data structure such as an array or a record. Notice that, for that case, some part
of the data would be known at the specialization time and some part would be
dynamic, hence the name partially static. It would also be of interest to add
sub-flow charts to the language, which is a rather easy extension since every L
language program can be thought of as a sub-flow chart that can be accessed
from a main one.

Another point of extension is that of using polyvariant divisions. ILPOS uses
a monovariant division algorithm assuming that every variable is either static or
dynamic in its entire life time. Another approach would be to make the division
for each block in the original program so that the dynamic and static properties
belong to the blocks rather than the entire program. This idea is based on
the assumption that the same variable can be used for different purposes in the
program. Although theoretically this is feasible, practically it may not have much

significance since this is not considered to be a good programming style.

9.2 Conclusions

In this work, a partial evaluator and a post optimizer system for a flow chart lan-
guage has been defined and its implementation has been described. The appendix
contains the code for the whole system implemented in the Scheme language.
The language L, being a flow chart language, has been chosen as the object
language for the operations. Although very simple in its syntax and semantics, it
proves to be a real programming language since it can simulate any Turing ma-

chine ignoring the memory limitations of the underlying computer. The simplicity

65

of the language allowed us to study both partial evaluation and post optimizations

on the programs in a compact way.

The program point specialization technique with a monovariant division algo-
rithm has been used to construct the partial evaluator part of ILPOS. It has been
seen that the success of partial evaluation depends on the nature of the program

being specialized and the arguments that are static.

It has been shown that incompletely specified programs cause problems for
the partial evaluation process. Such programs are code portions that are pre-
pared with several assumptions in mind, ignoring the generality of the algorithm.
Although such codes are perfectly acceptable, the partial evaluation of such pro-
grams cause problems in the program point specialization technique. In order
to remedy these problems, the concept of guards have been developed and inte-
grated into the system. It has been pointed out that these guards both act as
a meta-debugger for the cases when the incomplete specification is by the mis-
take of the programmer and as a tool for enabling the partial evaluation of such

programs.

Global data flow analysis techniques have been implemented for the live vari-
able analysis of the programs. This has been used in the removal of the un-
necessary computations that are present in the partially evaluated code. It has
also been shown that the machine minimization algorithms of the classical the-
ory of sequential machines can be used to minimize the number of blocks that
are present in an L. program. This idea has been elaborated and applied in IL-
POS. Another sort of optimization, called linearization, which aims at converting
conditional jumps into unconditional ones has been described and implemented.
Notice that linearization is likely after minimization takes place. All these three

techniques constitute the post-optimizer part of ILPOS.

The termination problem of the partial evaluation has been studied and the
approaches to the problem has been described. The idea of limiting the code
size for the residual programs has been described and implemented as a part of
ILPOS. It has been reminded that the problem of termination is undecidable for

L. and the solution employed by ILPOS uses a practical approximation idea by

66

limiting the output size. The problems associated with this technique and the
solutions has also been described.

The computation of definite integrals using Simpson’s rule has been investi-
gated. Partial evaluation has been used successfully to generate a program to
compute the error function automatically from the generic program. Together
with this, various combinations of static and dynamic arguments have been con-
sidered. It has been observed that different combinations of static arguments
yield significantly different behaviour of the partial evaluator.

Apart from these, ILPOS has a lexical analyzer, a parser and an interpreter
for the L language. A logging system has been implemented to accompany the
report generation for the whole process. Also supplied is a symbolic gain analyzer
system that can be used to measure the gain in efficiency that is obtained by the
partial evaluation and post optimization processes.

The contributions of this thesis are as follows: First, an experimental partial
evaluation and post optimization environment with all of its supporting utilities is
implemented from scratch. This work combined the concepts of partial evaluation
and post optimization techniques into a single package. To the best of the au-
thors knowledge, this is the first work that implements these ideas together. The
concept of incomplete specifications and the method for handling them through
the use of guards is also new. Another contribution is the application of finite
automata minimization algorithm to L programs. Termination handling tech-
niques, although quite straightforward, are also developed within this study. The
symbolic gain analysis and the related utilities are also supporting ideas for the
entire system.

As a conclusion, it can be said that, program specialization is a promising
area for run time improvement of programs. The post optimization techniques
can also improve the residual obtained by specialization by removing unnecessary
computations and equivalent blocks. The system presented in this work aims to

be an experimental system to study these techniques.

67

1]

[10]

[11]

REFERENCES

S. Adams et. al., MIT Scheme User’s Manual, Massachusetts Institute of
Technology, 1995.

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques
and Tools, Reading, MA: Addison-Wesley, 1986.

D. Castle, A Uniform Approach for Compile-Time and Run-Time Specializa-
tion, LNCS, Lecture Notes in Computer Science, No. 1110, Springer-Verlag,
pp. 94-72.

W. Clinger et. al., Revised® Report on the Algorithmic Language Scheme,
1991.

C. Consel, Program Adaptation based on Program Transformation, ACM
Computing Surveys, 28A(4), December 1996.

C. Consel, A tour of Schism: a partial evaluation system for higher-order ap-
plicative languages, ACM Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pp. 66-77, 1993.

C. Consel, Polyvariant binding-time analysis for higher-order, applicative
languages, In ACM Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, pp. 145-154, 1993.

C. Consel and S. C. Khoo, On-line and Off-line Partial Fvaluation: Semantic
Specifications and Correctness Proofs, Journal of Functional Programming,
5(4), pp- 461-500.

C. Consel, C. Pu, and J. Walpole, Incremental specialization: the key to high
performance, modularity and portability in operating systems, in ACM Sym-
posium on Partial Evaluation and Semantics-Based Program Manipulation,
pp. 44-46, 1993.

J. Dean, C. Chambers and D. Grove, Identifying Profitable Specialization in
Object-Oriented Languages, in PEPM 1994, Partial Evaluation and Program
Manipulation Conference, pp. 85-96.

D. R. Engler, W. C. Hsieh and M. F. Kaashoek, ‘C: A Language for
High-Level, Efficient, and Machine-independent Dynamic Code Generation,
POPL 1996, Conference on the Principles of Programming Languages.

68

[12]

[13]

[14]

[15]

[20]

[21]

22]

L. Hornof, J. Noyé, Accurate Binding-Time Analysis for Imperative Lan-
guages: Flow, Context, and Return Sensitivity, ACM SIGPLAN Conference
in Partial Evaluation and Semantics-Based Program Manipulation, June
1997.

N. D. Jones, An Introduction to Partial Evaluation, ACM Computing Sur-
veys, Vol. 28, No. 3, September 1996, pp. 480-503.

N. D. Jones, C. K. Gomard, P. Sestoft, Partial Evaluation and Automatic
Program Generation, Prentice Hall, 1993.

S. C. Kleene, Introduction to Metamathematics, Princeton, NJ: D. van Nos-
trand, 1952.

7. Kohavi, Switching and Finite Automata Theory, 2nd. ed., McGraw-Hill,
1978.

C. L. Liu, Elements of Discrete Mathematics, Reading, MA: McGraw-Hill,
1985.

S. S. Muchnick and N. D. Jones (editors), Program Flow Analysis, Reading,
Prentice Hall, 1981.

G. Muller, E. N. Volanschi and R. Marlet, Scaling up Partial Evaluation for
Optimizing the Sun Commercial RPC Protocol, ACM SIGPLAN Conference

on Partial Evaluation and Semantics-Based Program Manipulation, June
1997.

F. Noél, L. Hornof, Automatic, Template-Based Run-Time Specialization.:
Implementation and Experimental Study, Research Report 1065. TRISA,
November 1996.

R. A. Silverman, Calculus with Analytic Geometry, Prentice Hall, 1985.

E. N. Volanschi, G. Muller, and C. Consel, Safe Operating System Specializa-
tion: The RPC Case Study, in First Annual Workshop on Compiler Support
for System Software, Tucson, Arizona, February 1996.

69

APPENDIX A

ILPOS USER MANUAL

ILPOS can run on any computer that has an R4RS (see [4]) compliant Scheme
interpreter installed. The system has been written and tested on a UNIX system
with MIT Scheme, Release 7.3.0 (beta) (see [1]).

To start ILPOS, one must start the Scheme interpreter and load the file ilpos.s
(see appendix D.2). It will automatically load all other files required for the whole
system. Alternatively one can run the shell script given in appendix D.1, prepared
for Unix systems. The system will automatically be loaded by this script. When
the Scheme prompt appears, one can interact with ILPOS through the following

functions:

Ipe: (lpe inputFileName outputFileName commentFileName)

This function is the entry point to the partial evaluator. The first argument,
input File Name is the object L program, the suffix .1p is appended to this
name. Second and the third arguments to the function Ipe are optional.
If they are not present their names are formed by appending .peo.1lp and
.peo.log respectively. The second argument output F'ile Name is the name
of the file where the final result will be written and commentF'ile Name is
the name of the file where all the log messages go. Although not specified
by any arguments a file with suffix pe.1lp is created containing the residual

code that is not post optimized.

70

li: (li inputFile)

This function is the entry point to the interpreter. The program in input F'ile

is interpreted by the L interpreter.

sga: (sga inputFile)

This function is the entry point to the symblic gain analyzer. It performs
the symbolic gain analysis on the original, residual and post optimized
residual programs. The output is written to the file with suffix .peo.sga.
It assumes that the residual and the post optimized residual programs are
stored in the same place as the original program and they all begin with
the name inputF'ile. The suffixes of these programs must be .1p, .pe.lp

and .peo.lp as created by the [pe function.

Apart from these main ones, ILPOS has many other functions as can be seen
in appendix D. Some of the functions that might be of interest to the user are

listed below:

readPgm: Read an L program and lexically analyze it. Returns a list of (to-
ken, lexeme) pairs to the caller. Technically it is the lexical analyzer. See

appendix D.3.

parseL: Parse an L program represented as a (token, lexeme) pair (as returned
by readPgm). It returns the abstract syntax tree (AST) of corresponding

to the program. See appendix D.4.

unparseL: Reverse of the parseL. Given an AST of an L program dump it to

the disk as a plain text file. See appendix D.5.

run: AST counterpart of the [i function. Runs a given AST corresponding to an

L program. See appendix D.6.
ucr: Perform useless code removal on an AST. See appendix D.13.
minAst: Perform program minimization on an AST. See appendix D.15.

linAst: Perform program linearization on an AST. See appendix D.16.

71

bta: Perform binding time analysis on an AST. See appendix D.11.
pe: Perform partial evaluation on an AST. See appendix D.12.

Notice that all the operations are carried on the related AST and each fun-
damental operation returns the modified AST. This enables one to use them in
cascade. For example one may prefer to run the useless code remover and the
minimizer on some program and then dump it back to the disk. Assuming the

name of the program is test one may achieve this operation by typing:
(unparsel (minAst (ucr (parsel (readPgm "test")))) '"test.out")

The output will be placed in file test.out.

72

APPENDIX B

FINITE AUTOMATON SIMULATOR IN L

This appendix contains the source code of the finite automaton simulator in L
that has been discussed in section 5.4.

Finite state machine interpreter.

some data:

static args: ("machine" "finals" "startState")

machine:

((empty a id) (empty b id) (empty 1 num)

(empty 2 num) (empty 3 num) (empty + sign) (empty - sign)
(num 1 num) (num 2 num) (num 3 num)

(id a id) (id b id) (id 1 id) (id 2 id) (id 3 id))
finals:

(id num sign)

start:

empty

some inputs:

(ab12+232-baabi32+12)

(ababl12abil2abil32)

read(machine, finals, startState, input);

start: curState := startState;
results = (0);
matchSoFar := ’();
matchPoint := ’NOMATCH;

goto analyzeOQ;

analyze0O: finalsIter := finals;
goto analyzel;

analyzel: if eq(finalsIter, ’()) goto proceed else lookMore;
lookMore: if eq(curState, hd(finalsIter)) goto recordMatch else look2;

look2: finalsIter := rest(finalsIter);
goto analyzel;

recordMatch: matchPoint := list(curState, matchSoFar, input);

73

goto proceed;
proceed: if eq(input, ’()) goto finish else move;

finish: if eq(matchPoint, ’NOMATCH) goto finishNoAdd else finishWithLast;

finishWithLast: matchSoFar := hd(rest(matchPoint));
newComers = list(hd(matchPoint), matchSoFar) ;
results := append(results, list(newComers));

goto finishNoAdd;

finishNoAdd: return results;

move: curSymbol := hd(input) ;
input := rest(input);
matchSoFar := append(matchSoFar, list(curSymbol));
machinelter := machine;

goto transition;
transition: if eq(machinelter, ’()) goto notFound else tri;

notFound: curState := ’NOTRANSITION;
goto backtrack;

trl: if eq(hd(hd(machineIter)), curState) goto checkMore else tr2;
checkMore: if eq(hd(rest(hd(machinelter))), curSymbol) goto found else tr2;

tr2: machinelter := rest(machinelter);
goto transition;

found: curState := hd(rest(rest(hd(machinelter))));
goto analyzeO;

backtrack: if eq(matchPoint, >NOMATCH) goto finish else back2;

back?2 : matchSoFar := hd(rest(matchPoint));
input := hd(rest(rest(matchPoint)));
newComers := list(hd(matchPoint), matchSoFar);
results := append(results, list(newComers));
matchSoFar := ’();
matchPoint := ’NOMATCH;
curState = startState;

goto analyzeO;

74

APPENDIX C

SIMPSON’S RULE IN L

This appendix contains the source code of the definite integral evaluator programs

in L.

C.1 The Definite Integrator

The first file is the integrator for f(x) = 2z function.

Evaluation of definite integrals using Simpson’s Composite Rule
This program evaluates the integral:

ub

/

| f(x) dx, where f(x) is integrated into the code
/

1b

1b and ub are the bounds of integration.

n is half of the number of intervals.

Static inputs: 1b, n Dynamic input: ub

read(1b, ub, n);

Compute the initial values of integration parameters.
init: h := div(sub(ub, 1b), mul(’2, n));

i = 0;

res := ’0; # res will hold the result

k := div(h, ’3);

lastl := mul(’2, n);

last := add(lastil, ’1);

goto integrate;

integrate: if eq(i, last) goto finish else goOn;

goOn: curX := add(mul(h, i), 1b);
goto ccl;

75

ccl: if eq(i, ’0) goto coefl else cc2;
cc2: if eq(i, lastl) goto coefl else cc3;
cc3: if odd(i) goto coef4 else coef2;

coefl: curCoef := ’1;
goto computeF;

coef2: curCoef := ’2;
goto computeF;

coefd: curCoef := ’4;
goto computeF;

now compute f at curX: currently f(x) is 2x
computeF: f := mul(’2, curX);
don’t alter the rest of this block

res := add(mul (curCoef, f), res);

i := add(i, ’1);

goto integrate;

return the computed result:
finish: return mul(k, res);

C.2 Specialization for the Error Function

The following program is automatically generated by ILPOS using the previous
section’s program for the error function. The static arguments were [b = 0 and
n = 10.

read (ub);

1peO:
h := div(sub(ub, ’0), ’20);
res := ’0;
k := div(h, ’3);
curX := add(mul(h, ’0), ’0);
f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’1, f), res);
curX := add(mul(h, ’1), ’0);
f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’4, f), res);
curX := add(mul(h, ’2), ’0);
f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’2, f), res);
curX := add(mul(h, ’3), ’0);
f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’4, f), res);
curX := add(mul(h, ’4), ’0);
f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’2, f), res);
curX := add(mul(h, ’5), ’0);
f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’4, f), res);

76

curX := add(mul(h, ’6), ’0);

f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’2, f), res);

curX := add(mul(h, ’7), ’0);

f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’4, f), res);

curX := add(mul(h, ’8), ’0);

f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’2, f), res);

curX := add(mul(h, ’9), ’0);

f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’4, f), res);

curX := add(mul(h, ’10), ’0);

f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’2, f), res);

curX := add(mul(h, ’11), ’0);

f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’4, f), res);

curX := add(mul(h, ’12), ’0);

f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’2, f), res);

curX := add(mul(h, ’13), ’0);

f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’4, f), res);

curX := add(mul(h, ’14), °0);

f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’2, f), res);

curX := add(mul(h, ’15), ’0);

f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’4, f), res);

curX := add(mul(h, ’16), ’0);

f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’2, f), res);

curX := add(mul(h, ’17), ’0);

f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’4, f), res);

curX := add(mul(h, ’18), ’0);

f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’2, f), res);

curX := add(mul(h, ’19), ’0);

f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’4, f), res);

curX := add(mul(h, ’20), ’0);

f := exp(sub(’0, mul(curX, curX)));
res := add(mul(’1, f), res);

mul (res, ’1.1283791670955126);
return mul(k, res);

res :

C.3 SGA of the Error Function

The following is the output of the ILPOS-SGA routine. The upper bound was
selected to be 100.

7

Welcome to ILPOS-SGA, Static Gain Analyzer System for ILP0S. (v1.0)
Activated on: Monday June 16, 1997, 5:47:17 PM

By user : erkok

Working dir : /home/others/staff/erkok/tez/sonson/odtu/ilpos/SRC/
Symbolic analysis performed on:

Input : data/SIMPSON/serrf.1lp

PE file : data/SIMPSON/serrf.pe.lp

Residual : data/SIMPSON/serrf.peo.lp

Symbolic Analysis Results: (only the relevant entries are printed.)

Original PE Only Post-Opts Gainl Gain2 0Opt Gain

¢ 0) jumps: 146 0 0 inf inf 0
(1) assigns: 112 67 67 1.672 1.672 0
(2) var refs: 322 110 110 2.927 2.927 0
(3)decisions: 82 0 0 inf inf 0
(4) eq: 63 0 0 inf inf 0
(11) add: 64 42 42 1.524 1.524 0
(12) sub: 22 22 22 1 1 0
(13) mul: 67 65 65 1.031 1.031 0
(14) div: 3 2 2 1.5 1.5 0
(15) odd: 19 0 0 inf inf 0
a7) others: 22 21 21 1.048 1.048 0

BBlks: 11 1 1 - - 1

Asgns: 14 67 67 - - 1
Cost vector is :(221232233303333222)

Cost of Original : 1741
Cost of PE Only : 679
Cost of Residual : 679

Gain by PE Only : 2.564
Gain by Post Opts: O

Overall Gain is : 2.564
The improvement : 60.999 7

SGA completed successfully.

C.4 A Non-terminating specialization

This appendix contains the specialization of the definite integral evaluator with
respect to [b = 0, ub = 10. The resulting residual has 226 blocks hence not all of
it is represented here. The following portion of it should give an idea about the

structure of the residual code.

78

read(n) ;

1peO:

lpel:

1lpe2:

1pe3:

h := div(’10, mul(’2, n));

res := ’0;

k := div(h, ’3);

lastl := mul(’2, n);

last := add(lastl, ’1);

if eq(’0, last) goto lpel else lpe2;

return mul(k, res);

curX := add(mul(h, ’0), ’0);

f :=mul(’2, curX);

res := add(mul(’1, f), res);

if eq(’1, last) goto lpel else lpe3;

curX := add(mul(h, ’1), ’0);
if eq(’1, lastl) goto lpe4 else lpe225;

. code deleted in between . ..

1pe33:

1pe34:

1pe35:

curX := add(mul(h, ’16), ’0);
if eq(’16, lastl) goto 1lpe34 else lpe210;

f := mul(’2, curX);
res := add(mul(’1, f), res);
if eq(’17, last) goto lpel else lpe35;

curX := add(mul(h, ’17), ’0);
if eq(’17, lastl) goto 1lpe36 else lpe209;

. code deleted in between . ..

1lpelb4:

1lpelb5:

1lpelb6:

i :=°72;
if odd(i) goto lpelb2 else lpelb3;

i :=71;
if odd(i) goto lpelb2 else lpelb3;

i = 70;
if odd(i) goto lpelb2 else lpelb3;

. code deleted in between . ..

79

1pe224:

1b := ’0;

i = 72;

if odd(i) goto lpelb52 else 1lpelb3;
1pe225:

1b := ’0;

i:="1;

if odd(i) goto lpelb52 else 1lpelb3;

C.5 Log file for specialization
The following is the log file generated for the previous specialization.
Welcome to ILPOS, Integrated L Partial Evaluator and Optimizer System. (v1.0)

Activated on: Monday June 16, 1997, 7:45:35 PM

By user : erkok

Working dir : /home/others/staff/erkok/tez/sonson/odtu/ilpos/SRC/
Input file : data/SIMPSON/s2xN.lp

Output file : data/SIMPSON/s2xN.peo.lp

Pure PE file: data/SIMPSON/s2xN.pe.lp

Log file : data/SIMPSON/s2xN.peo.log

Input has:
3 formal arg(s)
11 basic block(s)
13 assignment(s)
12 program var(s) : (ub n last h 1b lastl curX curCoef f i k res)
8 dynamic var(s) : (res f k last curX h lastl n)
2 static arg(s) : (1b ub)
4 static var(s) : (ub 1b curCoef i)

Program is specialized with respect to:

1b <- O
ub <- 10

*% Termination Handler Notice:

The residual code size exceeded 220 blocks

Marking all variables as dynamic and stopping further partial evaluation.
Partial Evaluation Completed, residual code has:

1 formal arg(s)

300 basic block(s)
Dead Code Removal Completed, Number of Assignments Removed: 146
Minimization Completed:
Minimal code has : 226 block(s)

Minimization saved us : 74 block(s)

Linearization completed, DCR+MIN+LIN loop terminates.

Totally 74 block(s) (out of 300) has/have been

80

saved by the optimizations after partial evaluation.

Totally 146 assignment(s) (out of 530) has/have been
removed by the dead code remover.

Final residual program has 226 block(s) and 384 assignment(s).

ILPOS completed successfully.

C.6 SGA for Non-terminating specialization
The following is the output of the SGA routine for n = 20.

Welcome to ILPOS-SGA, Static Gain Analyzer System for ILPOS. (v1.0)

Activated on: Monday June 16, 1997, 8:25:52 PM
By user : erkok
Working dir : /home/others/staff/erkok/tez/sonson/odtu/ilpos/SRC/

Symbolic analysis performed on:
Input : data/SIMPSON/s2xN.1lp
PE file : data/SIMPSON/s2xN.pe.lp
Residual : data/SIMPSON/s2xN.peo.lp

Symbolic Analysis Results: (only the relevant entries are printed.)

Original PE Only Post-Opts Gainl Gain2 0Opt Gain

(@) jumps: 286 160 160 1.788 1.788 0
(1) assigns: 211 212 210 0.995 1.005 0.009
(2) var refs: 580 567 567 1.023 1.023 0
(3)decisions: 162 160 160 1.012 1.012 0
(4) eq: 123 121 121 1.017 1.017 0
(11D add: 124 123 123 1.008 1.008 0
(12) sub: 1 0 0 inf inf 0
(13) mul: 126 126 126 1 1 0
(14) div: 2 2 2 1 1 0
(15) odd: 39 39 39 1 1 0

BBlks: 11 300 226 - - 1.327

Asgns: 13 530 384 - - 1.38
Cost vector is :(221232233303333222)

Cost of Original : 3104
Cost of PE Only : 2825
Cost of Residual : 2821

Gain by PE Only : 1.099
Gain by Post Opts: 0.002

Overall Gain is : 1.1
The improvement : 9.117 7%

SGA completed successfully.

81

APPENDIX D

SOURCE CODE OF ILPOS

This appendix includes descriptions and the Scheme code of the whole system.
The ILPOS source has been divided into 17 files, each file is presented in a section.

The source code is electronically available upon request. For information
please contact {erkok,oguztuzn}@ceng.metu.edu.tr. You can also visit the
web page http://www.ceng.metu.edu.tr/ erkok for an online version of this

thesis and the source code.

D.1 ILPOS loader: ilpos

change the following variable to your MIT-Scheme interpreter
MITSCHEME=scheme

echo Starting ILP0S, Integrated L Partial Evaluator and Optimizer System, v1.0..
echo

$MITSCHEME -load ilpos.s
echo

echo "ILPOS terminated.."

D.2 1ILPOS driver: ilpos.s

;35 File ilpos: ILPOS: Integrated L Partial evaluator and
HHH Optimizer System

;33 ILPOS is an experimental system for studying partial evaluation and
;33 optimization issues. Partial evaluation is a program transformation
;33 technique that makes use of the abstract interpretation where all

;33 static information is used in the specialization time to produce an
;35 efficient but semantically equivalent residual code. The optimizations

82

;33 that are applied to the partially evaluated code includes dead code
;33 removal, block minimization and linearization. Dead code removal

;55 has to do with removing assignments that assign values to variables
;35 that are dead, i.e. whose values are not used after that point. Block
;33 minimization exploits the equivalent code concept by creating

;33 an equivalence relation among all basic blocks of the program. Clearly
;33 each partition defines a unique operational unit and can be represented
;35 by a single block. This results in the save of blocks thus achieving
;33 space optimization. Linearization is concerned with goto compression,
;33 an important property of the residual code: The produced code does

;33 not have any unconditional goto statements all of them are compressed
;;; through the translation process.

;55 ILPOS works on a language called L, which is a flow chart language
;55 that can express any algorithm in principle. The data structures
;33 allowes is constants and lists of any valid data structure. i.e.
;;; nested lists (to arbitrary depth) are allowed.

;33 Load the required files:
(load "lexer.s")

(load "parser.s")

(load "unparser.s")
(load "guards.s")

(load "llibrary.s")
(load "interpreter.s")
(load "symbSpeedUp.s")
(load "bta.s")

(load "lpeval.s")

(load "dcr.s")

(load "minimize.s")
(load "linearize.s")
(load "aux.s")

(load "util.s")

(load "setOperations.s")

;33 what we have:

;;; readPgm : read disk file, display tokens (i.e. lexemes..)
;53 parsel : parse what’s read by readPgm, returns ast

;35 unparsel : unparse the ast and flush to disk.

;35 run . run an ast

;53 der : dead code remover

;35 minAst : minimizer

;35 linAst : linearize the code

HH | : interpret an L program in a file

;55 1CV : interpret an L program in a file and construct the
I cost vector associated with that particular run.
;53 bta : binding time analyzer

;35 pe : partial evaluator, work on ast

;55 1lpe : partial evaluator, work on files

;33 basic use of the partial evaluator:

HH (1pe inputFileName outputFileName commentFileName)

83

;33 which reads the program in file inputFileName and performs

;35 all operations and writes the residual code to outputFileName.
;33 commentFileName is used for producing statistics on the program
;35 and the translation process.

(define commentPort ’err)

;33 entry to whole system: ILPOS: integrated L partial evaluator and optimizer.

(define ilpos

(lambda fnames
(let ((noOfFiles (length fnames)))
(case noOfFiles
(1 (lpe (string-append (car fnames) ".lp")
(string-append (car fnames) ".peo.lp")

.pe.1lp"™)
(string-append (car fnames) ".peo.log")))

(2 (lpe (string-append (car fnames) ".1lp")
(string-append (cadr fnames) ".peo.lp")
(string-append (cadr fnames) ".pe.lp")
(string-append (cadr fnames) ".peo.log")))

(else (error "ILPOS: illegal count of arguments."))))))

(string-append (car fnames) "

D.3 Lexical Analyzer for L: lexer.s

;33 File lexer.s: contains functions for lexical analysis

;35 The lexical analyzer reads the disk file and performs lexical
;55 analysis. all whiteSpace and comments are removed. note that
;;; we allow 333aaa as an identifier. All composite lists that

;33 may appear in the program is handled through these functions.

(define whiteSpace?
(lambda (char)
(member char ’ (#\tab #\space #\newline #\#))))

(define punctuation?
(lambda (char)
(member char ’ (#\(#\) #\; #\, #\:))))

(define quotedLit?
(lambda (char)
(equal? char #\’)))

;33 Function readPgm: reads the named file, and sends it as a list:
(define readPgm
(lambda (fileName)
(let* ((port (open-input-file fileName))
(pgm (readFile port)))
(close-input-port port)
pgm)))

;53 Function readFile: given the port no, reads the program into a list,
;53 effectively it calls the lexer to collect the symbols.

84

(define readFile
(lambda (port)
(let ((next0Obj (lexer port)))
(if (equal? next0bj ’done)
O
(cons nextObj (readFile port))))))

;33 Function lexer: lexical analyzer for L-programs.
;33 1t returns the next object from the port, or something
;33 that makes eof-object? true, in case file ends.
(define lexer
(lambda (port)
(if (eof-object? (discardWs port))
’done
(getNext port "" ’nothing))))

;33 Function discardWs: discard white space from the input:
(define discardWs
(lambda (port)
(let ((lookAhead (peek-char port)))
(if (eof-object? lookAhead)
lookAhead
(if (whiteSpace? lookAhead)
(if (equal? lookAhead #\#)
(begin (read-char port)
(discardComment port)
(discardWs port))
(begin (read-char port) (discardWs port)))
’done)))))

;33 Function discardComment: skip comments: skip until the next newline
(define discardComment
(lambda (port)
(let ((lookAhead (peek-char port)))
(if (eof-object? lookAhead)
lookAhead
(if (equal? lookAhead #\newline)
(begin (read-char port) ’done)
(begin (read-char port) (discardComment port)))))))

;55 Function getNext: collect the next lexeme and return it:
(define getNext
(lambda (port prev what)
(let ((lookAhead (peek-char port)))
(cond ((eof-object? lookAhead) prev)
((whiteSpace? lookAhead) prev)
((quotedLit? lookAhead) (collectConst port "" 0))
((punctuation? lookAhead)
(if (equal? what ’nothing)
(if (equal? lookAhead #\:)
(catchAssign (char->string (read-char port))
port)
(char->string (read-char port)))
prev))
(else
(getNext port

85

(string-append prev
(char->string (read-char port)))
’something))))))

;33 Function catchAssign: look if we have :=
(define catchAssign
(lambda (prev port)
(let ((lookAhead (peek-char port)))
(if (equal? lookAhead #\=)
(string-append prev (char->string (read-char port)))
prev))))

;33 Function collectConst: grasp quoted literals:
(define collectConst
(lambda (port prev balance)
(let ((lookAhead (peek-char port)))
(cond ((eof-object? lookAhead) prev)
((or (whiteSpace? lookAhead)
(equal? lookAhead #\;)
(equal? lookAhead #\,))
(if (equal? balance 0)
prev
(collectConst
port (string-append
prev (char->string (read-char port)))
balance)))
((equal? lookAhead #\()
(collectConst
port (string-append
prev (char->string (read-char port)))
(+ balance 1)))
((equal? lookAhead #\))
(if (= balance 1)
(string-append prev
(char->string (read-char port)))
(if (= balance 0)
prev
(collectConst
port (string-append
prev (char->string (read-char port)))
(- balance 1)))))
(else (collectConst
port (string-append
prev (char->string (read-char port)))
balance))))))

D.4 Parser for L: parser.s
;33 File parser.s: contains functions for the parser.
;33 The parser for L has been implemented as a variant of recursive

;;; descent parsing technique. The resulting parse tree is a mit-scheme
;35 structure (called pgm) and all the parse tree is represented as a

86

;33 structure of structures kind of data structure. These structures
;33 can be seen below.

;33 constitutients of the parse tree:

(define-structure pgm readBlk basicBlks)

(define-structure basicBlk 1bl assigns jump)

(define-structure assign var expr)

(define-structure const type val) ; type: list | id (no numbers!)
(define-structure varRef var)

(define-structure app rator rands)

(define-structure goto 1bl)

(define-structure condJump expr 1bl1l 1bl2)

(define-structure return exp)

;;; Parsing stuff:
(define parseL
(lambda (pgm)
(psO (instLevel pgm))))

;35 psK, where k is a number, are the states of the parser.
;35 psO: entry to the program:
(define psO
(lambda (pgm)
(cond ((null? pgm) (error
(else
(let ((inst (car pgm)))
(if (and (> (length inst) 2)
(equal? (car inst) "read")

" syntax: lambda is not in L. "))

(equal? (cadr inst) "(")) ;) special comment
(make-pgm (collectReadVars (cddr inst))
(map psil

(basicBlockLevel (cdr pgm) ())))
(error " syntax: read statement ill-formed.")))))))

;33 Fun: collectReadVars: construct the list of variable names:
(define collectReadVars
(lambda (1st) ; (special comment
(if (equal? (last 1lst) ")")
(if (equal? (length 1st) 1)
O
(if (> (length 1st) 1)
(if (id? (car 1st))
(cons (car 1lst) (getRestVars (exceptlLast (cdr 1lst))))
(error " syntax: id expected." lst))
(getRestVars (exceptlLast 1lst))))
(error " syntax: ill-formed id list:" 1st))))

;33 Fun: getRestVars: handles kleene star part:
(define getRestVars
(lambda (1lst)
(cond ((null? 1st) ())
((< (length 1st) 2) (error " syntax: wrong id list:" 1st))
((and (id7? (cadr 1st)) (equal? (car 1lst) ","))
(cons (cadr 1st) (getRestVars (cddr 1st))))

87

((not (id? (cadr 1st)))
(error " syntax: not an id: " (cadr 1lst)))
(else (error " syntax wrong id list:" 1st)))))

;33 psl: parse all basic blocks:
(define psi
(lambda (blk)
(let* ((blkLen (length blk))
(blkJmp (if (equal? blkLen 1)

(cddar blk) ; just a jump

(last blk))) ; composite
(blkLab (caar blk)) ; always there!
(b1kBod (if (equal? blkLen 1)

0] ; empty body

(cons (cddar blk)
(exceptLast (cdr blk))))))
(make-basicBlk (verifyLbl blkLab)
(map parseAssign blkBod)
(parseJump blkJmp)))))

;33 Function parseAssign: parse assignments..
(define parseAssign
(lambda (asgn)
(if (not (>= (length asgn) 3))
(error "syntax: invalid assignment statement:
(if (number? (string->number (car asgn)))
(error "syntax: invalid identifier: " (car asgn))
(if (not (equal? ":=" (cadr asgn)))
(error "syntax: invalid operator: " (cadr asgn) asgn)
(make-assign (car asgn)
(parseExprs (cddr asgn))))))))

" asgn)

;3; Function parseJump: parse jumps..
(define parseJump
(lambda (jmp)
(let ((tag (car jmp)))
(cond ((equal? tag "goto")
(if (not (equal? (length jmp) 2))
(error "syntax: invalid goto: " jmp)
(make-goto (verifyLbl (cadr jmp)))))
((equal? tag "return")
(if (not (>= (length jmp) 2))
(error "syntax: invalid return: " jmp)
(make-return (parseExprs (cdr jmp)))))
((equal? tag "if") (parseCondJump (cdr jmp)))
(else (error "syntax: unrecognized jump: " jmp))))))

;33 Function parseCondJump: parse if’s:
(define parseCondJump
(lambda (cjmp)
(let ((tmp (reverse cjmp)))
(cond ((or (not (equal? (cadr tmp) "else"))
(not (equal? (cadddr tmp) "goto")))
(error (string-append " syntax: else or goto missing"
" or misplaced in if ") cjmp))

(else (make-condJump (parseExprs (upto cjmp "goto"))

88

(verifyLbl (caddr tmp))
(verifyLbl (car tmp))))))))

;33 Function parseExprs: parse expressions..
(define parseExprs
(lambda (expr)
(cond ((and (equal? (length expr) 1)
(equal? (string-ref (car expr) 0) #\’))
(getConst (list->string (cdr (string->list (car expr))))))
((and (equal? (length expr) 1)
(not (number? (string->number (car expr)))))
(make-varRef (string->symbol (car expr))))
(else (parseApp expr))))) ; otherwise an application

;33 Function getConst: collect the constant value:
(define getConst
(lambda (constVal) ; represented as a string
(let ((listForm (string->list constVal)))
(cond ((equal? (car listForm) #\() ;) special comment
(make-const ’listing
(flatten (exceptlast (cdr listForm)))))

(else (make-const ’singleton constVal))))))

;33 Function parseApp: parse application..
(define parseApp
(lambda (app)

(if (or (< (length app) 3) ;;; (special comment
g PP p
(not (equal? (last app) ")"))
(not (equal? (cadr app) "(")) ;;;) special comment

(equal? (string-ref (car app) 0) #\’))

(error syntax: ill-formed application:
(if (not (isOperator? (car app)))
(error " problem: not a known operator:
(make-app
(car app)
(map
parseExprs
(map reverse
(separatelps
(reverse

app)

(car app))

(COIIS non
(reverse (exceptlast (cddr app)))))))))))))

;33 Function separatelps: distinguish operands:

;33 input is of form: q, r, s, t, (comma is appended extra..)
(define separateOps

(lambda (ops)
(cond ((null? ops))
(else (let ((fArg (reverse (uptoFarg ops 0))))
(cons fArg
(separateOps (afterFArg fArg ops))))))))

;33 Function afterFArg: get after the first Arg, don’t include comma
(define afterFArg
(lambda (firs ops)
(letrec ((11 (+ 1 (length firs)))

89

(drop (lambda (lis n)
(if (equal? n 0) 1lis
(drop (cdr 1lis) (- n 1))))))
(if (equal? 11 1) ()
(drop ops 11)))))

;33 Function uptoFArg: get upto the first Arg, don’t include the
;33 following comma
(define uptoFArg
(lambda (ops npar)
(cond ((null? ops) Q)
((and (equal? (car ops) ",") (equal? mpar 0)) ’()) ;finished
((equal? (car ops) "(") ;;;) spec. comment.
(cons (car ops) (uptoFArg (cdr ops) (+ 1 npar)))) ;(spec.com.
((equal? (car ops) "))
(cons (car ops) (uptoFArg (cdr ops) (- npar 1))))
(else (cons (car ops) (uptoFArg (cdr ops) npar))))))

D.5 Unparser for L: unparser.s

;33 File unparser.s: contains functions for unparsing an abstract
;33 syntax tree.

;33 Unparser maps an abstract syntax tree in to the equivalent
;33 concrete syntax.

;33 The unparser routines are used for outputting the final residual
;33 code to the disk, which is the overall aim after all. Also these
;33 functions are used for debugging purposes.

(define unparseL
(lambda (ast fileName)
(let ((port (open-output-file fileName)))
(begin (unparse ast port)
(close-output-port port)
#t))))

;33 produce output on port:
(define unparse
(lambda (ast port)
(begin
(upRead (pgm-readBlk ast) port) (newline port)
(forEach (lambda (blk) (begin (upBlk blk port)
(newline port)))
(pgm-basicBlks ast)))))

;33 upRead: output the read Block
(define upRead
(lambda (vars port)
(begin
(display "read(" port) ;) special comment
(outputVars vars port) ;(special comment

90

(display ");" port))))

;55 outputVars: print out arguments:
(define outputVars
(lambda (1lst port)
(cond ((null? 1st) ())
((null? (cdr 1st)) (display (car 1lst) port))
(else (begin (display (car 1lst) port)
(display ", " port)
(outputVars (cdr 1lst) port))))))

;33 upBlk: unparse basic blocks:
(define upBlk
(lambda (blk port)
(begin (newline port)
(display (basicBlk-1bl blk) port)
(display ": " port) (mewline port) (display "\t" port)
(forEach (lambda (asgn) (begin (upAsgn asgn port)
(newline port)
(display "\t" port)))
(basicBlk-assigns blk))
(upJmp (basicBlk-jump blk) port))))

;55 upAsgn: unparse an assignment:
(define upAsgn
(lambda (asgn port)
(begin
(display (assign-var asgn) port) (display " := " port)
(upExpr (assign-expr asgn) port)
(display ";" port))))

;3; upJmp: unparse a jump
(define upJmp
(lambda (jmp port)
(cond ((condJump? jmp) (begin
(display "if " port)
(upExpr (condJump-expr jmp) port)

(display " goto " port)
(display (condJump-1blil jmp) port)
(display " else " port)
(display (condJump-1bl2 jmp) port)
(display ";" port)))

((goto? jmp) (begin

(display "goto " port)
(display (goto-1bl jmp) port)
(display ";" port)))
((return? jmp) (begin
(display "return " port)
(upExpr (return-exp jmp) port)
(display ";" port)))
(else (error "something wrong with ast " jmp)))))

;33 upExpr: unparse an expression
(define upExpr
(lambda (expr port)
(cond ((const? expr) (upConst expr port))

91

((varRef? expr) (display (varRef-var expr) port))
((app? expr) (begin
(display (app-rator expr) port)
(display " (" port) ;) special comment
(if (not (null? (app-rands expr)))
(begin
(upExpr (car (app-rands expr)) port))
0D
(forEach (lambda (ex) (begin (display ", " port)
(upExpr ex port)))
(cdr (app-rands expr))) ;(spec. comment
(display ")" port)))
(else (error "something wrong with ast " expr)))))

;55 upConst: unparse a constant
(define upConst
(lambda (const port)
(let ((type (const-type const))
(val (const-val const)))

(cond ((equal? type ’singleton) (begin (display "’" port)
(display val port)))
((equal? type ’listing) (begin (display "’" port)

(printList val port)))
(else (error "unknown constant type " type val))))))

;35 printList: have to convert strings to symbols:
(define printlList
(lambda (1lst port)
(letrec ((beautify (lambda (elm)
(cond ((1ist? elm) (map beautify elm))
((string? elm) (string->symbol elm))
(else elm)))))
(display (map beautify 1lst) port))))

D.6 Interpreter for L: interpreter.s

;35 File interpreter.s: contains functions for interpreting L programs.

;33 The environment is kept as an associative list and all assignments
;33 are handled through the modifications of that list.

(define-structure interpResult val env)

;33 1nitial environment: there are no predefined values only the library
;33 functions exist in the initial environment.

(define initialEnv

(list (1list ’hd hdL)
(1ist ’t1 t1L)
(1ist ’cons consL)
(list ’first_instruction firstInstL)
(1list ’rest restLl)
(1ist ’firstsym firstSymL)

92

(list ’new_tail newTaill)

(1list ’eq equall)
(1ist ’1list listL)

(1list ’transition transitionLl)
(list ’append appendL)
(list ’member memberL)
(1list ’add addL)

(1list ’sub subL)

(1list ’mul mull)

(1list ’div divL)

(list ’o0dd oddL)

(list ’even evenL)

(1list ’gt gtl)

(1ist ’1t 1tL)

(1list ’gte gtel)

(1list ’1te ltel)

(list ’exp expl)

(1ist ’sqrt sqrtl)

(list ’intdiv intdivL)
(1ist ’inform_sga informSGAL)))

;33 File interpreter:
(define 1i
(lambda (fname) (run (parsel (readPgm fname)))))

;33 1lnterpreter for L programs:
(define run
(lambda (ast)
(interpResult-val
(initiate (pgm-basicBlks ast)
(interpResult-env
(loadVars (pgm-readBlk ast) initialEnv))))))

;35 extend initial env through initial reads
(define loadVars
(lambda (readlList env)
(make-interpResult ’NOVALUE (gatherEnv readlList env))))

;33 gatherEnv: collect variables:
(define gatherEnv
(lambda (elms env)
(cond ((null? elms) env)
(else (gatherEnv (cdr elms)
(begin (display (car elms)) (display "7 ")
(update env (car elms)
(normalize (read)))))))))

;33 normalize: L does not support numbers, in case a number is read convert
;33 1t to a symbol:
(define normalize
(lambda (n)
(if (number? n) (number->symbol n) n)))

;33 initiate: start execution:

(define initiate
(lambda (bblks env)

93

(cond ((null? bblks) (make-interpResult ’NOVALUE env))
(else (execute bblks (car bblks) env)))))

;33 execute: execute the pgm:
(define execute
(lambda (pgm curBlk env)
(let* ((newEnv (performAssigns (basicBlk-assigns curBlk) env))
(nextBlkInfo (whereToGo (basicBlk-jump curBlk) newEnv)))
(if (equal? (car nextBlkInfo) ’TERMINATE)
(make-interpResult (cdr nextBlkInfo) newEnv)
(execute pgm (getBlk pgm (car nextBlkInfo)) newEnv)))))

;55 getBlk: return the matching basic block:
(define getBlk
(lambda (pgm label)
(cond ((null? pgm) (error "No such label: " label))
((equal? (basicBlk-1bl (car pgm)) label) (car pgm))
(else (getBlk (cdr pgm) label)))))

;35 performAssigns: evaluate and form the new assignments: return env
(define performAssigns
(lambda (assigns env)
(cond ((null? assigns) env)
(else (performAssigns (cdr assigns)
(doAssign (car assigns) env))))))

;55 doAssign: perform a single assignment: return the new environment.
(define doAssign
(lambda (astmt env)
(update env (assign-var astmt) (evalExp (assign-expr astmt) env))))

;35 whereToGo: execute and decide jumps:
(define whereToGo
(lambda (jstmt env)
(cond ((goto? jstmt) (comns (goto-1bl jstmt) ’NOVALUE))
((return? jstmt) (cons ’TERMINATE
(evalExp (return-exp jstmt) env)))
((condJump? jstmt) (cons
((if (evalExp (condJump-expr jstmt) env)
condJump-1bl1l
condJump-1b12)
jstmt) ’NOVALUE))
(else (error "Invalid jump: " jstmt)))))

;55 evalExp: return value of the expression:
(define evalExp
(lambda (exp env)
(cond ((const? exp) (cond ((equal? (const-type exp) ’singleton)
(beautify (const-val exp)))
((equal? (const-type exp) ’listing)
(formList (beautify (const-val exp)) env))
(else (error "Unknown const" exp))))
((varRef? exp) (lookUp env (symbol->string (varRef-var exp))))
((app? exp) (apply (lookUp env (string->symbol (app-rator exp)))

94

(map (lambda (e) (evalExp e env))
(app-rands exp))))
(else (error "Unknown exp type: " exp)))))

;33 beautifier, convert strings to symbols to make them appear more natural:
(define beautify
(lambda (elm)
(cond ((1ist? elm) (map beautify elm))
((string? elm) (string->symbol elm))
(else elm))))

;33 formList: construct a list from the environment:
;33 this is unnecessary, just for compatibility:
(define formList (lambda (x y) x))

D.7 The L library: llibrary.s

;33 File 1llibrary.s: contains functions for the run time library

;33 of the L language. Adding a new function to the library is easy,
;53 the steps to be followed:

HEH 1. In the interpreter.s file, add the name of the function
HHH and the name of the corresponding one in the library

HEE 2. In the llibrary.s file (this one) define that function
HHH using scheme.

HEH 3. register the name of the L function in the util.s file
I by adding its name to the list in function isOperator?
HHM 4. in the guards.s file, define the corresponding guard.
N 5. in the symbSpeedUp.s file, update weight costs for them.
HEH (if no special care is needed, it will automatically go into
HHM the others section, so nothing is needed to be domne..)

;55 that’s all folks for adding a new function.

;33 initial environment:

(define hdL car) ;bound to hd

(define consL cons) ;bound to cons

(define firstInstL car) ;bound to first_instruction
(define restL cdr) ;bound to rest

(define listL list) ;bound to list

(define memberl member) ;bound to member

(define appendl append) ;bound to append

(define newTaillL ;bound to newTail

(lambda (lab pgm)
(cond ((null? pgm) (error "(runtime) No such label: " lab))
((equal? (caar pgm)
(string->symbol
(string-append (number->string lab) ":")))
pgm)
(else (newTailL lab (cdr pgm))))))

(define numberL

95

(lambda (i)
(number? (symbol->number i))))

(define equalLl ;bound to eq
(lambda (il i2)
(or (equal? il i2)
(equal? (convString il) (convString i2)))))

;35 convString: auxilary to equall above, used to perform a typeless

;33 comparison.

(define convString

(lambda (elm)
(cond ((string? elm) (toLowerString elm))

((number? elm) (toLowerString (number->string elm)))
((symbol? elm) (toLowerString (symbol->string elm)))
(else elm))))

;35 tolLowerString: convert all chars to lower case:
(define toLowerString
(lambda (s)
(list->string (map char-downcase (string->list s)))))

(define transitionL ;bound to transition
(lambda (machine state symbol)
(cond ((null? machine) ’>NOTRANSITION)
((and (equall state (caar machine))
(equall symbol (cadar machine)))
(caddar machine))
(else (transitionL (cdr machine) state symbol)))))

(define firstSymL ;bound to firstsym
(lambda (1st)
(cond ((null? 1st) ’B) ; return blanks

(else (car 1st)))))

(define t1L ;bound to tl
(lambda (1st)
(cond ((null? 1st)) ; return empty list

(else (cdr 1st)))))

;33 arithmetic routines:
(define (symbol->number x) (string->number (symbol->string x)))
(define (number->symbol x) (string->symbol (number->string x)))
(define (addL x y) (number->symbol (+ (symbol->number x) (symbol->number y))))
(define (subL x y) (number->symbol (- (symbol->number x) (symbol->number y))))
(define (divL x y) (number->symbol (/ (symbol->number x)
(symbol->number y))))
(define (mull x y) (number->symbol (* (symbol->number x) (symbol->number y))))
(define (oddL x) (myodd? (symbol->number x)))
(define (evenL x) (not (oddL? x)))
(define (gtL x y) (> (symbol->number x) (symbol->number y)))
(define (1tL x y) (< (symbol->number x) (symbol->number y)))
(define (gtel x y) (>= (symbol->number x) (symbol->number y)))
(define (1tel x y) (<= (symbol->number x) (symbol->number y)))
(define (sqrtl x) (number->symbol (sqrt (symbol->number x))))
(define (expL x) (number->symbol (exp (symbol->number x))))

96

(define (intdivL x y) (number->symbol
(quotient (symbol->number x) (symbol->number y))))

(define (myodd? x)
(let ((y (exact->inexact x)))
(if (integer? y) (odd? y) #£)))

(define SGAstopCount err) ; allocate space for flag

;55 informSGAL: the interface from the program to the static gain analyzer:
;33 parameter flag:

HHH if 0: stop counting

HHH if 1: start counting

HHH if 2: increment flag

(define informSGAL ; bound to inform_sga
(lambda (flag)
(cond ((equall flag 0) (set! SGAstopCount #t)) ; stop counting

((equall flag 1) (set! SGAstopCount #f)) ; restart counting..

((equall flag 2) (begin (incrCV! searchCV) ; record..
(incrCV! internCV)))

(else (error "inform_sga: incorrect flag: " flag)))))

D.8 Set operations package: setOperations.s

;33 File setOperations.s: contains functions that implement several
;33 set operationms.

;33 supported functions:
S setUnion (of arbitrary arity), setDifference, setEqual?,
H isSubset?, setIntersection

;33 setUnion: return the union of any number of sets:
(define setUnion
(lambda allSets
(cond ((null? allSets) ())
((null? (cdr allSets)) (car allSets))
(else (setUnionAux (car allSets) (apply
setUnion (cdr allSets)))))))

;33 setUnionAux: work on two sets:
(define setUnionAux
(lambda (s1 s2)
(cond ((null? s1) s2)
((member (car s1) s2) (setUnionAux (cdr sl1) s2))
(else (cons (car sl1) (setUnionAux (cdr si1) s2))))))

;33 setDifference: return the difference of two sets:
(define setDifference
(lambda (s1 s2)
(cond ((null? s1) ())
((member (car s1) s2) (setDifference (cdr s1) s2))
(else (cons (car sl1) (setDifference (cdr si1) s2))))))

97

;35 setEqual?: return #t if two sets are equal:
(define setEqual?
(lambda (s1 s2) (and (isSubset? s1 s2) (isSubset? s2 s1))))

;33 1sSubset?: return #t if sl is a subset of s2
(define isSubset?
(lambda (s1 s2)
(cond ((null? s1) #t)
((member (car s1) s2) (isSubset? (cdr sl1) s2))
(else #f))))

;33 setIntersection: return the intersection of two sets:
(define setIntersection
(lambda (s1 s2)
(cond ((null? s1) (O))
((member (car s1) s2) (cons (car si)
(setIntersection (cdr s1) s2)))
(else (setIntersection (cdr s1) s2)))))

D.9 Commenting and Debugging: aux.s

;35 gor: see the concrete syntax of a given abstract syntax:
(define gor
(lambda (expr)
(let ((ee (open-output-file "zz")))
(begin
((cond ((assign? expr) upAsgn)
((condJump? expr) upJmp)
((goto? expr) upJmp)
((return? expr) upJmp)
((basicBlk? expr) upBlk)
((attr? expr) seeAttr)
(else upExpr)) expr ee)
(close-output-port ee)
(system "cat zz")
(system "rm zz")))))

;3; seeAttr: see the attribute records associated with each basic block,
;35 mainly used for debugging in the dead code removal algorithm:
(define seeAttr
(lambda (attr dummy)
(display "Attr: ") (display attr) (newline)
(display " Label: ") (display (attr-1bl attr)) (newline)
(display " Flag : ") (display (attr-flag attr)) (mewline)

(display " In : ") (display (attr-in attr)) (newline)
(display " Out : ") (display (attr-out attr)) (mewline)
(display " Def : ") (display (attr-def attr)) (newline)
(display " Use : ") (display (attr-use attr)) (newline)))

98

;35 mgor: gor for a list of abstract syntax records
(define mgor
(lambda (1lst)
(forEach (lambda (elm) (gor elm) (mewline)) 1lst)))

;35 mdisplay: easier display, for commenting on the screen.
(define mdisplay
(lambda 1st
(forEach (lambda (elm) (display elm)) 1st)))

;35 comment: write out the arguments to the comment file:
;33 mainly used for producing statistics..
(define comment
(lambda 1st
(forEach (lambda (elm) (display elm commentPort)) 1st)))

;33 symbolic gain analyzer comment interface:
(define sgaComment
(lambda 1st
(forEach (lambda (elm) (display elm (car 1lst))) (cdr 1st))))

;33 1lntroduce: introduce yourself:
(define introduce
(lambda ()

(comment
"Welcome to ILPOS, Integrated L Partial Evaluator"
" and Optimizer System. (v1.0)\n\n"
"Activated on: " (decoded-time/date-string (get-decoded-time))
", " (decoded-time/time-string (get-decoded-time))

"

"\nBy user
(unix/current-user—-name) "\n")))

;33 sgalntroduce: introduce yourself to the symbolic gain analyzer:
(define sgalntroduce
(lambda (prt)
(sgaComment prt
"Welcome to ILPOS-SGA, Static Gain Analyzer System for"
" ILPOS. (v1.0)\n\n"
"Activated on: " (decoded-time/date-string (get-decoded-time))
", " (decoded-time/time-string (get-decoded-time))
"

"\nBy user
(unix/current-user—-name) "\n")))

;33 commentForSpecArgs: indicate the specialization arguments and
;33 their values:
(define commentForSpecArgs
(lambda (args env)
(forEach (lambda (elm)
(comment " elm
" <_ "
(lookUp env elm) "\n"))
args) (comment "\n")))

;33 several comment functions:
;33 comment for environment:
(define commentil

99

(lambda (f1 f2 £3 f4 noForm noBlks noAssigns)
(comment "Working dir : "
(directory-namestring (working-directory-pathname))

"\nInput file : " f1 "\nOutput file : " f2

"\nPure PE file: " f4

"\nLog file : " £3 "\n\nInput has: \n "

noForm " formal arg(s)\n " noBlks

" basic block(s)\n " noAssigns " assignment(s)\n")))

;33 comment after completing partial evaluation:
(define comment?2
(lambda (11 12)
(comment "Partial Evaluation Completed, residual code has: \n
11 " formal arg(s)\n " 12 " basic block(s)\n\n")))

;33 comment after completing dead code removal:
(define comment3
(lambda (n)
(comment
"Dead Code Removal Completed, Number of Assignments Removed:

n "\n\n")))

;33 comment after minimization of the code:
(define comment4
(lambda (11 12)
(comment "Minimization Completed:\nMinimal code has
12 " block(s)\nMinimization saved us "
(- 11 12) " block(s)\n\n")))

;33 comment after linearization and canonicalization of the code:
(define commentb
(lambda (12 14 15 h2 h5)
(comment "Linearization completed, DCR+MIN+LIN loop terminates.\n"

"\n\nTotally " (- 12 15) " block(s) (out of "
12 ") has/have been\nsaved by the optimizations after
"partial evaluation.\n\nTotally " (- h2 hb)
" assignment(s) (out of " h2 ") has/have been\n"
"removed by the dead code remover.\n\n")))

;33 final comments on the process:
(define comment6
(lambda (15 h5)
(comment "Final residual program has " 15
" block(s) and " hb5 " assignment(s).\n\nILPOS completed "
"successfully.\n")))

;55 howManyAssigns: given an ast return the number of assignments it has:
(define howManyAssigns
(lambda (ast)
(letrec ((howManyAssignsAux
(lambda (bblks)
(cond ((null? bblks) 0)
(else (+ (length
(basicBlk-assigns (car bblks)))
(howManyAssignsAux (cdr bblks))))))))
(howManyAssignsAux (pgm-basicBlks ast)))))

100

;33 phasor: apply some phase or phases to some file..
(define phasor
(lambda ops
(unparseL
(phasorAux (parsel (readPgm (car ops))) (cdr ops))
(string-append (car ops) ".phs"))))

;33 phasorAux; apply each operator in turn:
(define phasorAux
(lambda (ast opList)
(cond ((null? oplist) ast)
(else (phasorAux ((car opList) ast) (cdr opList))))))

;33 warning: issue a warning regarding incomplete specifications:
(define warning
(lambda (expr divVs)
(comment "** Partial Evaluator Warning: The static expression:\n\t")
(upExpr expr commentPort)
(comment "\n** has been evaluated with respect to the static "
"environment:\n")
(forEach (lambda (elm) (comment " " (car elm) " --> "
(cadr elm) "\n"))
divVs)
(comment "** contains an unsafe operation.\n“
"xx Signalling operation is indicated above.\n\n")))

;33 terminationHandlerReport: if limits are reached, give a report
;55 in the log file
(define terminationHandlerReport
(lambda ()
(if terminationReported ()
(begin
(mdisplay "Termination problem detected, termination handler"
" is activated.\n")
(comment "** Termination Handler Notice:\n"
" The residual code size exceeded "
maximumCodeSize " blocks\n"
" Marking all variables as dynamic and stopping "
"further partial evaluation.\n\n")
(set! terminationReported #t)))))

D.10 Utility functions: util.s

;33 File util.s: contains functions for general usage, a collection
;35 of tools. Mainly used by lexer.s in performing the lexical analysis.

;33 Fun: id? checks if it is an id: (not keyword.)
(define id?
(lambda (lexeme)
(and (not (punctuation? lexeme))

101

(not (keyword? lexeme))
(not (equal? (string-ref lexeme 0) #\’)))))

;55 Fun: keyword? checks if keyword
(define keyword?
(lambda (lexeme)

(member lexeme ’("read" "goto" "

if" "else" "return" "quote"))))

;33 Fun: isOperator?: is it a known function?
(define isOperator?
(lambda (op)
(member op ’("hd" "t1" "cons" "new_tail" "firstsym"

"rest" "first_instruction" "list" "eq"
"append" "member" "transition" "inform_sga"
"Sllb" |Iaddll llmulll lldivll "Odd" |Ievenll llltll llgtll
llltell llgtell "eXp" "SqI‘t" llintdivll))))

;33 Fun: last: return the last element.
(define last
(lambda (1lst)
(cond ((null? 1st) ())
((equal? (length 1st) 1) (car 1st))
(else (last (cdr 1st))))))

;55 Fun: exceptlast: return all but last:
(define exceptlast
(lambda (1st)
(cond ((null? 1st) ())
((equal? (length 1st) 1) ())
(else (cons (car 1st) (exceptlLast (cdr 1st)))))))

;33 Function instLevel: divide the program into instructions:
(define instLevel
(lambda (pgm)
(cond ((null? pgm) ())
(else (cons (getFirstInst pgm)
(instLevel (skipFirstInst pgm)))))))

;33 Function getFirstInst: return first instruction:
(define getFirstInst
(lambda (pgm)
(cond ((null? pgm) ())
((equal? (car pgm) (char->string #\;)) ()
(else (cons (car pgm) (getFirstInst (cdr pgm)))))))

;33 Function skipFirstInst: return the rest:
(define skipFirstInst
(lambda (pgm)
(cond ((null? pgm) ())
((equal? (car pgm) ";") (cdr pgm))
(else (skipFirstInst (cdr pgm))))))

;33 Fun: basicBlockLevel: extract basic blocks:
(define basicBlockLevel
(lambda (pgm prev)
(cond ((null? pgm) ())

102

((or (member "goto" (car pgm))
(member "if" (car pgm))
(member "return" (car pgm)))
(cons (append prev (list (car pgm)))
(basicBlockLevel (cdr pgm) ())))
(else (basicBlockLevel (cdr pgm)
(append prev (list (car pgm))))))))

;55 Function upto: gets a list and a key, returns list upto key, not
;33 1lncluding key:
(define upto
(lambda (1st key)
(cond ((null? 1st) ’())
((equal? (car 1st) key) Q)
(else (cons (car 1st) (upto (cdr 1st) key))))))

;35 Function after: gets a list and a key, returns list after key, not
;55 including key:
(define after
(lambda (1st key)
(cond ((null? 1st) ’())
((equal? (car 1st) key) (cdr 1lst))
(else (after (cdr 1lst) key)))))

;33 Fun: verifylbl: check if given thing is a valid label, if so
;33 return it, otherwise raise an error:
(define verifylLbl
(lambda (1bl) ; essentially it shouldn’t be quoted..
(if (equal? (string-ref 1bl 0) #\’)
(error " syntax: invalid label: " 1bl)

1b1)))

;33 Function flatten: we have a string representing a list,
;33 turn it into a real list:
(define flatten
(lambda (org) ; org is a list
(let ((inp (trim org)))
(cond ((null? inp) ()
((equal? (car inp) ’#\() ;) special comment
(cons (flatten (exceptlast (toClosing (cdr inp) 1)))
(flatten (trim (afterClosing (cdr inp) 1)))))
(else (coms (list->string (getWord org))
(flatten (afterWord org))))))))

;33 Function toClosing: return with last closing paranthesis
(define toClosing
(lambda (strList cnt)
(cond ((equal? cnt 0) (O))
((equal? (car strList) ’#\() ;) special comment
(cons ’#\(;) special comment
(toClosing (cdr strList) (+ cnt 1)))) ;(special comment
((equal? (car strList) ’#\)) ;(special comment
(cons #\)
(toClosing (cdr strList) (- cnt 1))))
(else (cons (car strList) (toClosing (cdr strList) cnt))))))

103

;33 Function afterClosing: return after closed
(define afterClosing
(lambda (strList cnt)
(cond ((equal? cnt 0) strlList)

((equal? (car strList) ’#\(O)
(afterClosing (cdr strList) (+ cnt 1)))
((equal? (car strList) ’#\))
(afterClosing (cdr strList) (- cnt 1)))
(else (afterClosing (cdr strList) cnt)))))

;33 Function getWord: return the first lexeme..
(define getWord
(lambda (1lst)
(cond ((null? 1st) ())
((whiteSpace? (car 1lst)) ()
(else (cons (car 1st) (getWord (cdr 1st)))))))

;33 Function afterWord: return except the first lexeme.
(define afterWord
(lambda (1lst)
(cond ((null? 1st) ())
((whiteSpace? (car 1lst)) (trim (cdr 1st)))
(else (afterWord (cdr 1st))))))

;55 trim: skip the initial whitespaces:
(define trim
(lambda (1st)
(cond ((null? 1st) ())
((whiteSpace? (car 1lst)) (trim (cdr 1lst)))
(else 1st))))

;;; forEach: order dependent map style function
(define forEach
(lambda (f 1st)
(cond ((null? 1st) ())
(else (begin (f (car 1st)) (forEach f (cdr 1st)))))))

;33 lookUp: look up a var in the associative list:
(define lookUp
(lambda (env var)

" var))

(cond ((null? env) (error "uninitialized variable:
((equal? (caar env) var) (cadar env))

(else (lookUp (cdr env) var)))))

;33 update: update and return the new environment:
(define update
(lambda (env var val)
(cond ((null? env) (list (list var val)))
((equal? (caar env) var) (comns (list var val) (cdr env)))
(else (cons (car env) (update (cdr env) var val))))))

;33 listDiff: return the difference of lists:
(define listDiff
(lambda (11 12)
(cond ((null? 11) Q)
((member (car 11) 12) (1listDiff (cdr 11) 12))

104

(else (cons (car 11) (1listDiff (cdr 11) 12))))))

;33 newPgmPoint: return a new label:
(define newPgmPoint
(lambda ()
(symbol-append ’L (generate-uninterned-symbol ’PE))))

D.11 Binding Time Analyzer for L: bta.s

;535 File bta.s: contains functions for binding time analysis

;55 Binding time analysis refers to the analysis of all the

;33 program variables to determine whether they can be marked
;35 as static or dynamic. Essentially all the program arguments
;55 are dynamic except for those for which the specialization
;33 1s done. For the rest of the variables the rules are as

;33 follows: if a variable appears in the left hand side of an
;;; assignment and the right hand side of that assignment contains
;33 a variable that is marked as dynamic, that variable becomes
;33 dynamic. Note that this is a closure algorithm and the least
;35 set that satisfies these properties is the set we are

;55 looking for. Once all dynamics are determined, the division
;33 1s easily found as the difference of all variables from the
;35 list of dynamic variables.

;55 bta: perform binding time analysis
;33 return a btaRec structure with first field as a list of all
;33 program variables which are static, second is the environment
;33 containing the initial values of these static variables..
(define bta
(lambda (prg)
(mdisplay "Performing Binding Time Analysis..\n")
(let* ((staticArgs (getStaticArgs prg))
(division (getDivision prg staticArgs))
(ongoingEnv (gatherEnv staticArgs ’())))
(comment " " (length staticArgs)
" static arg(s) staticArgs "\n
(length division)
static var(s)
division "\n\n"

"Program is specialized with respect to:\n\n")
(commentForSpecArgs staticArgs ongoingEnv)
(make-btaRec division
(pushErrors
(setDifference division staticArgs)

ongoingEnv)))))

;33 pushErrors: for each val push an error.. This is used for filling

;35 up the initial environment for the partial evaluation phase. Pushing
;33 err does not mean anything since these variables are, logically,

;53 never used before being defined. In case something like that occurs,
;55 this means that the user is referencing to a variable that has not been

105

;3; initialized before. The result is that he/she will get a garbage value.
;55 Note that if this can be detected at specialization time then a
;53 warning will be issued in the log file.
(define pushErrors
(lambda (1lst env)
(cond ((null? 1st) env)
(else (pushErrors (cdr 1lst) (update env (car 1st) ’UNINITIALIZED))))))

;55 getStaticArgs: from the read list which are static, learn from user
(define getStaticArgs
(lambda (prg)
(begin
(display "Arguments M
(forEach (lambda (elm) (display elm) (display " "))
(pgm-readBlk prg))
(display "\nStatics Args? ")
(read))))

;55 getDivision: return the division of the whole program variables..
;33 1.e. a list containing the names of all static variables.
(define getDivision
(lambda (prg init)
(let ((allVarsInPgm (allVariables prg))
(allDyns (dynamicClosure (apply append
(map basicBlk-assigns
(pgm-basicBlks prg)))
(setDifference (pgm-readBlk prg)
init))))
(comment " " (length allVarsInPgm)

" program var(s) : " allVarsInPgm "\n"

(length allDyns) " dynamic var(s)
allDyns "\n")
(setDifference allVarsInPgm allDyns))))

;35 allVariables: return the set of all variables of the program:
;33 construct the union of all variables in all blocks:
(define allVariables
(lambda (prg)
(setUnion (pgm-readBlk prg)
(apply setUnion
(map allVariablesInBlk (pgm-basicBlks prg))))))

;33 allVariablesInBlk: return the set of variables in some block:

;35 1.e. the set of variables in assignments and the variables in the

;33 expression of the jump.

(define allVariablesInBlk

(lambda (blk)

(setUnion
(apply setUnion (map varsInAssign (basicBlk-assigns blk)))
(varsInJump (basicBlk-jump blk)))))

;35 varsInAssign: return the variables in an assignment:
(define varsInAssign
(lambda (assignment)
(setUnion (list (assign-var assignment))
(map symbol->string

106

(dependents (assign-expr assignment))))))

;33 varsInJump: return the variables in the jump:
(define varsInJump
(lambda (jmp)
(cond ((return? jmp) (map symbol->string
(dependents (return-exp jmp))))
((condJump? jmp) (map symbol->string
(dependents (condJump-expr jmp))))
(else ())))) ; goto has no variables..

;33 dynamicClosure: starting from an initial dynamic list, expand through
;33 all variables.
(define dynamicClosure
(lambda (assignsList prev)
(computeDyns (map graspDeps assignsList) prev)))

;53 graspDeps: given an assignment, return a list with first element
;;; the assignment variable, second element a list of dependent variables:
(define graspDeps
(lambda (asgn)
(1ist (assign-var asgn) (map symbol->string
(dependents (assign-expr asgn))))))

;33 computeDyns: given an associative list showing dependencies of variables
;35 and an initial set of dynamics, return all variables that are dynamic
(define computeDyns
(lambda (deplist prev)
(let ((newDyns (dynPass depList prev)))
(if (equal? (length newDyns) (length prev))
newDyns
(computeDyns depList newDyns)))))

;33 dynPass: analyze expressions to see which of them can be marked as
;33 dynamics, this is an iterative algorithm, easily converted to
;33 tail recursion.
(define dynPass
(lambda (depList olds)
(cond ((null? deplist) olds)
((member (caar depList) olds) (dynPass (cdr depList) olds))
((null? (setIntersection (cadar depList) olds))
(dynPass (cdr depList) olds))
(else (setUnion (list (caar depList))
(dynPass (cdr depList) olds))))))

D.12 The L Partial Evaluator: Ipeval.s

;35 File lpeval.s: contains functions for the partial evaluation of
;33 L programs.

;33 The main technique applied in partial evaluation is that of program

;53 point specialization. According to this technique each basic block
;533 of the source program gives us a program point. The idea is that

107

;33 when the program executes it passes through a sequence of program
;55 points. 0Of course it may be in the same program point later in time
;35 with a different environment. The whole idea is that, given a

;33 program point and an environment specifying the values of the

;33 static variables of the program we can generate a residual block
;33 that uniquely represents that point. Clearly this would remove any
;33 operations that are done only on static values, thus achieving the
;55 merit of partial evaluation.

;33 This idea is implemented as a graph traversal algorithm which considers
;33 the nodes of the graph as the program points with values of static

;33 variables. The program is interpreted in an abstract sense and the

;33 residual code is generated at the same time.

;35 given pgm, partially evaluate it
;33 read division and the values of the static variables:

;33 bta results stored in btaRec:
(define-structure btaRec div vs)

;33 take care of incomplete specificatioms...
(define incompleteSpecDetected #f)
(define incompleteProgramDetected #f)

;33 take care of termination through limited code size:
(define maximumCodeSize 0)

(define residualCodeSize 0)

(define terminationReported #f)

(define maxCodeSizeFactor 20) ; allow at most N times large

;33 Partial Evaluator with all operations cascaded.. also produce
;33 comments on the translation process.
(define lpe
(lambda (inFile outFile onlyPeFile comFile)
(let ((cmF (open-output-file comFile)))
(mdisplay "Reading the program from \"" inFile "\"..\n")
(set! incompleteProgramDetected #f)
(let ((ast0 (readPgm inFile)))
(mdisplay "Parsing the program..\n")
(let ((astl (parsel ast0)))
(set! commentPort cmF)
(set! residualCodeSize 0)
(set! terminationReported #f)
(set! maximumCodeSize ; arrange for termination
(* maxCodeSizeFactor
(length (pgm-basicBlks ast1))))
(introduce)
(commentl inFile outFile comFile onlyPeFile
(length (pgm-readBlk ast1l))
(length (pgm-basicBlks astl))
(howManyAssigns ast1))
(mdisplay "Partially Evaluating..\n")
(let ((ast2 (pe astl)))
(comment2 (length (pgm-readBlk ast2))

108

(length (pgm-basicBlks ast2)))
(if incompleteProgramDetected
(mdisplay
"Program incomplete, see log file.\n") #t)
(mdisplay "Writing non-optimized residual to \""
onlyPeFile "\"..\n")
(unparsel. ast2 onlyPeFile)
(mdisplay "Removing Dead Code..\n")
(let ((astb5 (dcrMinLinLoop
ast2 #f
(length (pgm-basicBlks ast2))
(howManyAssigns ast2))))
(mdisplay
"Writing residual program to \""
outFile "\"..\n")
(unparsel. astb outFile)
(mdisplay "Partial Evaluator done,
"log file is: \"" comFile "\".")

(comment6

(length (pgm-basicBlks astb))
(howManyAssigns ast5))
(close-output-port cmF))))))))

;33 dcrMinLinLoop: perform Dead code removal, minimization and Linearization.
;35 note that if Linearization does something then there is a further
;33 opportunity to remove more dead code and more minimization. so this
;33 loop is iterated untill we come out with a program where linearization
;;; does not do any good for us.
;53 the parameters stl and st2 are statistic keeping parameters,
;33 representing the number of blocks and the number of assignments in
;33 the program before this loop is activated.
(define dcrMinLinLoop
(lambda (ast2 reactivated stl st?2)
(if reactivated
(comment
"Linearization worked, Reactivating DCR+MIN+LIN loop..\n\n") #t)
(let ((ast3 (dcr ast2)))
(comment3 (- (howManyAssigns ast2) (howManyAssigns ast3)))
(mdisplay "Minimizing the program..\n")
(let ((ast4 (minAst ast3)))
(comment4 (length (pgm-basicBlks ast3))
(length (pgm-basicBlks ast4)))
(mdisplay "Linearizing and canonicalizing..\n")
(let ((astb (linAst ast4))
(1linWorked (isLinearizable? ast4)))
(if linWorked
(dcrMinLinLoop astb5 #t stl st2)
(begin
(comment5
stl
(length (pgm-basicBlks ast4))
(length (pgm-basicBlks astb))
st2
(howManyAssigns ast5))
ast5)))))))

109

;33 the partial evaluator:
(define pe
(lambda (pgm)
(let ((btaRes (bta pgm))) ; perform BTA..
(1peval pgm (btaRec-div btaRes) (btaRec-vs btaRes)))))

;33 temporary data structure, this structure keeps track of the code
;55 generated for the current block that is under consideration.

;33 divVs is the division and the values of the static variables.
;33 pending gives the list of nodes that are already visited.
(define-structure peBB code divVs pending)

;33 lpeval: partial evaluator for L.
HHM inputs: pgm: ast of input
H div: divison
H divVs: division and the values of the static variables:
HEH returns: ast of the residual pgm.
(define lpeval
(lambda (prg div divVs)
(make-pgm
(1istDiff (pgm-readBlk prg) div)
(mixAux (pgm-basicBlks prg) divVs))))

;53 mixAux: prepare the pgm for mix:
(define mixAux
(lambda (bblks divVs)
(let ((pp0 (basicBlk-1bl (car bblks))))
(mix bblks (list (list (newPgmPoint) ppO divVs)) *()))))

;35 mix: the famous mix algorithm:
(define mix
(lambda (bblks pending marked)
(set! incompleteSpecDetected #f) ; indicate that we are fine
(cond ((null? pending) ()) ; end of processing
(else (set! residualCodeSize (+ residualCodeSize 1))
(let* ((nPending (cdr pending))
(nMarked (cons (car pending) marked))
(bb (getBlk bblks (cadar pending)))
(initCodelbl (caar pending))
(bbResult
(mixBB (append (basicBlk-assigns bb)
(1ist (basicBlk-jump bb)))
nPending nMarked
initCodelbl
(if (> residualCodeSize
maximumCodeSize)
(begin
(terminationHandlerReport)
()) ; empty divVs
(caddar pending)) ; following divVs
(if (> residualCodeSize
maximumCodeSize)
; initializing code
(switchingCode (caddar pending))
()) ; empty code

110

() bblks))
(newCode (if incompleteSpecDetected
(createCrash bbResult)

(peBB-code bbResult))))
(cons newCode

(mix bblks (peBB-pending bbResult)
nMarked)))))))

;55 mixBB: basic block partial evaluator, heart of the engine:
(define mixBB

(lambda (bb pending marked codelbl divVs code jump bblks)
(cond ((null? bb) (make-peBB (make-basicBlk codeLbl

code
Jump)
divVs
pending))
((null? (cdr bb)) ; then it is the jump:
(cond
((goto? (car bb)) ; compress the transition

(let ((toGo (getBlk bblks (goto-1lbl (car bb)))))
(mixBB (append (basicBlk-assigns toGo)
(1ist (basicBlk-jump toGo)))
pending marked codeLbl divVs code jump bblks)))
((return? (car bb))
(mixBB (cdr bb) pending marked codelLbl divVs code
(make-return
(if (isStatic? (return-exp (car bb)) divVs)
(evalS (return-exp (car bb)) divVs)

(reduce (return-exp (car bb)) divVs))) bblks))
((condJump? (car bb))

(if (isStatic? (condJump-expr (car bb)) divVs)
(let ((toGo ; static conditional, compress
(getBlk bblks
((if (const-val
(evalS (condJump-expr (car bb))
divVs))
condJump-1bl1l
condJump-1b12) (car bb)))))
(mixBB (append (basicBlk-assigns toGo)
(1ist (basicBlk-jump toGo)))
pending marked codeLbl
divVs code jump bblks))
; dynamic conditional, go on
(if (equal? (condJump-1bll (car bb))
(condJump-1bl2 (car bb)))
; to same place, compress the transition
(let ((toGo (getBlk bblks (condJump-1bll (car bb)))))
(mixBB (append (basicBlk-assigns toGo)
(1ist (basicBlk-jump toGo)))
pending marked codeLbl
divVs code jump bblks))
; to different places..
(let* ((goLabl (condJump-1bll (car bb)))
(goLab2 (condJump-1bl2 (car bb)))
(varmil (checkOutLabs goLabl divVs
(append pending

111

marked)))
(varmi2 (checkOutLabs goLab2 divVs
(append pending
marked)))
(nel (if varmiil
(getLabs golabl divVs
(append pending marked))
(newPgmPoint)))
(ne2 (if varmi?2
(getLabs golab2 divVs
(append pending marked))
(newPgmPoint))))
(mixBB
(cdr bb)
(extendPending pending varmil varmi2
nel golLabl ne2 goLab2 divVs)
marked codelLbl divVs code
(make-condJump
(reduce (condJump-expr (car bb)) divVs)
nel ne2) bblks))))) ; dynamic ok.

; jumps ok.
(else (error "not a jump: " (car bb)))))
(else ; it is an assignment

(if (isStaticVar? (assign-var (car bb)) divVs)
(mixBB (cdr bb) pending marked codeLbl
(update divVs (assign-var (car bb))
(const-val
(evalS (assign-expr (car bb)) divVs)))
code jump bblks)
(mixBB (cdr bb) pending marked codelLbl divVs
(append code (list (make-assign
(assign-var (car bb))
(reduce (assign-expr (car bb))
divVs))))
jump bblks))))))

;35 switchingCode: returns the code that is needed to switch from the
;35 normal operation to the case where all variables are dynamic. This
;33 1s accomplished by adding a series of assignments of variables to
;33 their values at the point of conversion:
(define switchingCode
(lambda (divVs)
(map (lambda (elm) (make-assign (car elm)
(make-const
(if (1ist? (cadr elm))
’listing ’singleton)
(cadr elm)))) divVs)))

;33 1sStatic? returns true or false
;;; an expression is static if it is a constant, a var that is static by
;33 division or an application of all static arguments.
(define isStatic?
(lambda (expr divVs)
(cond ((const? expr) #t)
((varRef? expr) (isStaticVar?
(symbol->string (varRef-var expr)) divVs))

112

((app? expr) (andAll (map (lambda (elm) (isStatic? elm divVs))
(app-rands expr))))
(else (error "isStatic?: invalid expression: " expr)))))

;35 And a list, empty list is true..
(define andAll
(lambda (1st)
(cond ((null? 1st) #t) (else (and (car 1lst) (andAll (cdr 1st)))))))

;33 1sStaticVar?: simply is it a member of the division that is determined
;33 by the binding time analyzer.
(define isStaticVar?
(lambda (var divVs)
(member var (map car divVs))))

;33 evalS: expression evaluator: note that we take care of incomplete
;33 specifications by enclosing the library functions with guards. If a
;55 guard notices that something goes wrong we don’t generate a value
;53 but rather point out a warning. It is important to note that this
;33 may be something that the programmer did on purpose or something
;33 that the programmer forgot to handle.
(define evalS
(lambda (expr divVs)
(if (anyViolation? expr divVs)
(begin
(set! incompleteSpecDetected #t) ; indicate the problem!
(set! incompleteProgramDetected #t) ; indicate the problem!
; return some erronaus value, just to continue.
(make-const ’singleton ’ERR))
(evalSAux expr divVs)))) ; otherwise evaluate..

;35 evalSAux: now we’re safe to evaluate the expression..
(define evalSAux
(lambda (expr divVs)
(let ((val (evalExp expr (append divVs initialEnv))))
(make-const (if (1ist? val) ’listing ’singleton) val))))

;33 reduce: reducer: This is a combination of an evaluator and a
;33 transformer. Mainly, it receives the abstract syntax tree of
;33 an expression and yields another one which does not contain
;33 any computation that depends only on static arguments. That is,
;33 1f some subtree is solely static it is replaced by a constant value,
;33 but dynamic references are kept alive.
(define reduce
(lambda (expr divVs)
(cond ((const? expr) expr)
((and (varRef? expr) (isStaticVar?
(symbol->string (varRef-var expr)) divVs))
(let ((item (lookUp (append divVs initialEnv)
(symbol->string (varRef-var expr)))))
(make-const (if (1list? item) ’listing ’singleton) item)))
((varRef? expr) expr) ; a dynamic variable
((and (app? expr) (isStatic? expr divVs)) (evalS expr divVs))
((app? expr) ; something dynamic inside..
(make-app (app-rator expr)
(map (lambda (elm) (reduce elm divVs))

113

(app-rands expr))))
(else (error "invalid expression: " expr)))))

;33 checkOutLabs: look if marked contains such a label before:
(define checkOutLabs
(lambda (lab divVs marked)
(orAll (map (lambda (e) (equal? (list lab divVs) e))
(map cdr marked)))))

;33 getLabs: look if marked contains such a label before and return it:
(define getLabs
(lambda (lab divVs marked)
(cond ((null? marked) ’SPECERR)
((equal? (list lab divVs) (cdar marked)) (caar marked))
(else (getLabs lab divVs (cdr marked))))))

;35 orAll: empty false
(define orAll
(lambda (1lst)
(cond ((null? 1st) #f)
(else (or (car 1st) (orAll (cdr 1st)))))))

;33 extendPending: extend pending with new program points:
(define extendPending
(lambda (pending vl v2 11 ol 12 02 divVs)
(if incompleteSpecDetected ; no need to consider rest..
pending
(epAux (epAux pending v2 12 02 divVs) vl 11 ol divVs))))

;33 epAux: auxilary to extendPending above.
(define epAux
(lambda (pending exists 1bl old divVs)
(if exists pending
(enlarge pending 1bl old divVs))))

;33 enlarge: return union:
(define enlarge
(lambda (pending 1bl old divVs)
(if (orAll (map (lambda (e) (equal? e (list 1lbl old divVs)))
(map cdr pending)))
pending
(cons (1list 1bl old divVs) pending))))

;33 anyViolation?: goven an expression, is there any problem with
;55 evaluation it statically at this time:
(define anyViolation?
(lambda (expr divVs)
(if (isSafe? expr divVs) #f
(begin (warning expr divVs) #t))))

;53 1sSafe?: given the expression, is it safe to evaluate it?

;53 being unsafe for an expression means the following:

HE if it is a constant: no such thing, a constant is always safe..

I varRef : it is not defined in the environment,

HH i.e. it is used before being assigned any value
g app : one of the arguments is unsafe.

114

(define isSafe?
(lambda (expr divVs)
(cond ((const? expr) #t)
((varRef? expr) (let ((there (member (symbol->string
(varRef-var expr))
(map car
(append
divVs
initialEnv)))))
(if (equal?
(lookUp (append divVs initialEnv)
(symbol->string
(varRef-var expr)))
uninitialized)
(begin
(comment "** Warning: Unbound var
(varRef-var expr) "\n")

#£))))
((app? expr) (and (andAll (map (lambda (elm)
(isSafe? elm divVs))
(app-rands expr)))
(safeApplication?
(app-rator expr)
(map
(lambda (elm)
(evalExp elm
(append divVs
initialEnv)))
(app-rands expr)))))
(else (error "invalid expression: " expr)))))

;33 createCrash: create a crash node corresponding to an incomplete
;33 specification result:
(define createCrash
(lambda (bbResult)
(let ((oldCode (peBB-code bbResult)))
(make-basicBlk
(basicBlk-1bl oldCode) ()
(make-return (make-const ’singleton ’run_time_crash))))))

D.13 The Useless Code Remover: ucr.s

;33 File dcr.s: contains functions for dead code removal

;33 The algorithm for dead code removal consists of identifying live
;53 variables at each basic block and removing assignment statements
;33 that attach values to the dead variables. This is done via the
;;; computation of def (defines) and use (uses) sets at each basic
;33 block. def set corresponds to the variables that are defined

;33 before being used in that basic block. use is the set of

;33 variables that are used before being defined. In and Out sets
;33 serve our purpose in finding live variables. In set of a basic
;33 block is the set of variables that must be live when that block

115

;33 1s being executed. Out set shows which variables should be

;35 evaluated, clearly it is the union of the in sets of the reachable
;35 blocks from the current block. The algorithm terminates by removing
;;; those assignments which are not necessary within the basic block
;33 under consideration.

;;; defSet: given a basic block compute its def set
;33 which are used in the live variable analysis
(define defSet
(lambda (bblk)

(defSetAux (basicBlk-assigns bblk) ())))

;33 defSetAux: compute def set:
(define defSetAux
(lambda (assignlList usedSet)
(cond ((null? assignList) ()
(else
(let*
((curVar (string->symbol (assign-var (car assignlList))))
(tempList (dependents (assign-expr (car assignlist))))
(newUsed (setUnion templist usedSet))

(rest (defSetAux (cdr assignList) newUsed)))
(if (member curVar newUsed) ; found before?
rest

(setUnion (list curVar) rest)))))))

;55 useSet: given a basic block compute its use set:
(define useSet
(lambda (bblk)
(useSetAux (append (basicBlk-assigns bblk) ; consider both
(1ist (basicBlk-jump bblk))) ; assigns and jump
O

;33 useSetAux: compute use set:
(define useSetAux
(lambda (instList defd)

(cond ((null? (cdr instList)) ; it is the jump
(if (return? (car instlList))
(setDifference
(dependents (return-exp (car instList)))
defd)
(setDifference ; condJump
(dependents (condJump-expr (car instList)))
defd)))
(else (setUnion
(setDifference

(dependents (assign-expr (car instList))) defd)
(useSetAux (cdr instList)
(setUnion
(1ist (string->symbol
(assign-var (car instList))))

defd)))))))

;;; dependents: given an expression return the set of dependents:

116

(define dependents
(lambda (expr)
(cond ((const? expr) ()) ; a constant depends on nothing
((varRef? expr) (list (varRef-var expr)))
((app? expr) (apply setUnion (map dependents (app-rands expr))))
(else (error "invalid expression: " expr)))))

;33 dcr: dead code remover, receive an ast return another
;33 ast which have no dead code:
(define dcr
(lambda (prg)
(make-pgm (pgm-readBlk prg)
(eliminateDeads
(pgm-basicBlks prg)
(dcrAux (pgm-basicBlks prg)
(prepareDefAndUse (pgm-basicBlks prg)))))))

;35 attr is associated with each basic block keeping the in out def and
;33 use sets:
(define-structure attr 1bl flag in out def use)

;33 prepareDefAndUse: return a list of attr structures for basicBlocks
(define prepareDefAndUse
(lambda (allBlocks)
(map (lambda (blk)
(make-attr
(basicBlk-1bl blk) #f ; not changed
() ’ERR ; out not defined yet
(defSet blk)
(useSet blk)))
allBlocks)))

;33 dcrAux: given program compute in and out sets
(define dcrAux
(lambda (bblks attrList)
(let ((newAttr (alterAttrList bblks attrList attrList)))
(if (orAll (map attr-flag newAttr)) ; empty list must be false
(dcrAux bblks (map resetFlag newAttr))
(map attr-out newAttr))))) ; return out lists

;55 resetFlag: reset flag to #f, the rest is copied along..
(define resetFlag
(lambda (elm)
(make-attr
(attr-1bl elm) #f
(attr-in elm) (attr-out elm)
(attr-def elm) (attr-use elm))))

;33 alterAttrList: compute in and outs alter flag correspondingly

(define alterAttrList

(lambda (bblks iterateAttr oldAttr)

(cond ((null? bblks) oldAttr)
(else (alterAttrList (cdr bblks) (cdr iterateAttr)
(singleBlk (car bblks)

(car iterateAttr)
oldAttr))))))

117

;55 singleBlk: compute in and out list at this particular block:
(define singleBlk

(lambda (blk curAttr oldAttrs)

(let ((newOut (let ((nexts (successors (basicBlk-jump blk))))
(if (null? nexts)

(dependents (return-exp (basicBlk-jump blk)))
(setUnion (dependents (condJump-expr

(basicBlk-jump blk)))

(computeQut nexts oldAttrs))))))
(updateAttr oldAttrs (setUnion (attr-use curAttr)

(setDifference
new(Qut
(attr-def curAttr)))
newOut (attr-1bl curAttr)))))

;33 successors: return the labels of the successor nodes:
(define successors

(lambda (jmp)

(cond ((return? jmp) ()) ; no successor of return

((condJump? jmp) (list (condJump-1bll jmp)
(condJump-1b12 jmp)))
(else (error "invalid jump: " jmp)))))

;33 computeQut: out set of a node:
(define computeQut

(lambda (succs attrList)
(cond ((null? succs) ())
(else (setUnion (getInSet (car succs) attrList)
(computeQut (cdr succs) attrList))))))
;33 getInSet: return the in set of a node in attrList

(define getInSet
(lambda (name attrList)

(cond ((null? attrList) (error "something wrong with attributes"))
((equal? (attr-1bl (car attrList)) name)
(attr-in (car attrList)))

(else (getInSet name (cdr attrList))))))

;55 updateAttr: update attr list, update flag if necessary
(define updateAttr

(lambda (o0ldList newIn newOut which)
(cond ((null? oldList) ())
((equal? (attr-1bl (car oldList)) which)

(cons (updateThisAttr (car oldList) newIn new(Qut)
(cdr oldList)))

(else (cons (car oldList)
(updateAttr (cdr oldList)
newlIn newOut which))))))

;55 updateThisAttr: update a particular attribute record:
(define updateThisAttr
(lambda (0ld newIn newOut)

(make-attr

(attr-1bl old)
(not (setEqual? newIn (attr-in o0ld)))

118

newln newOut (attr-def old) (attr-use o0ld))))

;55 eliminateDeads: using out sets remove unnecessary assignments:
(define eliminateDeads
(lambda (bblks outLists)

(map removeDeadAssigns bblks outLists)))

;33 removeDeadAssigns: return only the necessary part:
(define removeDeadAssigns
(lambda (blk out)
(let ((newBlk (make-basicBlk
(basicBlk-1bl blk)
(deadAssign (basicBlk-assigns blk) out
(cdr (append (basicBlk-assigns blk)
(1list (basicBlk-jump blk)))))
(basicBlk-jump blk))))
(if (equal? (length (basicBlk-assigns blk))
(length (basicBlk-assigns newBlk)))
newBlk ; lteration complete
(removeDeadAssigns newBlk out))))) ; go on..

;;; deadAssign: remove or retain assignments:
;33 to remove an assignment it should assign to a variable
;33 that is not in the out set of that basic block, but that
;33 variable should also be not referenced within the same basic
;33 block, after that assignment takes place.
;33 1.e. let the assignments be:
HHH a := 3;
HHH b 1= a+2;
;;; and say a is dead but b is live. removing the dead assignment
;35 a would not help in this case since b would take a wrong
;33 value in that case.
(define deadAssign
(lambda (assigns out checkList)
(cond ((null? assigns) ()
((or (member (string->symbol (assign-var (car assigns))) out)
(furtherUsed (string->symbol (assign-var (car assigns)))
checkList))
(cons (car assigns)
(deadAssign (cdr assigns) out (cdr checkList))))
(else (deadAssign (cdr assigns) out (cdr checkList))))))

;33 furtherUsed: a var may not be in out, but may be used in some
;33 other point in the same basic block:
(define furtherUsed
(lambda (var checkList)
(member var (apply setUnion (map collectDepends checkList)))))

;33 collect depends: return dependents..
(define collectDepends
(lambda (instr)
(cond ((assign? instr) (dependents (assign-expr instr)))
((condJump? instr) (dependents (condJump-expr instr)))
((return? instr) (dependents (return-exp instr)))
(else (error "invalid instruction " instr)))))

119

D.14 Guard system of ILPOS: guards.s

;33 File guards.s: this file contains guards with respect to the
;33 library functions, i.e. when they will go wrong..

;33 safeApplication?: is the function safe for these data?
(define safeApplication?
(lambda (rator rands)
(if ((selectGuard rator) rands) #t
(begin (comment "** Warning the call <" rator "> has problems.\n")

#£))))
;33 define guards:

;55 head guard: single arity, argument must be non empty list.
(define headGuard
(lambda (elm)
(and (equal? (length elm) 1)
(1ist? (car elm))
(not (null? (car elm))))))

;33 consGuard: arity: 2, second must be list.
(define consGuard
(lambda (elm)
(and (equal? (length elm) 2)
(1ist? (cadr elm)))))

;35 appendGuard: arity: n, all must be lists
(define appendGuard
(lambda (elm)
(andAll (map list? elm))))

;33 mustbelistGuard: single arity list.
(define mustbeListGuard
(lambda (elm)
(and (equal? (length elm) 1)
(1ist? (car elm)))))

;35 eqGuard: arity: 2
(define eqGuard
(lambda (elm)
(equal? (length elm) 2)))

;33 noGuard: nothing imposed:
(define noGuard
(lambda (elm) #t))

;55 twoArgNumsGuard: two arguments, both must be numbers:
(define twoArgNumsGuard
(lambda (elm)
(and (equal? (length elm) 2)
(numberl. (car elm))
(numberl. (cadr elm)))))

120

;33 divGuard: two arguments, both must be numbers, second non-zero:

(define divGuard
(lambda (elm)
(and (equal? (length elm) 2)
(numberL (car elm))
(numberL (cadr elm))
(not (equall (cadr elm) ’0)))))

;33 oneArgNumGuard: two arguments, both must be numbers:
(define oneArgNumGuard
(lambda (elm)
(and (equal? (length elm) 1)
(numberL (car elm)))))

;33 oneArgNumPosGuard: one arg, number, positive
(define oneArgNumPosGuard
(lambda (elm)
(and (equal? (length elm) 1)
(numberl. (car elm))
(>= (symbol->number (car elm)) 0))))

;33 selectGuard: for each function specify the guard to be used:

(define selectGuard
(lambda (func)

(cond ((equal? func "hd") headGuard)

((equal? func "cons") consGuard)

q
((equal? func "first_instruction") headGuard)

q
((equal? func "rest") headGuard)
((equal? func "list") noGuard)
((equal? func "member") consGuard)
((equal? func "append") appendGuard)

q pPp 1Y
((equal? func "new_tail") noGuard)
((equal? func "eq") eqGuard)
((equal? func "transition") noGuard)
((equal? func "firstsym") mustbelistGuard)
((equal? func "t1") mustbelListGuard)

q
((equal? func "add") twoArgNumsGuard)
((equal? func "mul") twoArgNumsGuard)
((equal? func "sub") twoArgNumsGuard)
((equal? func "div") divGuard)
((equal? func "intdiv") divGuard)
((equal? func "odd") oneArgNumGuard)
((equal? func "even" oneArgNumGuard)
((equal? func "1t") twoArgNumsGuard)
((equal? func "gt") twoArgNumsGuard)
((equal? func "lte") twoArgNumsGuard)
((equal? func "gte") twoArgNumsGuard)
((equal? func "inform_sga") noGuard)
((equal? func "sqrt") oneArgNumPosGuard)
((equal? func "exp") oneArgNumGuard)

(else (error "guard undefined for" func)))))

121

D.15 Code minimizer of ILPOS: minimize.s

;33 File minimize.s: contains functions for minimization of the program.

;33 The minimization algorithm is very much like the finite state

;35 machine minimization algorithms that appear in the literature.

;33 We define an equivalent code concept as follows: two basic

;33 blocks are operationally equivalent if they make the same

;;; assignments to same variables, i.e. some sort of structural

;33 equivalence. Then we say that two blocks are equivalent if

;33 they are code equivalent and their jumps are to those blocks which
;33 are also code equivalent. Note that this signals a closure algorithm.

;33 Clearly this definition defines an equivalence relation on the
;33 blocks of the program. Once those equivalence classes are found
;33 all the program is transformed into an equivalent code that only
;55 has N blocks where N is the number of equivalence classes. This
;33 clearly improves the efficiency.

;33 One improvement to the minimization of the blocks is the following:
;33 the analysis of codes to determine whether they are equivalent is
;35 not as good as it can be. We look at exact structural equivalence.

;55 This can be improved by allowing more flexible equivalence definitions.

;;; But note that this is a difficult problem since, essentially, you
;33 are trying to determine whether two functions (i.e. basic blocks)

;33 compute exactly the same function. This problem is an unsolvable problem
;33 for any arbitrary two Turing Machines. 0f course the current problem is

;;; somewhat simpler but not at all tricky. 0f course one may offer a
;53 better algorithm that applies some checks for enabling the
;33 ldentification of operationally equivalent blocks.

;33 minimize the ast using equivalent code concept:
(define minAst
(lambda (ast)
(let ((piFinal (computePi (findFlow (pgm-basicBlks ast))
(pgm-basicBlks ast))))
(make-pgm (pgm-readBlk ast)
(reducePgm (pgm-basicBlks ast) piFinal)))))

;33 findFlow: extract flow of the program, i.e. which blocks are
;33 followed by which.
(define findFlow

(lambda (bblks)

(map (lambda (blk)
(1ist (basicBlk-1bl blk)
(nextStates (basicBlk-jump blk))))
bblks)))

;33 nextStates: which states follow this block?
(define nextStates
(lambda (jmp)
(cond ((condJump? jmp) (list (condJump-1bll jmp)
(condJump-1b12 jmp)))

122

((return? jmp) ()) ; no successor of return..
(else (error "invalid jump: " jmp)))))

;53 computePi: return the partition of equivalent states:
(define computePi
(lambda (flow bblks)
(let ((pi0 (computePiO (map car flow) bblks)))
(computePiAux pi0 flow))))

;33 computePiAux: start from piO and find final partition
;33 the main algorithm is that two blocks are in the same
;33 block in the ith partition if they were in the same
;33 block in the (i-1)st partition and their next states are
;55 in the same block in the (i-1)st partition. The algorithm
;;; stops when ith and (i+1)st partitions are the same.
(define computePiAux
(lambda (piN flow)
(let ((piN+1 (nextPi piN flow)))
(if (equal? (length piN+1) (length piN))
piN
(computePilux piN+1 flow)))))

;33 computePiO: find initial partition:
;53 two nodes are in the same partition if they are code equivalent
(define computePil
(lambda (states bblks)
(genPi0 (list (list (car states))) (cdr states) bblks)))

;55 genPi0O: construct initial partition by inspecting the code..
(define genPiO
(lambda (partSoFar rest bblks)
(cond ((null? rest) partSoFar)
(else (genPiO (place partSoFar (car rest) bblks)
(cdr rest)
bblks)))))

;33 place: place a node in a partition
(define place
(lambda (soFar elm bblks)
(cond ((null? soFar) (list (list elm)))
((isEquivalent? (caar soFar) elm bblks)
(cons (cons elm (car soFar)) (cdr soFar)))
(else (cons (car soFar) (place (cdr soFar) elm bblks))))))

;55 isEquivalent?: are these two codes semantically equivalent?
;53 two blocks are semantically equivalent if they have the same
;;; assignments + they terminate with return with the same expression
;33 or they terminate with a conditional jump with the same expression
;33 no matter what their jumps are
(define isEquivalent?
(lambda (11 12 bblks)
(let ((blkl (getBlk bblks 11))
(b1lk2 (getBlk bblks 12)))
(and (equal? (length (basicBlk-assigns blk1))
(length (basicBlk-assigns blk2)))
(sameJump? (basicBlk-jump blk1l) (basicBlk-jump blk2))

123

(sameExpr? (getJumpExpr (basicBlk-jump blk1))
(getJumpExpr (basicBlk-jump blk2)))
(equal? (map assign-var (basicBlk-assigns blk1))
(map assign-var (basicBlk-assigns blk2)))
(andAll (map sameExpr?
(map assign-expr (basicBlk-assigns blk1))

(map assign-expr (basicBlk-assigns blk2))))))))

;33 sameJump?: both if or both return
(define sameJump?
(lambda (j1 j2)
(or (and (return? j1) (return? j2))
(and (condJump? j1) (condJump? j2)))))

;55 getJumpExpr : return the expression associated with the jump
(define getJumpExpr
(lambda (jmp)
(cond ((return? jmp) (return-exp jmp))
((condJump? jmp) (condJump-expr jmp))
(else (error "invalid jump: " jmp)))))

;33 sameExpr? are the expressions same?
(define sameExpr?
(lambda (expl exp2)
(cond ((and (const? expl) (const? exp2))
(equal? (const-val expl) (const-val exp2)))
((and (varRef? expl) (varRef? exp2))
(equal? (varRef-var expl) (varRef-var exp2)))
((and (app? expl) (app? exp2))
(and
(equal? (app-rator expl) (app-rator exp2))
(andAll (map sameExpr? (app-rands expl) (app-rands exp2)))))
(else #£))))

;53 nextPi: given a partition, refine it to find next..
(define nextPi
(lambda (curPi flow)
(apply append (map (lambda (block) (refine block flow curPi))
curPi))))

;;; refine: given a block in a partition, refimne it..
(define refine
(lambda (block flow prevPi)
(refineAux (list (list (car block))) (cdr block) flow prevPi)))

;33 refineAux: place new nodes..
(define refineAux
(lambda (prev rest flow prevPi)
(cond ((null? rest) prev)
(else (refineAux (refinelnsert prev (car rest) flow prevPi)
(cdr rest) flow prevPi)))))

;33 refinelnsert: place or create new block:
(define refinelnsert
(lambda (prev elm flow prevPi)
(cond ((null? prev) (list (list elm)))

124

((successorsInSameBlock? elm (caar prev) flow prevPi)
(cons (cons elm (car prev)) (cdr prev)))
(else (cons (car prev) (refineInsert (cdr prev)

elm flow prevPi))))))

;33 successorsInSameBlock? check if the next states are in the same block..
(define successorsInSameBlock?
(lambda (11 12 flow prevPi)
(letrec ((search
(lambda (1 f)
(cond ((null? f) (error "something wrong"))
((equal? 1 (caar f)) (cadar f))
(else (search 1 (cdr)))))))
(let ((nextl (search 11 flow))
(next2 (search 12 flow)))
(cond ((and (null? nextl) (null? next2)) #t)
((or (null? nextl) (null? next2)) #f)
(else (and
(isTogether? (car nextl)
(car next2) prevPi)
(isTogether? (cadr nextl)
(cadr next2) prevPi))))))))

;55 isTogether?: are these two in the same block of the partition
(define isTogether?
(lambda (11 12 partition)
(cond ((null? partition) #f)
((and (member 11 (car partition))
(member 12 (car partition))) #t)
(else (isTogether? 11 12 (cdr partition))))))

;33 reducePgm: reduce the program to have the minimum number of states:
(define reducePgm
(lambda (bblks pi)
(reducePgmAux bblks pi (allFalse (length pi)))))

;33 allFalse: return a list of length n with all true :
(define allFalse
(lambda (n)
(cond ((equal? n 0) ())
(else (cons #f (allFalse (- n 1)))))))

;33 reducePgmAux: reduce the program by generating only the necessary code:
(define reducePgmAux
(lambda (bblks pi used)
(cond ((null? bblks) ())
(else (let* ((blockNo (indexInPi (basicBlk-1bl (car bblks))
pi 0))
(done (isDone? blockNo used)))
(if done
(reducePgmAux (cdr bblks) pi used)
(cons (xformBlock (car bblks) blockNo pi)
(reducePgmAux (cdr bblks) pi
(alterUsed
used blockNo)))))))))

125

;33 indexInPi: where does this label go in pi:
(define indexInPi
(lambda (1bl pi cnt)
(cond ((null? pi) (error "something wrong with pi"))
((member 1bl (car pi)) cnt)
(else (indexInPi 1bl (cdr pi) (+ cnt 1))))))

;33 isDone?: is the nth entry true?
(define isDone?
(lambda (n 1st)
(cond ((equal? n 0) (car 1lst))
(else (isDone? (- n 1) (cdr 1st))))))

;53 alterUsed: change n’th entry to #t
(define alterUsed
(lambda (1st n)
(cond ((equal? n 0) (cons #t (cdr 1lst)))
(else (cons (car 1st) (alterUsed (cdr 1st) (- n 1)))))))

;33 xformBlock: transfer the block into the equivalent minimized form:
(define xformBlock
(lambda (blk no pi)
(make-basicBlk
(string-append "lpe" (number->string no))
(basicBlk-assigns blk)
(xformJump (basicBlk-jump blk) pi))))

;33 xformJump: transfer jumps:
(define xformJump
(lambda (jmp pi)
(cond ((return? jmp) jmp)
(else (make-condJump (condJump-expr jmp)
(constNewLabel (condJump-1bll jmp) pi)
(constNewLabel (condJump-1bl2 jmp) pi))))))

;33 constNewLabel: return new label name:
(define constNewLabel
(lambda (old pi)
(string-append "lpe" (number->string (indexInPi old pi 0)))))

D.16 Code linearizer of ILPOS: linearize.s

;33 File linearize.s: contains functions for linearization and
;33 canonicalization of the residual code.

;55 The minimization procedure gives us a minimum program (in the
;;; sense that it contains the minimum number of basic blocks).
;35 Due to the equivalent block concept it may turn around that
;33 a conditional jump statement may jump to the same (i.e

;;; semantically equivalent one) blocks. This is exploited by

;33 the minimizer by jumps to a node that represents the

;55 equivalence class of those two blocks. Clearly such a

;55 dynamic conditional jump is equivalent to a goto without

126

;33 any regard to the test expression. The linearization

;53 functions analyze the program for such conditional jumps and

;55 convert them to goto’s. After this process there comes the

;33 1ldea of goto transition since no residual code need to have

;33 unconditional goto’s (same idea as used in the partial evaluator).
;33 So another pass through the program compresses all these goto’s.

;55 It is clear that this process will not be needed too much. This
;55 essentially requires the program to jump into equivalent states
;33 according to some dynamic condition. Nevertheless this analysis
;33 must be done because of two reasons: 1. to be complete, 2. strange
;33 static data may result in many dead code that is removed and

;35 thus making inequivalent states equivalent.

;33 After linearization one more pass is made for canonicalization. This
;33 pass ensures the labels to be from lpe0 to some lpeN by relabeling
;35 all the basic blocks. This phase also removes any block that becomes
;33 inaccessible by all the transformations that are done by the

;33 previous phases. So the resulting code becomes well-labeled and,

;35 in a sense, fully-connected with respect to the static data

;33 that it has been specialized for.

;35 linAst: given an ast first linearize then canonicalize and return
;33 a new ast for the resulting program:
(define linAst
(lambda (ast)
(make-pgm (pgm-readBlk ast)
(canonize
(onlyReachables (linearize (pgm-basicBlks ast)))))))

;33 linearize: check and linearize the basic blocks:
(define linearize
(lambda (bblks)
(if (orAll (map compressable? (map basicBlk-jump bblks)))
(let ((allGotos (map convertToGoto bblks)))
(compressAll allGotos allGotos))
bblks)))

;33 isLinearizable?: is the program linearizable?
(define isLinearizable?
(lambda (ast)
(orAll (map compressable?
(map basicBlk-jump (pgm-basicBlks ast))))))

;33 compressable?: is the block compressable? i.e. does it have a
;35 conditional jump that jumps to the same block?
(define compressable?
(lambda (jmp)
(cond ((return? jmp) #f)
((condJump? jmp) (equal? (condJump-1bll jmp)
(condJump-1b12 jmp)))
(else (error "something wrong with jump: " jmp)))))

;53 convertToGoto: change the if to a jump if it is a compressible block

127

;33 this saves the time for computing the dynamic expression at run time,
;53 but creates goto’s to be compressed later.
(define convertToGoto
(lambda (blk)
(if (compressable? (basicBlk-jump blk))
(make-basicBlk

(basicBlk-1bl blk) ; copy along.

(basicBlk-assigns blk) ; copy along.

(make-goto (condJump-1bll (basicBlk-jump blk))))
blk)))

;33 compressAll: compress the goto transition
;55 attach the assignments of the blocks that are direct followers of
;55 this block, the classical goto compression stuff:
(define compressAll
(lambda (bblks whole)
(cond ((null? bblks) ())
((goto? (basicBlk-jump (car bblks)))
(cons (attachFollowers (car bblks) whole)
(compressAll (cdr bblks) whole)))
(else (cons (car bblks) (compressAll (cdr bblks) whole))))))

;33 attachFollowers: construct a new block by attaching the followers:
(define attachFollowers
(lambda (blk whole)
(if (goto? (basicBlk-jump blk))
(let ((follower (getBlk whole (goto-1bl (basicBlk-jump blk)))))
(attachFollowers
(make-basicBlk
(basicBlk-1bl blk)
(append (basicBlk-assigns blk) ;attach assignments
(basicBlk-assigns follower)) ;to old ones..
(basicBlk-jump follower)) whole))
blk))) ; return if no follower exists

;55 onlyReachables: the above process may lead to some states

;33 which become unreachable, remove them: apply a classical

;33 reachable set algorithm:

(define onlyReachables

(lambda (bblks)
(keepOrRemoveBlocks bblks

(computeReachables
(list (basicBlk-1bl (car bblks)))
bblks))))

;33 computeReachables: which nodes are reachable?
;53 starting from initial node, add, in each pass, the accessible
;33 nodes to our initial set until no new node is added.
(define computeReachables
(lambda (initSet bblks)
(let ((newSet (setUnion

initSet ; add to initials

(apply setUnion
(map ; whatever follows..
(lambda (1bl) (whatFollows 1bl bblks))
initSet)))))

128

(if (equal? (length initSet) (length newSet)) ; any change?
initSet ; no: finished
(computeReachables newSet bblks))))) ; yes: go on..

;33 whatFollows: what follows this block?

;33 1lnspect the labels in goto’s and condJumps..

(define whatFollows

(lambda (1bl bblks)
(let ((theJump (basicBlk-jump (getBlk bblks 1bl))))
(cond ((return? theJump) ())
((goto? theJump) (list (goto-1lbl theJump)))
((condJump? theJump) (list (condJump-1bll theJump)
(condJump-1b12 theJump)))

(else (error "something wrong with jump: " theJump))))))

;33 keepOrRemoveBlocks: if a block is reachable keep it otherwise remove:
(define keepOrRemoveBlocks
(lambda (bblks reachables)
(cond ((null? bblks) ())
((member (basicBlk-1bl (car bblks)) reachables)
(cons (car bblks) (keepOrRemoveBlocks (cdr bblks) reachables)))
(else (keepOrRemoveBlocks (cdr bblks) reachables)))))

;33 canonize: make the labels appear numbered from O to N-1 where N is
;35 the number of blocks in the final residual program..
(define canonize
(lambda (bblks)
(let ((1blList (map basicBlk-1bl bblks)))
(map (lambda (blk) (renameBlk blk 1blList)) bblks))))

;33 renameBlk: rename the block canonically:
(define renameBlk
(lambda (blk nameList)
(make-basicBlk
(xformName (basicBlk-1bl blk) nameList) ; change the name of block

(basicBlk-assigns blk) ; no change in assignments
(let ((jmp (basicBlk-jump blk)))
(cond ((return? jmp) jmp) ; take care of jumps.

((goto? jmp) (make-goto (xformName (goto-1bl jmp)
namelist)))
((condJump? jmp) (make-condJump
(condJump-expr jmp)
(xformName (condJump-1bll jmp)
nameList)
(xformName (condJump-1bl2 jmp)
namelist)))
(else (error "illegal jump: " jmp)))))))

;33 xformName: return the canonical name: the new name is formed by attaching
;33 a number to the generic name lpe, the number corresponds to the index
;33 of that name in the reachable list..
(define xformName
(lambda (o0ld nameList)
(string-append "lpe" (number->string (returnIndex old nameList 0)))))

;33 returnIndex: return the place of the elm:

129

(define returnIndex
(lambda (o0ld 1lst cnt)
(cond ((null? 1st) (error "something wrong in returnIndex"))
((equal? (car 1lst) old) cnt) ; found..
(else (returnIndex old (cdr 1st) (+ cnt 1))))))

D.17 The Symbolic Gain Analyzer: symbSpeedUp.s

;33 File symbSpeedUp.s: contains functions for collecting statistics
;33 on the running times of the L programs.

;33 The symbolic speed-up will be determined by comparing the

;33 corresponding vectors for the original and specialized programs.

;35 The cost vector (CV) for an L program is a vector of 10 elements,
;55 each showing a different counts on that particular run. The elements
;;; are as follows:

HE jumps, assignments, variable references, decisions, eq call,
H hd call, rest call, list call, append call, search, intern, other calls

;35 other calls entry is the total number of calls to the library
;33 functions other than eq, hd, rest, list and append.

;33 the search entry is slightly different. It is used to simulate

;33 no cost searches and only applied in the SGA analysis phase.

;33 intern shows the internal communication and has nothing to do with
;33 the actual analysis.

;33 indices into the CV vector:

;3;; to add a new index:

HE 1. define an index for it

HE 2. alter the CV definitions 2 times below to include them, all 0’s part
- i.e. increment the index count by 1.

M 3. in recordLibCall, include this new function

HEH 4. in printAllResults, include the output line

S 5. alter weightsSGA vector to reflect the speed up
(define jumpCV 0)

(define assignCV 1)

(define varRefCV 2)

(define decisionCV 3)

(define eqCV 4)
(define hdCV 5)
(define restCV 6)
(define 1istCV 7)

(define appendCV 8)
(define searchCV 9)
(define internCV 10)

(define addCv 11)
(define subCV 12)
(define mulCV 13)
(define divCV 14)

130

(define oddCV 15)
(define evenCV 16)
(define othersCV 17)

;33 allZeros: produce a list of all zeros:
(define allZeros
(lambda (n)
(cond ((equal? n 0) ())
(else (cons 0 (allZeros (- n 1)))))))

;33 the CV vector: the number of 0’s must be: last index + 1.
(define CV (allZeros 18)) ; initial value..

;35 File analyzer:
(define 1CV
(lambda (fname)
(1CVAst (parsel (readPgm fname)))))

;33 Ast analyzer:
(define 1CVAst
(lambda (ast)
(begin (set! CV (allZeros 18)) ; reset
(let ((val (runCV ast)))
(list val CV)))))

;33 run the program and construct CV:
(define runCV
(lambda (ast)
(interpResult-val
(initiateCV (pgm-basicBlks ast)
(interpResult-env
(loadVars (pgm-readBlk ast) initialEnv))))))

;33 initiate: start execution:
(define initiateCV
(lambda (bblks env)
(cond ((null? bblks) (make-interpResult ’NOVALUE env))
(else (executeCV bblks (car bblks) env)))))

;55 executeCV: execute the pgm, record modifications into CV:
(define executeCV
(lambda (pgm curBlk env)
(let* ((newEnv (performAssignsCV (basicBlk-assigns curBlk) env))
(nextBlkInfo (whereToGoCV (basicBlk-jump curBlk) newEnv)))
(if (equal? (car nextBlkInfo) ’TERMINATE)
(make-interpResult (cdr nextBlkInfo) newEnv)
(begin (incrCV! jumpCV)
(if (condJump? (basicBlk-jump curBlk))
(incrCV! decisionCV) #t)
(executeCV pgm (getBlk pgm (car nextBlkInfo))
newEnv))))))

;33 whereToGoCV: execute and decide jumps:
(define whereToGoCV
(lambda (jstmt env)
(cond ((goto? jstmt) (cons (goto-1bl jstmt) ’NOVALUE))

131

((return? jstmt) (cons ’TERMINATE
(evalExpCV (return-exp jstmt) env)))
((condJump? jstmt) (cons
((if (evalExpCV (condJump-expr jstmt) env)
condJump-1bl1
condJump-1b12)
jstmt) ’NOVALUE))
(else (error "Invalid jump: " jstmt)))))

;33 performAssignsCV: evaluate and form the new assignments: return env
(define performAssignsCV
(lambda (assigns env)
(cond ((null? assigns) env)
(else (performAssignsCV (cdr assigns)
(doAssignCV (car assigns) env))))))

;33 doAssignCV: perform a single assignment: return the new environment.
(define doAssignCV
(lambda (astmt env)
(incrCV! assignCV)
(update env (assign-var astmt) (evalExpCV (assign-expr astmt) env))))

;35 evalExpCV: return value of the expression, update CV accordingly..
(define evalExpCV
(lambda (exp env)
(cond ((const? exp) (cond ((equal? (const-type exp) ’singleton)
(beautify (const-val exp)))
((equal? (const-type exp) ’listing)
(formList (beautify (const-val exp)) env))
(else (error "Unknown const" exp))))
((varRef? exp) (begin
(incrCV! varRefCV)
(lookUp env (symbol->string (varRef-var exp)))))
((app? exp) (applyCV
(app-rator exp)
(lookUp env (string->symbol (app-rator exp)))
(map (lambda (e) (evalExpCV e env))
(app-rands exp))))
(else (error "Unknown exp type: " exp)))))

;55 applyCV: first record the used function then apply it:
(define applyCV
(lambda (fnName fn args)
(recordLibCall fnName)
(apply fn args)))

;35 recordLibCall: increment according to the function name:
(define recordLibCall
(lambda (fnName)
(incrCV! (cond ((equal? fnName "eq") eqCV)

((equal? fnName "hd") hdCV)
((equal? fnName "rest") restCV)
((equal? fnName "1list") 1listCV)
((equal? fnName "append") appendCV)
((equal? fnName "inform_sga") internCV)
((equal? fnName "add") addCV)

132

((equal?
((equal?
((equal?
((equal?
((equal?

fnName "sub") subCV)
fnName "mul") mulCV)
fnName "div") divCV)
fnName "odd") oddCV)
fnName "even") evenCV)

(else othersCV)))))

;53 incrCV!: increment the entry by 1:

(define incrCV!
(lambda (which)

(if SGAstopCount #t ; then do not do anything..
(letRec ((alterCV (lambda

(set! CV (a

(which what)
(if (equal? which 0)
(cons (+ 1 (car what)) (cdr what))
(cons (car what)
(alterCV (- which 1) (cdr what)))))))
1terCV which CV))))))

;33 document results as a list: sga: symbolic gain analyzer..

(define sga
(lambda (fname)

(let ((sgaPort (open-output-file (string-append fname ".peo.sga"))))
(mdisplay "Preparing for gain analysis on \"" fname "\"..\n")

(sgalntroduce sgaP
(set! SGAstopCount

ort)
#£)

(let* ((f1 (string-append fname ".1lp"))

(f2 (string-append fname
(f3 (string-append fname

(astl (pars
(ast2 (pars
(ast3 (pars

.pe.1p"))
.peo.1lp"))
el (readPgm f1)))
el (readPgm £2)))
el (readPgm £3)))

(bblkl (length (pgm-basicBlks astl)))
(bblk2 (length (pgm-basicBlks ast2)))
(bblk3 (length (pgm-basicBlks ast3)))
(noasl (howManyAssigns astl))
(noas2 (howManyAssigns ast2))
(noas3 (howManyAssigns ast3)))

(sgaComment

sgaPort
"Working dir : "
(directory-namestring
(working-directory-pathname))
"\n\nSymbolic analysis performed on:\n\n"
"Input : " f£f1 "\nPE file : " £2
"\nResidual : " £3 "\n\n"
"Symbolic Analysis Results:

"(only the relevant entries are printed.)\n\n")

(mdisplay "Analyzing \"" £1 "\"..\n")

(let ((stati
(mdispl
(let ((

(cadr (lcvAst astl))))
ay "Analyzing \"" £2 "\"..\n")
stat? (cadr (lcvAst ast2))))

(mdisplay "Analyzing \"" £3 "\"..\n")

1

et* ((stat3 (cadr (lcvAst ast3)))
(gainList
(determineGain
(append statl (list bblkl noasl))

133

(append stat2 (list bblk2 noas2))
(append stat3 (list bblk3 noas3))))
(costs (map (lambda (elm)
(1list (car elm)
(cadr elm)
(caddr elm)))
gainList))
(onlyCosts (reverse
(cddr (reverse costs)))))
(mdisplay "Writing SGA results to \""

fname ".peo.sga\"..")
(printAllResults gainList sgaPort)
(sgaComment
sgaPort
"\nCost vector is : " weightsSGA

"\n\nCost of Original : "
(findCost (map car onlyCosts) weightsSGA)
"\nCost of PE QOnly : "
(findCost (map cadr onlyCosts)
weightsSGA)
"\nCost of Residual : "
(findCost (map caddr onlyCosts)
weightsSGA)
"\n\nGain by PE Only : "
(findOverallGain
(map car onlyCosts)
(map cadr onlyCosts))
"\nGain by Post Opts: "
(diffCost
(map car onlyCosts)
(map cadr onlyCosts)
(map caddr onlyCosts))
"\n\nOverall Gain is : "
(findOverallGain
(map car onlyCosts)
(map caddr onlyCosts))
"\nThe improvement : "
(percentImpro (map car onlyCosts)
(map caddr onlyCosts)))
(sgaComment sgaPort " %\n\nSGA completed "
"successfully.\n")
(close-output-port sgaPort))))))))

;33 determineGain: merge lists with analysis results..
(define determineGain
(lambda (11 12 13)
(cond ((null? 11) ()
(else (cons (singleGainList (car 11) (car 12) (car 13))
(determineGain (cdr 11) (cdr 12) (cdr 13)))))))

;55 singleGainList: perform operations on a single pair:
(define singleGainList
(lambda (vl v2 v3)
(let* ((properDiv (lambda (a b)
(if (and (equal? a 0) (equal? b 0)) "-"
(if (equal? b 0) "inf"

134

(exact->inexact (/ a b))))))
(r1 (properDiv vl v2))
(r2 (properDiv vl v3)))
(list vl v2 v3 r1 r2 (if (and (number? ri1) (number? r2))
(- r2 r1)
(if (and
(equal? r2 "inf")
(equal? r1 "inf"))

0 "=-")))))
;35 printAllResults: display in tabular form:
(define printAllResults
(lambda (1 prt)

(sgaComment prt " Original PE Only Post-Opts"
" Gainl Gain2 Opt Gain\n")

(sgaComment prt " = —-—mm—m— —mmmmem oo "
I \n")

(singleLinePrint prt "(0) jumps:" 1 0)

(singleLinePrint prt "(1) assigns:" 1 1)

(singleLinePrint prt "(2) var refs:" 1 2)

(singleLinePrint prt "(3)decisions:" 1 3)

(singleLinePrint prt "(4) eq:" 1 4)

(singleLinePrint prt "(5) head:" 1 5)

(singleLinePrint prt "(6) rest:" 1 6)

(singleLinePrint prt "(7) list:" 1 7)

(singlelLinePrint prt "(8) append:" 1 8)

(internInfo prt "(9) search:" 1 9)

(internInfo prt "(10) intern:" 1 10)

(singleLinePrint prt "(11) add:" 1 11)

(singleLinePrint prt "(12) sub:" 1 12)

(singleLinePrint prt "(13) mul:" 1 13)

(singleLinePrint prt "(14) div:" 1 14)

(singleLinePrint prt "(15) odd:" 1 15)

(singleLinePrint prt "(16) even:" 1 16)

(singleLinePrint prt "(17) others:" 1 17)

(sgaComment prt " # BBlks:") (printLinelInfo prt (findLine 1 18))

(sgaComment prt " # Asgns:")

(printLineInfo prt (findLine 1 19))))

(define properDiv
(lambda (a b)
(if (and (equal? a 0) (equal? b 0)) "-"
(if (equal? b 0) "inf"
(exact->inexact (/ a b))))))

;55 printLineInfo: print info for that line:
(define printLineInfo
(lambda (prt line)
(sgaComment prt (goodNum (car line)) (goodNum (cadr line))
(goodNum (caddr line)) " - ="
(goodNum (properDiv (cadr line) (caddr line)))
"\n")))

;33 goodNum: format the number:

(define goodNum
(lambda (n)

135

(placeInStr
(if (not (number? n))
n ; don’t change
(let ((rep (fluid-let ((flonum-unparser-cutoff ’(absolute 3)))
(number->string n))))
(if (equal? (string-ref rep (- (string-length rep) 1))
#\.)
(1list->string (reverse (cdr (reverse
(string->list rep)))))
(if (equal? (string-ref rep 0) #\.)
(string-append "0" rep) rep)))))))

;35 placeInStr: put it in a string of length 10:
(define placeInStr
(lambda (s)
(letrec ((genEmpty (lambda (k)
(if (zero? k)
"" (string-append
" " (genEmpty (- k 1)))))))
(if (> (string-length s) 10) s
(string-append (genEmpty (- 10 (string-length s))) s)))))

;33 findLine: return that Line:
(define findLine
(lambda (1 c)
(cond ((equal? c 0) (car 1))
(else (findLine (cdr 1) (- c 1))))))

;35 internInfo: just single numbers:
(define internInfo
(lambda (prt prompt 1 which)
(let ((thatLine (findLine 1 which)))
(if (not (zero? (car thatLine))) ; if 0, then irrelevant.
(sgaComment prt prompt

(goodNum (car thatLine)) (goodNum 0) (goodNum 0)
" - - —n \a)

#t)))) ; return value not used..

;33 singleLinePrint: single Line statistics:
(define singlelLinePrint
(lambda (prt prompt 1 which)
(let ((thatLine (findLine 1 which)))
(if (not (zero? (car thatLine))) ; if 0, then irrelevant.
(begin
(sgaComment prt prompt)
(forEach (lambda (elm) (sgaComment prt (goodNum elm)))
thatLine)
(sgaComment prt "\n"))
#t)))) ; return value not used..

;33 dotProduct: compute dot product:
(define dotProduct
(lambda (1stl 1st2)
(cond ((null? 1st1l) 0)
(else (+ (* (car 1lstl) (car 1lst2))

136

(dotProduct (cdr 1stl)
(cdr 1st2)))))))

;33 findCost: return formatted dot product:
(define findCost
(lambda (11 12)
(string-trim (goodNum (dotProduct 11 12)))))

;33 findOverallGain: compute and just divide:
(define findOverallGain
(lambda (11 12)
(string-trim (goodNum
(let ((val (properDiv (dotProduct 11 weightsSGA)
(dotProduct 12 weightsSGA))))
(if (number? val) (exact->inexact val) wval))))))

;35 diffCost: compute the difference of costs:
(define diffCost
(lambda (11 12 13)
(let ((pr1 (dotProduct 11 weightsSGA))
(pr2 (dotProduct 12 weightsSGA))
(pr3 (dotProduct 13 weightsSGA)))
(if (= pr3 0) (goodNum "inf")
(string-trim (goodNum (- (exact->inexact (/ prl pr3))
(exact->inexact (/ prl pr2)))))))))

;33 percentImpro: percentage of the improvement:
(define percentImpro
(lambda (cl c2)
(let ((pr1 (dotProduct cl weightsSGA))
(pr2 (dotProduct c2 weightsSGA)))
(string-trim (goodNum
(- 100 (exact->inexact (/ (x 100 pr2) pri))))))))

;55 define the weight vector:

(define weightsSGA ’ (2 ; jump

; assign
; varref
; decision
;i eq

; hd

; rest

; list

; append
; search
; intern
; add

; sub

; mul

; div

; odd

; even
2)) ; others

NN WWWWOWWWNNWDNDRLN

137

