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Abstr act

Value Recursion in Mon adi c Compu t at ion s

Levent Erk•ok

Ph.D., OGI School of Scienceand Engineering,

OregonHealth and Science University

October 2002

Thesis Advisor: Dr. John Launchbury

This thesis addresses the interaction between recursive declarati ons and computational

e�ects modeled by monads. More speci�cal ly, we present a framework for modeling cyclic

de� nit ions result ing from the values of monadic actions. We introduce the term value

recursion to capture this kind of recursion.

Our model of value recursion relieson the existence of particular �xed-p oint operators

for individual monads, whosebehavior is axiomatized via a number of equati onal prop-

erties. These properties regulate the interaction between monadic e�ects and recursive

computat ions, giving rise to a characterization of the required recursion operation. We

present a collection of such operators for monads that are frequently used in functional

programming, including those that model exceptions, non-determinism, input-output, and

stateful computations.

In the context of the programming language Haskell, practical applications of value

recursion give rise to the need for a new language construct, providing support for re-

cursive monadic bindings. We discuss the design and implementat ion of an extension to

Haskell's do-notation which allows variablesto be bound recursively, eliminati ng the need

for programming wit h explicit �xed -point operators.

vii i



Chapter 1

In t ro duct ion

This thesis addresses the interaction between two fundamental notions in programming

languages: Recursion and e�ects. Recursion is the essenceof cyclic de�n it ions, both for

recursive functions and circular data st ructures. E�ec ts are the essenceof computational

features, including I/O, exceptions, and stateful computations. Although both notions

have been studied extensively on their own, their interaction has received relativ ely li ttl e

attention.

1.1 Recur sion and e�e ct s

In the t radit ional domain theoretic setting, the denotational semantics of recursive def-

initi ons are understood in terms of �xed-p oints of continuous functions. That is, the

semant ics of a de� niti on of the form x = f x is taken to be the least �xed-p oint of the

map corresponding to f [82, 83]. The sameprinciple works for both recursive functions

and circular data st ructures, a rather pleasing situati on.

Handling of e�ects in the denotat ional framework, however, proved to be much more

problemati c, often summed up by the phrase\denotational semantics is not modular" [53,

64]. Brie
y , additi on of new e�ect s require substantia l changes to the existing semanti c

description. For instance, excepti onscan bemodeled by adding a special failure element to

each domain, representing the result of a failed computation. But then, even such a simple

thing as the meaningof an arithm etic operation requires a messydenotational descript ion;

one needs to check for failur e at each argument, and propagate accordingly. The story is

similar for other cases, including I/O and assignments, two of the most \ popular" e�ects

found in many programming languages[76, 77].

It was Moggi's in
 uent ial work on monadsthat revolut ionized the semantic t reatment

of e�ects, which he referred to as notions of computation. Moggi showed how monads can

be used to model programming language features in a uniform way, providing an abstract

view of programming languages [62, 63]. In the monadic framework, valuesof a given type

1
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are distinguished from computat ions that yield values of that type. Since the monadic

structur e hides the details of how computations are internally represented and composed,

programmers and language designers work in a much more 
exible environment. This


exibilit y is a huge win over the tradit ional approach, whereeverything has to be explicit .

Perhaps what Moggi did not quite envision was the response from the functional pro-

gramming communit y, who took the idea to heart. Wadler wrote a series of art icles

showing how monadscan be usedin structur ing functional programs themselves,not just

the underlying semant ics [89, 91]. Very quickly, the Haskell commit tee adopted monadic

I/O as the standard meansof performing input and output in Haskell, making monads an

integral part of a modern programming language [68, 69]. The use of monads in Haskell

is further encouraged by special syntactic support, known as the do-notation [47].

As the monadic programming style became more and more popular in Haskell, pro-

grammers started realizing certain shortcomings. For instance, function application be-

comestedious in the presenceof e�ects. Or, the if- then-else construct becomesunsight ly

when the test expression is monadic. However, these are mainly syntactic issuesthat

can easily be worked around. More seriously, the monadic sublanguage lacks support for

recursion over the values of monadic actions. The issue is not merely syntactic ; it is sim-

ply not clear what a recursive de�n ition means when the de�n ing expression can perform

monadic e�ects.

This problem brings us to the subject matter of the present work: Semant ics of recur-

sivedeclarat ions in monadic computations. More speci� cally, our aim is to study recursion

resulting from the cyclic useof valuesin monadic actions. We usethe term value recursion

to describe this notion.

1.2 A mot ivati ng exampl e: M odel ing circuits using monads

To illustrate value recursion, we will consider the example that motivated our work in

the � rst place: modeling circuits using monads. Microarchitectur al design languageshave

been the target of programming language research in recent years, aiming at providing

better language support for managing the complexity of such designs [12, 58]. Lava [8]

and Hawk [49, 59] are two recent systems designedto addressthis need. In this section,

we will considera st ripped down version of such a language, embedded in Haskell.

To familiarize ourselves wit h the types of circuit s we can de� ne, let us � rst consider

a simple non-monadic implementat ion. We represent signals by lists, successive elements

representing the values at each clock tick. Haskell is already expressive enoughto de� ne

the basic building blocks without much di�cult y:
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t yp e Sig � = [� ]

and; xor :: Sig Bool ! Sig Bool ! Sig Bool
and xs ys = zipWith (&& ) xs ys
xor xs ys = zipWith (6=) xs ys

inv :: Sig Bool ! Sig Bool
inv xs = map not xs

delay :: String ! � ! Sig � ! Sig �
delay v xs = v : xs

The delay element forms a signal that behaves as it s second argument during the � rst

clock cycle, behaving as its third argument afterwards. (The � rst argument to delay is

intended to be a name for v. We will use it later.) Of course, a more realisti c example

would come equipped with mult iplexers, registers, etc., but the elements above wil l be

su�c ient for our purposes.For instance, we can model a half-adder simply by:

halfAdd :: Sig Bool ! Sig Bool ! (Sig Bool; Sig Bool )
halfAdd xs ys = (sum; carry )

where sum = xor xs ys
carry = and xs ys

Here is a samplerun:

Main> half Add [Tr ue, True] [ Fals e, True]
([ True,Fal se] ,[Fa lse, True])

As another example, we can create a circuit that togglesits output at each clock t ick,

start ing from the value False:

out

INV

DELAY  False
inp toggle :: Sig Bool

toggle = out
where inp = inv out

out = delay \ False " False inp

Variables inp and out are de�n ed mutual ly recursively, corresponding to the feedback

loop in the circuit diagram. The recursive de� niti on capabilit y of Haskell's where clause

plays a crucial role in expressing the required cyclic dependency. We have:

Main> togg le
[F alse ,Tru e,False ,Tru e,False ,Tru e,False ,Tru e,. ..

Note that the result is an in� nit e signal.
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What can we do with circuit descript ions? Since we model circuits by functions, we

can passthem around and combine them to build bigger circuits. But, eventuall y, all we

can do wit h a circuit is to simulate it , that is, run it on a parti cular input. As pointed

out by Launchbury et al. [49], and Claessen [12], this model does not allow for mult iple

interpretati ons. Ideally, we would like to be able to analyze our circuit s, translat ing

them to other hardware description languagessuch asVHD L. Al ternati vely, we may want

to render the circuit graphically, obtaining a schematic diagram, or recast the circuit

description in the languageof a theorem prover to let us reason about it. We would like

our language to be 
 exible enough to support all of theseviews.

The standard way of atta cking this problem is to abst ract away from any part icular

signal or circuit model, hiding the control 
o w behind a monad, and basic circuit elements

behind a type class. Each alternati ve semanti cs will be represented as an instance of this

class,providing new views of circuit s. Then, by simply switching to a di�e rent monad,

we will be able to obtain an alt ernativ e interpretat ion without changing existing circuit

descriptions. Here is one way of captur ing the required structur e:1

class Monad m ) Circuit m where
and; xor :: Sig Bool ! Sig Bool ! m (Sig Bool)
inv :: Sig Bool ! m (Sig Bool)
delay :: String ! � ! Sig � ! m (Sig � )

For instance, the description of the half-adder becomes:

halfAdd :: Circuit m ) Sig Bool ! Sig Bool ! m (Sig Bool; Sig Bool )
halfAdd i1 i2 = do sum  xor i1 i2

carry  and i1 i2
return (sum; carry )

Note that the new model of halfAdd is not committed to any parti cular circuit model,

or signal data type. It is a generic descript ion of half-adders. To simulate, all we need is

the identit y monad for expressingthe control structur e, and the list model for signals:

t yp e Sig � = [� ]
data Simulate � = Sim � deriv ing Show

ins t ance Monad Simulate where
return x = Sim x
Sim x � = f = f x

Unsurprisingly, the Circuit instance for the Simulate monad will simply mimic our

non-monadic implementation:

1A better alternativ e would be parameterizing the Cir cuit class over the Sig type as well, using a
multipara meter type class. We refrain from doing so, however, for the sake of simplici ty.
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in stance Circuit Simulate where
and xs ys = return (zipWith (&&) xs ys)
xor xs ys = return (zipWith (6= ) xs ys)
inv xs = return (map not xs)
delay v xs = return (v:xs)

Using this model, we have:

Main> half Add [Tr ue, True] [ Fals e, True] :: Si mulate ( [Bool], [Bool] )
Si m ([ True,Fa lse] ,[Fa lse ,Tru e])

More interest ingly, we can consider an alternati ve semantics which wil l create a wire-

by-wire description of a given circuit. In this model, signalswill be ident i� ed by symbolic

names. Our monad will have to generate new namesfor intermediate wires, accumulat ing

a textual \dr awing" of the circuit as it is built . Hence, we employ a combination of state

and output monads:

t yp e Sig � = String
data Draw � = D (Int ! (�; [String]; Int ))

ins t ance Show � ) Show (Draw � ) wher e
show (D f ) = let (l ; s; ) = f 0

in concatMap (++\ nn") s ++ \ Result : " ++ show l

ins t ance Monad Draw where
return x = D (� i. (x; [ ]; i ))
D f � = g = D (� i. let (a; o; i 0) = f i

D h = g a
(b; o0; i 00) = h i 0

in (b; o ++ o0; i 00))

We will need the following auxili ary functions:

newWire :: Draw String
newWire = D (� i. ('w':show i ; [ ]; i +1) )

output :: String ! Draw ()
output s = D (� i. (() ; [s]; i ))

item :: String ! String ! String ! Draw String
item a b c = do n  newWire

output (n ++ \ = " ++ a ++ \ " ++ b ++ \ " ++ c)
return n

The function newWire simply returns a new name. (Th e variable i keeps t rack of the

number of wires.) The function output lets us emit intermediate descript ions. Finally,
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item is a generic function for creating a new wire together wit h a descript ion of how it is

obtained. Using theseauxi liaries, the Circuit instance for the Draw monad becomes:2

instance Circuit Draw where
and a b = item \ and" a b
xor a b = item \ xor " a b
delay s v a = item \ delay " s a
inv a = do n  newWire

output (n ++ \ = in v " ++ a)
return n

We have:

Main> prin t ( half Add "a" "b" :: Draw (Sig Bool , Si g Bool) )
w0 = xor a b
w1 = and a b
Result : (" w0","w1 ")

It is worth emphasizing that the description of halfAdd did not change, we simply used

a di�eren t monad. This is the strength of the monadic approach.

Unfortun ately, a similar translat ion for the toggle circuit does not work. Consider:

toggle :: Circuit m ) m (Sig Bool)
toggle = do inp  inv out

out  delay \ Fal se" False inp
return out

Alt hough the descript ion perfectly � ts the circuit diagram we had before, we have lost the

feedback loop. The variables inp and out are no longer recursively de�n ed! (In fact, the

de� nit ion above is not even valid Haskell; the variable out is not in scope in the � rst line.)

Our non-monadic implementation did not have this problem, as it relied on the recursive

de� nit ion capabilit ies of Haskell. But now, we are on our own: Haskell does not let us

write recursive speci�ca tions in the presence of monadic e�ects.

Unfortun ately, the problem is not merely syntactic. It is not clear how to perform this

kind of recursion at all: we want the values(i .e., the signals) to be de�n ed recursively, but

we certainly do not want the e�ect s to be repeated or lost (i .e., we do not want to create

circuit elements repeatedly, or not to create them at all). We refer to this kind of recursion

asvalue recursion. In short , to be able to expressthe required recursive structur e, we need

the underlying monad to support recursive monadic bindings [18]. Just as the usual �xed-

point operator handles \ normal" recursion, we expect to �n d value recursion operators,

2 The delay element did not use its �rst argument in the simulati on model, and here it does not use
the second. The name is irre levant for simulation, while it is all we need in a textu al representatio n.
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generically called m�x , mediating the interaction between the underlying e�ec t and the

recursion operation.

Gett ing back to circuit modeling, we wil l require circuits to be modeled by monadsfor

which such �xed-p oint operators are available, captured by the MonadFix class:

class Monad m ) MonadFix m where
m�x :: (� ! m � ) ! m �

class MonadFix m ) Circuit m where
-- and; xor ; inv ; delay as before

Now, we can ti e the recursive knot over inp and out, expressingtoggle as follows:

toggle :: Circuit m ) m (Sig Bool )
toggle = m�x (� ~(inp; out ). do inp  inv out

out  delay \ False " False inp
return (inp; out))

� = � (inp; out). return out

The �n al missing piece is the MonadFix instances for Simulate and Draw monads. At

this point, we ask the reader to simply accept the following de�n itions:

instance MonadFix Simulate where
m�x f = Sim (let Sim a = f a in a)

instance MonadFix Draw where
m�x f = D (� i. let D g = f a

(a; s; i 0) = g i
in (a; s; i 0))

Note that the Simulate instance is essenti ally the same as the usual � xed-point opera-

tor. The Draw instance is a bit more complicated, but the reader can seethat we perform

the � xed-point computat ion over the variable a, (i .e., the value), passing around i and s

untouched. Now, to simulate toggle, we just useour Simulate monad:

Main> togg le :: Simul ate (Si g Bool)
Si m [F alse ,Tr ue,False ,Tr ue,False ,Tr ue,False ,.. .

and, to get a simple textual drawing, we simply swit ch to the Draw monad:

Main> togg le :: Draw (Si g Bool)
w0 = i nv w1
w1 = delay False w0
Result : "w1"

The handling of recursion via m� x is somewhat mysterious at this point . The whole

point of this thesis is to expose the mystery, and to explore the interaction between

recursion and e�ects, heading toward an equati onal theory of value recursion.
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1.3 Recur siv e monadic bi ndings

Theuseof m�x to t ie therecursiveknot in a monadiccomputation is similar to the handling

of recursive bindings in usual let-expressions. For clarity, we will use the keyword letrec

here when a binding can be recursive, and let otherwise. In the pure world, we have:

letrec x = e in e0

� let x = �x (� x. e) in e0

� (� x. e0) (�x (� x. e))

What happens in a monadic computation? Similar to let rec , let us use the keyword

mdo 3 for monadic bindings that can be recursive, and do otherwise. We have:

mdo f x  e; e0 g

� do f x  m�x (� x. e); e0 g

� m�x (� x. e) � = � x. e0

In Chapter 7, we will describe an extension to the do-notation of Haskell allowing

bindings to be recursive, using an enhanced version of this translat ion. Then, we will be

able to writ e the toggle example of the previous section as follows, the compiler taking

care of the insertion of appropriate calls to m�x :

toggle = mdo inp  inv out
out  delay \ False " False inp
return out

There is an opportunity here to clarify a potentia lly confusing issue about value re-

cursion. Consider a recursive de�n ition of the form:

countDown n = if n == 0
t hen print \ Done!"
else do print n

countDown (n� 1)

The intention is clear: Each time countDown is called, we want the e�ect of print ing to
take place. In this thesis, we wil l not be dealing wit h such de� niti ons, as they are already
explained in terms of the usual � xed-point construction:

countDown = �x (� f. � n. if n == 0
t hen print \ Done!"
else do print n

f (n� 1))

3The closest we can get to � do using ASCII. (We would have used dor ec, but that is just too long.) Note
that the use of Haskell-like syntax is just for convenience. We could have used Moggi's let T x ( e in e0

notati on and the keyword letr ecT as well [63].
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Note that e�ects are part of countDown's executi on, rather than it s de� niti on. That

is, the e�ect of print ing is not performed to determine the meaning of countDown itself.

In the toggle example, however, we seethat e�ec ts are part of the de�n it ion: They are

performed in order to determine the values of inp and out, and the cyclic dependence

gives rise to the need for value recursion. In a sense,the use of recursion and e�ects in

countDown are orthogonal, with no interference in between. As shown above, this kind of

recursion is already explained in terms of �x , the usual �x ed-point operator.

1.4 A generi c m�x ?

In Section 1.2, we saw two partic ular examples of m�x , one for the Simulation monad,

and another one for the Draw monad. Are these functions actually instancesof a generic

schema? That is, can we � nd a de� nitio n of m�x that will work for all monads, regardless

of which kind of e�ect we deal with? Let us pausebrie
y and consider how one might go

about de�n ing such a generic operator.

Recall that the least �xed-p oint operator on domains satis�es the property:

�x :: (� ! � ) ! �

�x f = f (�x f )

which also serves as a de�n ition for �x in a lazy language such as Haskell. One might

think that a similar de� ning equation can be found for m�x as well. Indeed, it is not hard

to generalize to the monadic case:

m�x :: Monad m ) (� ! m � ) ! m �

m�x f = m�x f � = f

Note that this de� nit ion makessensefor all monads(i.e., it is polymorphic in m). But

is it a \ good" de�n it ion? That is, can we use it sensibly to implement value recursion?

The short answer to this question is, unfortu nately, no. To seewhy not, simply note

that this de�n it ion is equivalent to:

m� x f = �x (� m. m � = f ) =
G

f? ; ? � = f ; ? � = f � = f ; : : :g

which will divergewhenever the � = operator is strict in its �r st argument. 4 Furthermore,

even when � = is not strict, this de� nit ion will attempt to compute the � xed-point over

4Note that the call to m� x f wil l diverge regardlessof what f is. In general, monads based on sum
types will su�er from th is problem, as the � = operator needsto inspect its �rst argument to see how to
proceed. Haskell's maybe and list monads are two popular examples that are based on sum types. Other
import ant examples where the � = operator is strict in its � rst argument include the frequently used IO
and strict state monads.
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both values and e�ects, which is simply not what we are t rying to achieve. In value

recursion, we want the �xed -point to be computed only over the values, wit hout repeating

or losing the e�ect s. We will codify what we mean by value recursion in Chapter 2 using

a number of equational propert ies,exploring the interaction between recursion and e�ects

in depth. Then, we will be able to seemore clearly why this default de�n ition is not

appropriat e for implementing value recursion.

1.5 The basic frame work and notat ion

For most of this thesiswe investigate value recursion in the usual domain theoretic seman-

ti csof programming languages, wheretypesare modeled by domains[77, 82]. Wewrite ? �

for the least element of the domain representi ng the type � , dropping the subscript when-

ever unambiguous. Functions are modeled by cont inuous (and hence monotonic) maps

between domains, not necessarily st rict. Recursion is modeled via least-� xed points. We

use monadsto model e�ect s, following Moggi [63]. Alt hough by no means comprehensive,

the reader may �n d it useful to skim over Appendix A, which contains a brief review of

�x ed-point operators.

We expect readers to be famili ar with functional programming [35, 87], parti cularly

Haskell [7, 68]. For the most part, we useHaskell simply as a syntactically beefed up ver-

sion of � -calculus [30], so familiarity with any functional language should be su�ci ent. A

basicunderstanding of domain theoretic semantics of programming languagesis necessary

to follow the technical development [76, 83]. Except for Chapter 6, we will be mainly inter-

ested in the \fun ctional programming view" of monads [4, 91], rather than the categorical

one [2, 55]. Finally, we will have occasion to use the parametrici ty principle, allowing us

to derive theorems from the typesof polymorphic functions [50, 75, 88].

Natur ally, the theory of value recursion is independent of any parti cular programming

language. However, our work is closely t ied to Haskell, and we will be careful in point ing

out the caseswhen the domain theoretic semantics and the semanti cs of Haskell do not

quite match up. The main di� erencesshow up in the t reatment of products. Sincetuples

are li fted in Haskell, it is not the case that (? � ; ? � ) = ? � � � . Therefore, the equalit y

x = (� 1 x; � 2 x) fails. Similarly, � (x :: � ):? � 6= ? � ! � , i.e., the function type is lift ed too.

Similar commentsapply to sum typesaswell. Finally, theunit data typehastwo members,

? () and () itself, that is, it is not really a terminal object. Luckily, thesedi�e rences do

not causemuch trouble in practice, as long as one is aware of them. We point out the

caseswhere the di� erence becomessigni�ca nt.

In our exposition, we wil l stick to Haskell notation as much as possible, deviat ing

from it only for typographical purposes.The di�e rence mainly shows up in compositions



11

and � -bindings. For instance, we wil l write Haskell's: nf -> ng -> nx -> ( f . g) x as

� f. � g. � x. (f � g) x.

1.6 Outl ine of t he t hesis

Our aim is to get through the basicsof value recursion rather quickly, before we actually

investigate individ ual instances. To this end, we use the next two chapters to int roduce

a number of equational properties that govern the behavior of value recursion operators.

Among these,we will identi fy thr ee fundamental properties (namely st rictness,purit y, and

left shrinking), and in the remainder of the thesis we wil l consider only those operators

that satisfy this minimal core.

Chapters 4 and 5 are dedicated to the study of individual instances. In Chapter 4, we

investigate a wide range of monads that are frequent ly used in functional programming,

presenting value recursion operators for them. In Chapter 5, we argue that it is highly

unlikely that the conti nuation monad has an associated value recursion operator that wil l

satisfy our requirements.

Chapter 6 takesa stepback and looksat a possible categorical theory of valuerecursion,

basedon thenotion of premonoidal categoriesand t races.Even though the theory of traces

does not provide a perfect � t , it is illumin ating to seehow recent work in this areacan be

generalized to capture value recursion for a certain class of monads.

Chapters 7 and 8 deal wit h the Haskell language in parti cular. In Chapter 7, we wil l

tur n our attent ion to syntactic support for value recursion, present ing a recursive version

of Haskell's do-notation. In Chapter 8, we wil l study Haskell's IO monad. Since the IO

monad is hardwired into Haskell, it is not possible to investigate value recursion for it

directly. Hence, we present a model language(complete with I/O operationsand mutable

variables), and show how one can model value recursion in this world.

Chapter 9 presents a number of examples,which, in additi on to the circuit modeling

example of this chapter, provides a tour of potent ial applications of value recursion.

Chapter 10 concludesthe thesis with a discussion of related work and future research

directions. A brief review of � xed-points, along wit h several proofs that are omitt ed from

the main body of the thesis are given in the appendices.

Each chapter in the remainder of this thesis starts wit h a brief descript ion of its

contents. Al though we intend the chapters to be read in order, readers may �n d it useful

to quickly skim over these segments to determine a part icular reading plan according to

their own interests.



Chapter 2

Prop ert ies of value recursion operators

What kindsof propert iesdo weexpect value recursion operators to satisfy? So far, wehave

been using phraseslike \ recursion without repeating or losing e�ects," or \r ecursion only

over the values" to characterize value recursion. The aim of this chapter is to formalize

our intuit ions by means of equational properties.

Synopsis. Wediscussa number of equivalencesthat weexpect valuerecursion operators

to satisfy. These properties range from those that imit ate propert ies of the usual �xed-

point operator over domains, to those that govern the interaction between recursion and

e�ects. Wealsoprovide a number of derivedpropert ies,including thosethat aregranted by

virtue of parametricit y. Several propert iesthat might benaively expected, yet unsatis� able

for a wide range of monads,are discussed as well.

2.1 Stri ct ness (Not hing from nothing)

The domain theoretic treatment of recursion in programming languages relies on least

�x ed-points [76, 83]. That is, given a speci� cation of the form x = f x, where f :: � ! � ,

we expect x to be the least � satisfying this equation. In this setti ng, one can show that a

function is strict if and only if its least �xed -point is ? . Since ? represents no infor mation

in the domain theoretic ordering, our slogan in this caseis simply nothing from nothing.

Generalizing to value recursion, we expect the following property to hold:

Pr opert y 2.1.1 (Strictness.) Let f :: � ! m � ,

f ? � = ? m � , m�x f = ? m � (2.1)

Remark 2.1.2 In Section 2.6.2, we will be able to derive the right to left implication

from other propert ies, i.e., we will show that if m�x f is ? , then f must be strict. We

prefer expressing the strictness law as it is, however, as it uniquely characterizes strict

functions of type � ! m � .

12
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2.2 Purit y (Just l ik e �x )

Purit y formalizes the intuition that m� x should behave exactly like �x , in case there are

no e�ec ts:

Pr opert y 2.2.1 (Purity. ) Let h :: � ! � ,

m�x (return � h) = return (�x h) (2.2)

Diagrammatically, we capture purit y as follows:

=return
h

return
h

Remark 2.2.2 We usewiring diagrams to capture propert ies pictorially. Note that we

do not formalize these diagrams, nor use them for any purpose other than illustrat ion.

Dashed boxes represent where value recursion is performed. Thin lines show data 
 ow.

The thick line, called the e� ect line, refers to the details of the monadic computation.

Alt hough it is not correct to consider the e�ec t line as carrying data, it usually helps to

think of it as such. (Th e e�ect line analogy holds very well for the state monad, but it is

not very intuitiv e for, say, the except ion monad.) We indicate pure computations by not

letti ng them use the e�ec t line, as ill ustrated by the h box in the above diagram. The

solid loop on the right hand side indicates the useof �x . (Note that there are no dashed

boxes on the right hand side as there are no applicati ons of m�x .)

2.3 Left shr inking (No recursio n { No �x )

Recall our naive translat ion schema for the recursive do-notation from Section 1.3. Nat-

urally, we would like mdo to behave exactly like do, provided there are no recursive

bindings. That is, the following two code fragments should have the samemeaning:

mdo x  A

B

do x  A

mdo B

provided A does not make useof x, or any variable de� ned in the block B . If B doesnot

have any recursive bindingseither, we can push mdo further down, eventual ly eliminat ing

it altogether. We capture this correspondenceby the left shrinkin g property:



14

Pr opert y 2.3.1 (Left shrinking.) Let f :: � ! � ! m � , a :: m � ,

m�x (� x. a � = � y. f x y) = a � = � y. m�x (� x. f x y) (2.3)

where x doesnot occur free in a.

The name \ left shrinkin g" is suggested by the corresponding diagram:

=y

x

y

x

a
f

a
f

Remark 2.3.2 The reader might expect an analogous right shrinking property as well.

But, as we will seein Chapter 3, arbitrary lifting of computat ions from the right hand

side of a � = is not possible in general. We can, however, li ft pure computations out . We

will provide a derived law to deal wit h this casein Section 2.6.3.

2.4 Sli ding (Pure mobili t y)

Let f :: � ! � and h :: � ! � . As reviewed in Appendix A, the equation

�x (h � f ) = h (�x (f � h)) (2.4)

expressesthe dinaturali ty conditi on for �x , an extremely important law for manipulat ing

�x ed-points. We expect value recursion operators to satisfy a similar law as well.

Two problems arise in translating Equation 2.4 to the world of value recursion. The

order of f and h is swapped, and h is duplicated on the right hand side. Obviously, if f

and h can both perform e�ects, swapping and duplication are both out of quest ion. When

h is pure, however, we expect to be able to slide it over f :

Pr opert y 2.4.1 (Sliding.) Let f :: � ! m � , h :: � ! � ,

f (h ? ) = f ? ) m�x (map h � f ) = map h (m�x (f � h)) (2.5)

where map :: (a ! b) ! m a ! m b is the usual lifting function.1 The consequent

can be equivalently expressedas:

m�x (� x. f x � = return � h) = m�x (f � h) � = return � h (2.6)

1The function map is de� ned by the equation map f m = m � = return � f. Note that, in Haskell
notati on map is called fmap, and the name map is reserved to be used with the li st monad only [68].
Deviating from Haskell, we use the name map consistently for all monads.
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Diagrammatically:

 = h
f

h
f

h

The side condit ion, i.e., f � h and f should agreeon ? , is essentia l. When we think of

recursion as an iterat ive processthat starts wit h ? , we seethat f �r st receives ? on the

left hand side in the recursive loop, but receivesh ? on the right. If h ? 6= ? , f will have

more information to start with on the right hand side. The side condit ion guaranteesthat

this extra knowledge is irrelevant: f must not distinguish between ? and h ? . It is worth

noting that dinatur alit y of �x (Equation 2.4) does not require any such conditi ons. As

we will seein Chapter 3, however, wit hout the side conditi on, sliding is unsatis� able for

many practical monads of interest.

Observ ation 2.4.2 The side conditi on is trivia lly satis�ed if h is st rict. It tur ns out

that this particular caseis derivable from parametricity (seeCorollary 2.6.12).

Note The alert reader will note that the order of e�ects doesnot matter for commutativ e

monads, and hence one might expect a swapping property where both computations are

e�ectful. This is indeed the case,seeSection 3.3 for detai ls.

2.5 N esti ng (T wo for the price of one)

Beki�c's property for usual �xed -points states that simult aneousrecursion over mult iple

variables is equivalent to recursion over one variable at a time (seeAppendix A.) In the

value recursion world, one way to expressthis relat ion is to assert the equivalence of the

following two expressions:

mdo x  mdo y  f (x; y)

return y

return x

mdo x  f (x; x)

return x

The nesting property2 stipulates this equivalence:

Pr opert y 2.5.1 (Nesting.) Let f :: (�; � ) ! m � ,

m�x (� x. m�x (� y. f (x; y))) = m�x (� x. f (x; x)) (2.7)

2This propert y was �rst suggested to us by Ross Paterson (personal communication).
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The following proposition states an equivalent form of nesting, which is quite useful in

symbolic manipulat ions:

Pr oposition 2.5.2 Let f :: (� ; � ) ! m (� ; � ). Assuming tru e products, the equation

m�x (� (x; ). m�x (� ( ; y). f (x; y))) = m�x f (2.8)

is satis�ed exactly when nesting holds, provided m�x satis� es the sliding propert y.

Pr oof See Appendix B.1. �

Using Equation 2.8, it is easy to describe nesting diagrammatically:

=f f
y
x

y
x

Just li ke the Beki�c property for �x , nesting generalizes to any number of variables. For

instance, one can derive:

m�x (� (x; ; ). m�x (� ( ; y; ). m�x (� ( ; ; z). f (x; y; z)) ))

= m�x (� (x; y; z). f (x; y; z))
(2.9)

Note that the order of nesting is also immaterial, we could have recursed over any permu-

tation of the variables; for instance, �rs t over z, then x and � nally y, etc.

Remark 2.5.3 We wil l take a closer look at Equation 2.8 in the caseof li fted products

(as in Haskell). Assuming m�x satis� es strictness,the left hand side will always be ? , due

to strict matching against pairs. Using irrefutable patterns, one might attempt:

m�x (� ~(x; ). m�x (� ~( ; y); f (x; y))) = m�x f

However, a problem still remains. If f is strict, then the right hand side will be ? , but

the left hand side might produce an answer, because? 6= (? ; ? ).3 The proper way of

expressing Equati on 2.8 wit h lifted products is:

m�x (� ~(x; ). m� x (� ~( ; y); f (x; y))) = m�x (� ~(x; y). f (x; y)) (2.10)

Similar to Proposition 2.5.2, one can establish:

Pr oposition 2.5.4 In the caseof lifted products, Equation 2.7 is equivalent to Equa-

ti on 2.10, provided m�x satis� es sliding. �

3Peter Thiemann was � rst to notice this problem (personal communication).
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2.6 Deriv ed prop erti es

One can derive new equalities using the properties we have described so far, and proper-

ti es of the underlying domain-theoretic framework. This section presents a collection of

such laws|those that we have found to be the most useful when reasoning about value

recursion.

2.6.1 Con stan t fu nct ion s

Left shrinking and purit y properties imply an expected property of � xed-point operators:

If the �xed-p oint variable is not used, recursion is irr elevant:

Pr oposition 2.6.1 Let a :: m � be a constant (i.e., x does not occur free in a). Then,

m�x (� x.a) = a (2.11)

provided m�x satis� es purity and left shrinking laws.

Pr oof

m�x (� x. a) = m� x (� x. a � = � y. return y)

= a � = � y. m�x (� x. return y) f left shrinking g

= a � = � y. return (�x (� x. y)) f purity g

= a � = � y. return y

= a

Note that �x (�x: y) = (�x: y) (�x (�x: y)) = y. �

The diagram in this caseis trivia l:

= aa

Similarly, we can lift a condit ional expression from inside an m�x , if the test expression

is not involved in the recursion computation:

Pr oposition 2.6.2 Let a be a boolean expression where x does not occur free in a. Let

f ; g :: � ! m � . We have:

m� x (� x. if a then f x else g x) = if a t hen m�x f else m�x g (2.12)

Pr oof Caseanalysis on the value of a. The True and False cases are obvious. When

a = ? , the left hand side yields ? by Proposition 2.6.1, guaranteeing the equivalence. �
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2.6.2 App roxi mat ion prop ert y

Monotonicit y implies that f ? always provides an approximat ion to m� x f :

Pr oposition 2.6.3 Let f :: � ! m � . Then,

f ? v m� x f

provided m�x satis� es purity and left shrinking.

Pr oof Since (�x: f ? ) v (�x: f x), we have m�x (�x: f ? ) v m�x f by the monotonic-

it y of m�x . But the left hand side is f ? by Proposition 2.6.1, completing the proof. �

Remark 2.6.4 Proposition 2.6.3 states more than a rudimentary fact: f ? yields valu-

able informati on on the st ructure of the �xed-p oint. Consider the list monad, for instance.

If f :: a ! [a], and if f ? is a cons-cell, then so is m�x f . In part icular, if f ? is a � nit e

list of length k, then the length of the �xed-p oint is k as well. In general, for any monad

basedon a sum type, f ? determines the top level structure of m�x f.

We can now establish the strictnessproperty in one direction (seeRemark 2.1.2):

Corollary 2.6.5 Let f :: � ! m � , and m�x f = ? . Then f is strict, provided m�x

satis� es purity and left shrinking laws.

Pr oof By Proposition 2.6.3, f ? v ? , implying that f ? = ? . �

2.6.3 Pure r ight shrinki ng

The sliding property allows lifting of pure computations from the right hand sideof a � =:

Corollary 2.6.6 Let f :: � ! m � , and h :: � ! � ,

m�x (� (x; y). f x � = � z. return (z; h z))

= m�x f � = � z. return (z; h z)
(2.13)

provided m�x satis�es sliding. (On the left hand side, the value-recursion loop is over

(� ; � ), while the one on the right hand side it is over � only.)

Pr oof We have

m�x (� (x; y). f x � = � z. return (z; h z))

= m�x (map (� z. (z; h z)) � f � � 1) f slideg

= map (� z. (z; h z)) (m�x (f � � 1 � (� z. (z; h z)) ))

= m�x f � = � z. return (z; h z)

Sliding applies, since (f � � 1) ? = (f � � 1 � �z :(z; h z)) ? = f ? . �
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The diagram in this caselooks like:

 =f
h

x

f
hx

y

which suggests the name pure right shrinking.

W arning 2.6.7 In case we have li fted products, as in Haskell, the pattern matches

against pairs should be done lazily. That is, every formula of the form: � (x; y): f x y

should be replaced with �t : f (� 1 t) (� 2 t), or the Haskell equivalent � ~(x; y). f x y.

(A nd similarly for triples, quadruples, etc.) For instance, Equati on 2.13 should be ex-

pressed as:

m�x (� t. f (� 1 t ) � = � z. return (z; h z)) = m�x f � = � z. return (z; h z)

or,

m�x (� ~(x; y). f x � = � z. return (z; h z)) = m�x f � = � z. return (z; h z)

avoiding the strict match against the tuple.

It is possibleto generalize Equation 2.13, so that h can use x and y as well. We call

this variant the scope change law:

Pr oposition 2.6.8 Let f :: � ! m � , h :: � ! (� ; � ) ! � ,

m�x (� (x; y). f x � = � z. return (z; h z (x; y)))

= m�x f � = � z. return (� x (� (x; y). (z; h z (x; y))))
(2.14)

provided m�x satis� es purity, left shrinking, nesting, and sliding laws.

Pr oof See Appendix B.2. �

Remark 2.6.9 Simple manipulat ion of the right hand side of Equation 2.14 yields the

following equation:

m�x (� (x; y). f x � = � z. return (z; h z (x; y)) )

= m�x f � = � z. return (z; �x (� y. h z (z; y)) )
(2.15)

This form of the scope changing property is quite useful in derivations, although somewhat

lesssymmetric than Equation 2.14.
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2.6.4 Parametricit y: The \free" theorem

The least � xed-point operator on domains satis�es the following uniformity law [60, 82]:

Let f :: � ! � , g :: � ! � , and s :: � ! � , where s is strict. Then,

s � f = g � s =) s (�x f ) = � x g (2.16)

This extremely useful law is exactly the free theorem for the type (� ! � ) ! � , and

hence granted by virtue of parametricity in our setti ng [75]. For m�x , parametr icity gives

us the following theorem for free:

Theorem 2.6.10 Let f :: � ! m � , g :: � ! m � , s :: � ! � ,

map s � f = g � s =) map s (m�x f ) = m�x g (2.17)

provided s is strict. �

Remark 2.6.11 It is worth emphasizing that we useTheorem 2.6.10 freely in our tr eat-

ment of value recursion.4 If one takes a more abstract view, of course, we expect Equa-

ti on 2.17 to be postulated as a property to be checked, rather than taken for granted. Of

course, this begs the question exactly what strict would mean in this new setti ng. See

Simpson and Plotkin's recent work for a modern account of such questions [79]. (We wil l

return to the treatment of value recursion in more abstract settings in Chapter 6.)

As we pointed out before, sliding strict computations is a direct consequenceof para-

metricit y:

Corollary 2.6.12 Let f :: � ! m � , h :: � ! � . Then,

m�x (map h � f ) = map h (m�x (f � h)) (2.18)

provided h is strict.

Pr oof Direct consequence of the free theorem with F 7! f � h; G 7! map h � f and

S 7! h, where we use capital letters to identify variables in Equation 2.17. �

4A word of cauti on is in order regarding Haskell and parametrici ty. It is well known that the seq
primiti ve weakensthe parametri city properties of Haskell [50, 68, 88]. We do not make useof this primitiv e
in our work.
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Parametricit y allows us to take mirr or images of our properties. For instance, the

following equation is essenti ally the same as Equation 2.13:

m�x (� (x; y). f y � = � z. return (h z; z)) = m�x f � = � z. return (h z; z)

Obviously, we can consider the same equation over arbitr ary length tuples and arbitrary

permutations as well. We capture the essence of this processin the following corollary:

Corollary 2.6.13 Let f ; g :: (� ; � ) ! m (� ; � ). The equation m�x f = m�x g holds

exactly when its mirr or image, that is:

m�x (map swap � f � swap) = m� x (map swap � g � swap)

holds, where swap (x; y) = (y; x).

Pr oof Simple application of Corollary 2.6.12 on both sides. Note that swap is strict. �

As a �n al corollary to the free theorem, we consider the following injection law:

Corollary 2.6.14 Let f :: � ! m � , i :: � ! � , p :: � ! � , where p is strict and

p � i = id� . We have:

m�x f = map p (m�x (map i � f � p)) (2.19)

Pr oof Let F 7! map i � f � p; G 7! f , and S 7! p in the free theorem. Again, capital

letters denote the variables in Equati on 2.17. �

Note that Corollary 2.6.14 also follows from the sliding property. The intended reading

of Equation 2.19 is as follows. The function i injects � 's to � 's, while p projects back.

Hence, we can intr oduce spurious variables into the recursive loop, as long as they are not

used anywhere.

2.7 Stro nger pro pert ies

In this section we present two laws, strong sliding and right shrink ing, which might be

naively expected to be satis� ed by value recursion operators. As we wil l prove in Chap-

ter 3, however, they are both unsatis�able for a wide variety of monadsof practical inter-

est. The most important monad satisfying both thesepropert ies is the lazy state monad

(Section 4.4).
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2.7.1 St rong slid ing

If Equation 2.5 holds unconditionally, (i .e., without requiring f (h ? ) = f ? ), we say that

the given value recursion operator sati s�es the strong sliding property. As we will see in

Chapter 3, strong sliding is not satis�able for a variety of practical monads. However,

when available, it allows us to deduce several interest ing equaliti es:

Pr oposition 2.7.1 Let f :: � ! m � , and q :: � . Then,

m� x (� (x; ). f x � = � y. return (q; y)) = f q � = � y. return (q; y) (2.20)

provided m�x satis� es the purit y, left shrinking and strong sliding properties.

Pr oof See Appendix B.3. �

Pr oposition 2.7.2 Let f :: � ! m � , g :: � ! m � . Then,

m�x (� (x; y). f x � = � y0. g y � = � x0. return (x0; y0))

= m�x (� (x; ). f x � = � y0. g y0 � = � x0. return (x0; y0))
(2.21)

provided m�x satis�es the purit y, left shrinking, nest ing and strong sliding properties.

Diagrammatically:

=
f g f g

y'x

x'

y'

y

x'

y'
y'x

Pr oof St raightforward applications of nesting, left shrinking, and the mirr or image of

the previous proposition on the left hand side. �

2.7.2 Righ t shrinkin g

Pure right shrinking (Corollary 2.6.6) tells us how to pull pure computationsfrom the right

hand sideof a � =. Although it is not possible to pull out e�ec tfu l computat ions in general,

there are certain monads for which it is possible to do so, the most important examples

being the output monad (or, in general, monads basedon monoids|see Section 4.5), and

the lazy state monad (Section 4.4). The following property captures the situat ion:

Pr opert y 2.7.3 (Right shrinking. ) Let f :: � ! m � , g :: � ! m � ,

m�x (� (x; y). f x � = � z. g z � = � w. return (z; w))

= m�x f � = � z. g z � = � w. return (z; w)
(2.22)
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Diagrammatically:

=
zx

z 

z

ww x

f g f g
y

Fact 2.7.4 Obviously, Equation 2.22 generalizes 2.13. That is, if a given value recursion

operator satis�es right shrinking, it will automatically satisfy the pure version as well.

The combinati on of right shrinkin g and strong sliding allow us to generalize the scope

change law (Proposition 2.6.8) as well:

Pr oposition 2.7.5 Let f :: � ! m � , g :: � ! (�; � ) ! m � ,

m�x (� (x; y). f x � = � z. g z (x; y) � = � w. return (z; w))

= m�x f � = � z. m�x (� b. g z (z; b)) � = � w. return (z; w)
(2.23)

provided m�x satis� es purity, left shrinking, nesting, strong sliding and right shrinking.

Pr oof Analogous to the proof of Proposition 2.6.8. �

2.8 Cl assi� cation and summary

Our properties try to capture the expected behavior of value recursion operators, formal-

izing our intuit ions. It is worth reiterating the most important goals:

� Recursion should beperformedonly over thevalues, and the �xed-p oint computat ion

should be similar to that of �x ,

� E�e cts should be neither repeated nor lost,

� In the case when there are no recursively bound variables, mdo should behave

exactly like a do.

How do our properties match thesegoals? Strict ness states that the �xed-p oint is ?

exactly when the given function is strict, analogous to �x . Purit y statesthat, in casethere

are no e�ects, m�x should behave exactly like �x . Thesetwo propert ies are as closeas we

get to the behavior of the usual � xed-point operator on domains. Left shrinking states

that mdo is exactly the same as do, in casethere are no recursive bindings. We consider

thesethr ee propertiesto be the most essentia l, leading to the following de�n ition:
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De�nition 2.8.1 (Value recursion operators.) A value recursion operator for a monad

(m; � = ; return) is a function m�x :: (� ! m � ) ! m � ; satisfying:

� Strict ness: f ? � = ? m � , m� x f = ? m � ,

� Purity: m�x (return � h) = return (�x h);

� Left shrinkin g: m�x (� x. a � = � y. f x y) = a � = � y. m�x (� x. f x y); pro-

vided x is not free in a.

At this point , two questions arise. First, why are sliding and nesting properties left

out from De�n it ion 2.8.1, even though we have found that they are both satis�ed by many

instances of m�x in practice (seeChapter 4)? And second, are there other properties of

interest that we have completely missed?

The answer to the �r st question is a matter of choice. We would like to keep the

requirements as simple as possible, but no simpler. As we will seeseveral examples in

Chapter 4, operators that do not satisfy the basic properties mandated by De� nitio n 2.8.1

yield results that are not very sensible for value recursion. Other propert ies are just as

important theoretically, but it is our belief that they are in a secondary status from a

practical point of view.

It is much harder to answer the second question. Whether we have the \rig ht" def-

initi on should become apparent as value recursion � nds it s place in practical functional

programming. Our work, both in the context of this thesisand in using recursive monadic

bindings in practical Haskell programs, led us to conclude that De� niti on 2.8.1 satisfacto-

rily captures the minimal common core.

Finally, a comment on uniquenessis in order. Given a part icular monad, we do not

require a unique value recursion operator for it. Theremay be none, exactly one, or many

operators satisfying the requirements of De� nitio n 2.8.1. (For instance, in Chapter 4, we

will be able to show that identit y, maybe and list monads of Haskell have unique value

recursion operators, while the state monad has an in�n ite chain of them. On the other

extreme, the cont inuation monad probably hasnone|se e Chapter 5 for details.) Further-

more, di�e rent operators for the same monad might satisfy di�eren t sets of properties in

addition to the basic set mandated by De� niti on 2.8.1. In such a case, the user has the re-

sponsibilit y to pick the most appropriat e operator for the problem at hand, possibly using

our propertiesasa guide. We will see a concreteexample of this situation in Section 4.4.



Chapter 3

Str uct ure of monads and value recursion

So far, our study of value recursion was set in the context of arbit rary monads. We wil l

now take a closer look at various properti esthat monadsmay sati sfy, such as idempotency,

commutativit y, or addit ivit y. The aim of this chapter is to investigate the implicati ons of

structur al properties of monads for value recursion.

Synopsis. We � rst consider monads whose � = operator is strict in it s �r st argu-

ment, covering many practical monads of interest. We show that strong sliding and right

shrinkin g properties are not satis�able for such monads. We then consider idempotent ,

commutative and additiv e monads, trying to identi fy how value recursion operators should

behave in each case. Finally, we brie
y discussembeddings and monad transformers.

3.1 Monads wit h a strict bind operator

Consider a monad m whose� = operator is strict in it s � rst argument. That is:

? m � � = f = ? m � (3.1)

for all f :: � ! m � . Haskell's maybe, list, IO, and strict state monads are examplesof

such monads. In this section, we wil l prove that neither strong sliding, nor right shrinking

properties can be satis� ed for such a monad, unless it is trivia l in the following sense:

De�nition 3.1.1 (Trivial monad.) A monad (m; � = ; return) is t rivi al if, for all types

� , the domain corresponding to the type m � consistsonly of ? m � .

Remark 3.1.2 The canonical example of a trivia l monad is:

dat a Void � -- no constructors; all we have is ?

return x = ?
m � = f = ?

25
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Note that all of our properties hold for a trivial monad, wit h the only possible de�n it ion

m�x f = ? .

Lemma 3.1.3 Let (m; � = ; return) be a monad where � = is strict in its �r st argument .

If return is st rict as well, then m is tr ivial.1

Pr oof Pick an arbitra ry type � , and let a be an arbitrary element of m � . We have:

a = const a ? � f const x y = xg

= return� ? � � = const a f left unitg

= ? m � � = const a f return is strict g

= ? m � f � = is strictg

The result now follows by De�n it ion 3.1.1. �

Note that Lemma 3.1.3 requires return to be strict at all types. The following lemma

simpli� es this requirement, reducing the proof obligation to return being strict at only one

particular type:2

Lemma 3.1.4 Let (m; � = ; return) be a monad where � = is strict in its �r st argument .

If return is strict at one type, (i .e., there exists a type � s.t. return � ? � = ? m � ), then it

is strict at all types.

Pr oof See Appendix B.4. �

After thesepreliminary results, we can now proceed with our original goal:

Pr oposition 3.1.5 Let (m; � = ; return) be a monad where � = is st rict in its � rst

argument . If there is a value recursion operator for m that satis�es the st rong sliding

property of Section 2.7.1, then m is t rivial.

Pr oof We wil l �rs t establish that if such an operator exists, then return must be strict .

De� ne:3

f :: () ! m ()

f () = return ()

h :: () ! ()

h = ()

Note that f � h = � x. return (). Let m�x bea value recursion operator for m satisfying

the strong sliding property. Then, Equation 2.6 must hold with no side condit ions. The

right hand side of Equation 2.6 reads:

1For brevity, we simply refer to a monad (m; � = ; return) by the name of its type constructor, i.e., m.
2This lemma and its proof has been suggested to us by Ross Paterson (personal communication).
3The domain corresponding to the unit type, wri tten () following the Haskell notation, consists of

exactly two elements: ? and (), with the obvious ordering ? � ().
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m�x (f � h) � = return � h

and, by Proposition 2.6.1 and the left unit law, it must be equal to return (). Similarly,

the left hand side of Equation 2.6 reads:

m�x (� x. f x � = return � h)

and, by the strictness property, it must compute to ? . (Note that f is st rict because

it matches its argument against (), and � = is strict in its �r st argument by hypothesis.)

Hence, strong sliding impliesreturn () = ? . By monotonicit y, then, return must bestrict

at the type (). Hence,by Lemmas 3.1.4 and 3.1.3, m must be trivi al. �

A similar argument shows that right shrinking property sharesthe samefate:

Pr oposition 3.1.6 Let (m; � = ; return) be a monad where � = is st rict in its � rst

argument . If there is a value recursion operator for m that sati s�es the right shrinking

property of Section 2.7.2, then m is t rivial.

Pr oof De� ne:

f :: [Int ] ! m [Int ]

f xs = return (1 : xs)

g :: [Int ] ! m Int

g [x] = return x

g = return 1

It is easy to see that the left hand side of Equati on 2.22 must yield ? by the st rictness

property (note that g will divergeon 1 : ? ). By purit y, we have

m� x f = return (�x (� xs. 1 : xs))

Hence, the right hand side of Equati on 2.22 evaluates to

return (1; �x (� xs. 1 : xs))

implying that ? = return (1; �x (� xs. 1 : xs)) . By monotonicity, then, return must be

strict at the type (Int ; [In t ]) . Hence, by Lemmas 3.1.4 and 3.1.3, m must be t rivial. �

In other words, unless a given monad m is trivial , no value recursion operator for

m can satisfy strong sliding and right shrinking propert ies, provided m's � = operator is

strict in it s �r st argument. This is an important result , as it ident i� es inherent limita tions

on properties that can be expected to hold for many practical monadsof interest.

Corollary 3.1.7 Neither strong sliding nor right shrinking propert ies are satis� able for

Haskell's maybe, list, strict state and IO monads,as none of these monads are trivia l (no

pun intended|s ee De�n ition 3.1.1). �
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3.2 Ide mp ot ent mona ds

A monad m is said to be idempotent if the equation4

a � = � x. a � = � y. return (x; y) = a � = � x. return (x; x) (3.2)

holds for all a :: m � [46]. Identi ty, maybe and environment monads are examples of

idempotent monads. Intuiti vely, a monad is idempotent if computations can be duplicated

whenever their result s are needed.

Note that Equation 3.2 doesnot specify any data 
o w betweenrepeated computat ions.

That is, the equation

� x. f x � = f = f (3.3)

is not required to hold.5 However, if a monad is idempotent , we expect both sides of

Equation 3.3 to be indistinguishable by m�x . Furth ermore, once m�x f is computed for

a function f , furth er applications of f should not change the result. We capture these

intuit ions in the following property:

Pr opert y 3.2.1 (Idempotency.) Let f :: � ! m � , where m is an idempotent monad

with a value recursion operator m�x . Then,

m� x (� x. f x � = f ) = m�x f (3.4)

m�x f � = f = m�x f (3.5)

The � rst equalit y can be captured diagrammatically as follows:

=f f f

We leave it to the reader to picture Equation 3.5.

Remark 3.2.2 It is important to note that Property 3.2.1 does not state that Equa-

ti on 3.4 or 3.5 can be used as de�n it ions of value recursion operators whenever the un-

derlying monad is idempotent .6 For instance, Equation 3.5 will always produce ? for

4 In category theory, a monad m is called idempotent if its join :: m (m � ) ! m � operator is an
isomorphism [55]. The de�n ition we use is more useful from a practical point of view, however. For instance,
the maybe monad is idempotent with our de�nitio n, although its join operator is not an isomorphism.

5As a counterexample, consider the identi ty monad where Equati on 3.3 is satis� ed only for idempotent
functio ns (i. e., f 2 = f ), but not in general.

6 Ind ividual de�nitio ns might coincide, of course. For instance, in Chapter 4, we will see that Equa-
tio n 3.5 doesindeedde� ne value recursion operators for identit y and enviro nments, but not for exceptions.
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m�x in a monad with a � = operator that is strict in its � rst argument, which is clearly

undesirable.

We will discuss idempotency property with respect to identit y, exception, monads

basedon idempotent monoids, and environments in Chapter 4.

3.3 Comm uta tiv e monads

A monad m is said to be commutative if the order of e�ects does not matt er. That is, if

the equati on

� (x; y). f x � = � x0. g y � = � y0. return (x0; y0)

= � (x; y). g y � = � y0. f x � = � x0. return (x0; y0)
(3.6)

holds for all f :: � ! m � and g :: � ! m � . For a commutative monad, we expect m�x

to satisfy swapping of computations similarly, as depicted in the following diagram:

=
f g g f

y' x'
y

x'

y'
x

y

x'

y' x

Pr opert y 3.3.1 (Commutativity. ) Let f :: � ! m � , g :: � ! m � , where m is a

commutative monad with a value recursion operator m� x. Then,

m�x (� (x; ). f x � = � y0. g y0 � = � x0. return (x0; y0))

= m� x (� ( ; y). g y � = � x0. f x0 � = � y0. return (x0; y0))
(3.7)

In casea value recursion operator satis� esnesting and strong sliding laws, Equation 3.7

can be derived automatically:

Pr oposition 3.3.2 Equation 3.7 follows from nesting and strong sliding laws.

Pr oof Straightforward applications of Equation 2.21, Equation 3.6, nest ing, left shrink-

ing, and Equation 2.20 on the left hand side. �

Examples of commutativ e monads include ident it y, environments, and monadsbased

on commutative monoids. We will investigate the commutativit y property with respect

to thesemonadsin Chapter 4.
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3.4 Monads wit h addit ion

A monad m is said to be addit ive if there exists an element zero :: m � , and an operation

� :: m � ! m � ! m � , such that:

zero � p = p

p � zero = p

(p � q) � r = p � (q � r )

zero � = f = zero

p � zero = zero

The relation between � and � = is not speci� ed, although onegenerally checks for the

following dist ributiv e laws:

(p � q) � = f = p � = f � q � = f (3.8)

p � = (�x: q x � r x) = p � = q � p � = r (3.9)

In Haskell, addit ive monadsare captured as instancesof the MonadPlus class, where

zero is called mzero and � is called mplus [68]. The maybe and list monadsare instancesof

this class.7 It is interesting to note that the list monad satis�es Equation 3.8, but not 3.9;

while the maybe monad satis� es Equation 3.9, but not 3.8.

For an addit ive monad, we expect the following property to hold:

Pr opert y 3.4.1 (Distributivity. ) Let m be an addit ive monad with � as the binary

operator. Let m�x be a value recursion operator for m. Distribu ti vit y states:

m�x (�x: f x � g x) = m�x f � m�x g (3.10)

If Equation 3.8 holds, left shrinking is su�c ient to establish the distributivi ty property:

Pr oposition 3.4.2 Let m be an addit ive monad with � as the binary operator, and let

m�x be a value recursion operator for m. If � satis�es Equation 3.8, then m� x wil l satisfy

distrib utivi ty.

Pr oof See Appendix B.5. �

Remark 3.4.3 It is worth noting that Equation 3.8 is a su�c ient , but not a necessary

conditi on for satisfying distributivi ty. As we will see in Chapter 4, the maybe monad does

not sati sfy Equation 3.8, yet it has a value recursion operator satisfying distribut ivit y.

7 In fact, the law p � zero = zero fails for both the maybe and li st monads when p = ? . This
discrepancy does not cause any troub le for our purposes. (Recall: m � k = m � = � :k.)
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3.5 Embedd ings

Consider Haskell's maybe and list monads. Intuit ively, every value of type Maybe � can

be considered as a value of type [� ], mapping Nothing to [ ] and Just x to [x]. In a certain

sense,the list monad is rich enough to capture the featuresof the maybe monad. Formally,

this relation is captured by monad homomorphisms and embeddings [53, 89]:

De�nition 3.5.1 (Monad homomorphisms and embeddings.) Let m and n be two mon-

ads. A monad homomorphism, � :: m ! n, is a family of functions, one for each type � ,

� � :: m � ! n � , such that :

� � returnm = returnn (3.11)

� � (k � = m f ) = � � k � = n � � � f (3.12)

where k :: m � and f :: � ! m � . An embedding is a monad homomorphism where each

� � is monic (i.e., injectiv e).

Equati ons 3.11 and 3.12 precisely describe how � interacts with the proper morphisms

of the involved monads. For value recursion, we also need to specify how � and m�x

interacts:

De�nition 3.5.2 (Monad homomorphisms and embeddings for value recursion.) Let m

and n be two monads with respective value recursion operators m�x m and m�x n . Let

� :: m ! n be a monad homomorphism or embedding. We say that � respects value

recursion if, for all f :: � ! m � ,

� (m�x m f ) = m�x n (� � f ) (3.13)

In Chapter 4, wewill seeseveral concreteexamples, including the embeddingsof maybe

into list, environment and output into state, and identit y into any other monad.

Pr oposition 3.5.3 Let � : m ! n be an embedding of a monad m into a monad n. Let

m�x n be a value recursion operator for n. Let g :: (� ! m � ) ! m � be a function,

satisfying the strict nessproperty. If � satis�es Equation 3.13 where g plays the role of

m�x m , then g is a value recursion operator for m, i.e., it wil l satisfy purit y and left

shrinkin g properties as well.

Pr oof Simple equati onal reasoning. We present the left shrinking caseto illustrat e the

idea:
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� (g (� x. a � = � y. f x y))

= m� x (� x. � (a � = � y. f x y))

= m� x (� x. � a � = � y. � (f x y))

= � a � = � y. m�x (� x. � (f x y))

= � a � = � y. � (g (� x. f x y))

= � (a � = � y. g (� x. f x y))

f Eqn. 3.13g

f Eqn. 3.12g

f left shrink g

f Eqn. 3.13g

f Eqn. 3.12g

Since � is injective, we obtain:

g (� x. a � = � y. f x y) = a � = � y. g (� x. f x y)

showing that g satis�es left shrinking. �

Remark 3.5.4 It is unfortunate that strictness is not necessarily re
ect ed. Using the

proof technique above, one gets: � (g f ) = m�x n (� � f ); but we cannot conclude that g

satis� es strict ness unless� is strict . It turns out that requiring � to be strict is an overkill ;

many embedding examples we will see in Chapter 4 are not st rict.

Pr oposition 3.5.5 The sliding, nesting, strong sliding and right shrink ing propert iesare

re
ect ed thr ough embeddings as well. That is, if � : m ! n is an embedding respecting

value recursion, and if m� xn satis� es any of theseproperties, then so will m�x m .

Pr oof Similar to the previous proposition. �

Observ ation 3.5.6 Composition of two embeddings is still an embedding, hence prop-

ertiesare re
 ected thr ough multiple embeddings as well.

Is it possible to derive value recursion operators using embeddings? Intuiti vely, if a

monad m embeds into another monad n, and if n has a value recursion operator, one

might expect to be able to derive a value recursion operator for m. In this case,we wil l

needthe embedding to be a split monic, i.e., to possessa left inverse, in order to be able

to map results back to m. For instance, the embedding of the maybe monad into the list

monad, and it s left inverse, are given by:

� Nothing = [ ]

� (Just x) = [x]

� ` [ ] = Nothing

� ` (x:xs) = Just x

More formally, let � :: m ! n be an embedding wit h the left inverse� ` :: n ! m, i.e.,

� `
� � � � = idm � . Note that, in general, � ` is not a monad homomorphism.8 Let m� xn be a

8Furth ermore, � and e` are not required to form a retraction pair, i.e., � � � ` 6vid [77]. In fact, � � � ` is
generally incomparable to id, as demonstrated by the embedding of maybe into list.
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value recursion operator for n. When is the function:

g :: (� ! m � ) ! m �

g f = � ` (m� xn (� � f )) (3.14)

a value recursion operator for m? Since e` is not a monad homomorphism, not all required

properties will follow automatically. Still , this construction gives a way of obtaining a

candidate value recursion operator, and we can test whether � respects value recursion

with respect to it. In this case, we need to verify:

(� � � ` ) (m�x n (� � f )) = m�x n (� � f ) (3.15)

for all f :: � ! m � . If Equation 3.15 holds, Propositions 3.5.3 and 3.5.5 will be su�cie nt

to establish propert ies for g automatically.

Remark 3.5.7 It is easy to see that e` will always satisfy Equation 3.11. In general,

Equation 3.12 wil l only be satis� ed on the subset of valuesthat are in the image of � . The

maybe into list embedding given above ill ustratesthis point. However, we suspect that the

subset of valueson which Equation 3.12 is sati s�ed might be su�ci ent to establish further

properties of the derived operator. We leave the exploration of this idea for futur e work.

3.6 Monad transfo rmers

Closely related to monad homomorphisms is the idea of monad transformers. It is often

the casethat one wants to add new features to an already existi ng monad. For instance,

one can add except ions, state or non-determinism to a monad, obtaining a monad with

newcomputational features. Monad transformershavebeendesigned to solve this problem

in a modular manner. Intuitiv ely, given a monad m, a monad t ransformer t yields a new

monad t m, t ransforming returnm to returnt m and � = m to � = t m . Furthermore, one

requires a monad homomorphism lift � :: m � ! t m � , li ft ing computat ions in m to the

new monad. We refrain from going into details here, the reader is referred to the rich

li terature on monad transformers for details [22, 42, 53, 54].

For value recursion, we ask a similar quest ion. Given a monad transformer t, is there

a natural way of obtaining m�x t m from m�x m ? A generic approach would be to convert a

given function f :: � ! t m � to a function of type � ! m � , apply m�x m to get the �xed-

point m � , and t ransfer it back to t m � using lift . Unfortunately, to do the conversion

from � ! t m � to � ! m � , one would need a morphism with type t m � ! m � , the

inverseof lift , which is clearly not available in general.
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On the other hand, it is generally possible to li ft arbitrary value recursion operators,

provided we know the exact structure of the monad tr ansformer. We will consider thr ee

examples of monad t ransformers in Section 4.9, namely errors, environments, and state,

and show how we can li ft the value recursion operators through these t ransformers. (This

technique doesnot always work, however, as illustrate d by the cont inuation monad trans-

former. SeeSection 5.2 for detai ls.)

3.7 Summary

In this chapter, wehaveconcentrat edon propertiesof value recursion operators that follow

from the structural properties of underlying monads. As we have seen, if the � = operator

is strict in it s �rs t argument, then the strong sliding and right shrinking properties cannot

be satis�ed. This is an important point: there are inherent limita tions on what we can

expect from recursion in the presenceof e�ects. (Wewill retur n to this issuein Chapter 6.)

The latter part of this chapter dealt with how value recursion operators re
 ect prop-

ertiessuch as idempotency, commutativi ty, and addit ivit y, and how individual properti es

are re
ected through monad embeddings. In Chapter 4, we will get a chance to review

thesepropert ies with respect to concrete examples of value recursion operators.



Chapter 4

A cata log of valu e recursion operat ors

In this chapter, we present value recursion operators for monadsthat are frequent ly used

in functional programming, providing a catalog of m�x 's for the working programmer.

Alt hough there is no magic recipe, we believe that theseexamplespresent enoughpatt erns

to guide the construction of value recursion operators for new monads.

Synopsis. We establish a framework wit h the identi ty monad and then cover excep-

ti ons, lists, state, output , environments, t rees, and fudgets. The conti nuation monad

proves to be problematic ; we consider it separately in Chapter 5. We also discussmonad

transformers, enabling us to create new m�x 's from old.

4.1 Ide ntit y

The identi ty monad is the monad of pure values, modeling computat ions with no e�ec ts:

t yp e Identity � = �

return = id
x � = f = f x

with �x as the corresponding value recursion operator, i.e:

m�x :: (� ! Identity � ) ! Identit y �

m�x f = �x f
(4.1)

Pr oposition 4.1.1 Equation 4.1 de�n es the unique value recursion operator for the

identi ty monad.

Pr oof It is easy to show that �x satis� esstrictness,purit y, and left shrinking properties.

For uniqueness,wewil l show that any valuerecursion operator for the identi ty monadmust

equal �x . Let m�x 0 be such an operator. We have:

m�x 0 f = m�x 0 (return � f ) = return (�x f ) = �x f

by using purit y and the fact that return = id. �

35
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Remark 4.1.2 Although we will stick to Haskell notation, we will generally avoid using

explicit tags to reduce clutt er as long as we can. For instance, for overloading purposes,

the proper way to de� ne the ident it y monad and m�x in Haskell is:1

newt yp e Identit y � = Id f unId :: � g

ins t ance Monad Identity where
return x = Id x
Id x � = f = f x

m�x f = �x (f � unId)

Pr opert ies It is easyto see that all of our properties hold for Equation 4.1, including

nesting, strong sliding and right shrinkin g. Furthermore, the ident it y monad is both

idempotent and commutati ve, and it is an easy exercise to show that Properties 3.2.1

and 3.3.1 both hold.

The ident it y monad embeds into any other monad n, as long as returnn is monic.

The homomorphism � = returnn easily satis�es Equati ons 3.11-3.13, assuming n has a

value recursion operator. (In other words, the ident it y monad is initi al in the category of

monadsand monad homomorphisms.)

4.2 Except ions: The ma ybe monad

The maybe monad of Haskell can be usedto model exceptions:

data Maybe � = Nothing j Just �

return = Just
Nothing � = f = Nothing
Just x � = f = f x

with the following unique value recursion operator:

m�x :: (� ! Maybe � ) ! Maybe �

m�x f = �x (f � unJust )

where unJust (Just x) = x

(4.2)

Pr oposition 4.2.1 Equation 4.2 de�n es the unique value recursion operator for the

maybe monad.

1The newt yp e declaratio n avoids adding a separate ? element. If a data declaration is used,� = should
match lazily (i. e., ~(Id x) � = f = f x) to avoid strictness problems. (SeeSect ion 3.1 for details.)
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Pr oof St rictnessand purit y are st raightforward. For left shrinking, we needto show:

m�x (� x. a � = � y. f x y) = a � = � y. m�x (� x. f x y)

where a is a free variable. Case analysis on a su�ces to show the equivalence. When

a = ? , both sides yield ? . When a = Nothing, we get Nothing. Finally, when a = Just z

for somez, both sidesyield m�x (� x. f x z).

To show uniqueness, we do a similar caseanalysis. If f ? = ? , m�x f must be

? by strict ness. If f ? = Nothing, monotonicity implies that f = const Nothing; and

Proposition 2.6.1 guarantees that m�x f = Nothing. Finall y, if f ? = Just z for some

z, then f must factor thr ough Just by monotonicity, i.e., there must be a function h such

that f = Just � h; or equivalentl y, h = unJust � f. Therefore,

m�x f = m�x (Just � h)

= m�x (return � h)

= return (�x h) f purit yg

= return (�x (unJust � f ))

To summarize, we have:

m�x f = case f ? of

Nothing ! Nothing

Just ! return (�x (unJust � f ))

(4.3)

Note that we did not make any choices in constructi ng Equation 4.3; the behavior of

m�x is completely dictated by the properties that must be satis�ed by all value recursion

operators. We leave it to the reader to show that Equations 4.2 and 4.3 are equivalent ,

establishing uniqueness. �

Remark 4.2.2 By Proposition 2.6.3, f ? is always an approximat ion to m�x f , justify-

ing the caseexpression in Equation 4.3. Note that the case when f ? = ? is implicit ly

handled by pattern match failur e.

Pr opert ies It is easyto show that Equation 4.2 also satis�es sliding and nesting prop-

erties. As stated in Corollary 3.1.7, st rong sliding and right shrinking propertiesfail.

How about idempotency (Proposition 3.2.1) and commutativi ty (Proposition 3.3.1)?

It turns out that the except ion monad is indeed idempotent (i.e., satis�es Equation 3.2).

Equations 3.4 and 3.5 are both satis�ed . On the other hand, excepti onsare not commuta-

ti ve, due to the possibility of non-terminat ion: Nothing � = � x. ? = Nothing; whereas

? � = � x. Nothing = ? . Consequentl y the commutativi ty property is not applicable.
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Finally, we consider the distributivi ty (Property 3.4.1). As mentioned in Section 3.4,
the maybe monad is additi ve:

zero = Nothing
Nothing � y = y
Just x � y = Just x

To establish

m�x (�x: f x � g x) = m�x f � m�x g

it su� ces to do a caseanalysis on f ? . In casef ? = ? , both sides wil l yield ? . In case

f ? = N othing, we wil l get m�x g on both sides. Final ly, if f ? takesthe form of a Just,

both sides will reduce to m�x f. We leave the details to the reader.

Remark 4.2.3 It is instructi ve to study failing de�n itions of m�x as well. Consider:

m�x 0 f = let Just x = f x

in return x

which is somewhatintuit ive, considering how the recursive knot is tied over x. Obviously,

strict ness fails. More seriously, left shrinking fails as well:

m� x0 (� x. Nothing � = � y. return 1) = Just ?

Nothing � = � y. m�x 0 (� x. return 1) = Nothing

compromising the equivalence of do and mdo expressionsin the absenceof recursion. We

also have m�x 0 (� x. Nothing) = Just ? ; which is truly bizarre.

4.3 Li sts

The list monad of Haskell can be used to model computations with multiple results:

return x = [x]

[ ] � = f = [ ]
(x:xs) � = f = f x ++ (xs � = f )

Given a function f :: � ! [� ], how do we compute m�x f :: [� ] ? Intuitiv ely, we need

to select a pivot value to ti e the recursive knot. Consider the following two candidates:

let (a : ) = f a

in f a

let ( : a : ) = f a

in f a



39

where we pivot over the � rst and the second element of the result, respectively. Of course,

there is an in� nite family of such functions, one for each particular position. As we wil l

seelater in this section, none of thesealternatives give rise to a value recursion operator.

Instead, we consider a moving pivot: Rather than �xing a single pivot element for the

ent ire computation, we compute each element in the result using its own position as the

pivot element . That is, the i th element of the � xed-point of f can be selected as the

�x ed-point of the function headi � f , suggest ing:

m�x f = �x (head � f ) : m�x (tail � f )

There is a slight problem wit h this approach, however: It always generates an in�n it e list ,

repeati ng ? after reaching the actual end of the list . Luckily, there is an easy solut ion.

Rather than comput ing �x (head � f ); we can compute �x (f � head); and stop when

the result is [ ]. Putt ing theseideas altogether, we obtain the following operator:

m�x :: (� ! [� ]) ! [� ]

m�x f = case �x (f � head) of

[ ] ! [ ]

(x: ) ! x : m�x (tail � f )

(4.4)

As the following proposition shows, this de� niti on of m�x is extremely well-behaved:

Pr oposition 4.3.1 The function m�x given by Equation 4.4 satis� es:

m�x f = ? , f ? = ? (4.5)

m�x f = [ ] , f ? = [ ] (4.6)

head (m�x f ) = �x (head � f ) (4.7)

tail (m�x f ) = m�x (tail � f ) (4.8)

m�x (� x. f x : g x) = �x f : m�x g (4.9)

m� x (� x. f x ++ g x) = m�x f ++ m�x g (4.10)

Pr oof See Appendix B.6. �

Remark 4.3.2 From the �r st two equivalences in Proposition 4.3.1, we seethat m�x f

structur ally follows f ? . That is, if m� x f is ? or [ ], then so is f ? , and vice-versa.

Similarly, m�x f is a cons-cell exactly when f ? is. We seethis correspondence over and

over in monads that are based on sum-like data structures. (Seealso Remark 2.6.4.)

Pr oposition 4.3.3 Equation 4.4 de�n es the unique value recursion operator for the list

monad.
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Pr oof St rictnessis exactly the �r st equivalence in Proposition 4.3.1. Purit y is easy to

establish; we leave it to the reader. Left shrinking is more interest ing. We show:

m�x (� x. a � = � y. f x y) = a � = � y. m�x (� x. f x y)

by structur al induction on a. The base cases,a = ? and a = [ ], are immediate. For the

inductive step, we assume a = q : qs, and reason as follows:

m�x (� x. (q : qs) � = � y. f x y)

= m�x (� x. f x q ++ qs � = � y. f x y)

= m�x (� x. f x q) ++ m�x (� x. qs � = � y. f x y)

= m�x (� x. f x q) ++ qs � = � y. m�x (� x. f x y)

= (� y. m�x (� x. f x y)) q ++ qs � = � y. m�x (� x. f x y)

= (q : qs) � = � y. m�x (� x. f x y)

f Eqn. 4.10g

f I.H. g

establishing the left shrinking property, and completing theproof that wehavea legit imate

value recursion operator.

For uniqueness,we will appeal to the approximat ion lemma.2 Let m�x refer to the

function de�n ed by Equation 4.4, and let m�x 0 be another value recursion operator for the

list monad. We will show that :

8n:8f : approx n (m�x f ) = approx n (m�x 0 f )

establishing uniqueness. The proof is by induction on n. The base case (n = 0) is

immediate. The induction hypothesis is:

8f : approx k (m�x f ) = approx k (m�x 0 f )

for a � xed natural number k. We need to show that :

8f : approx (k+ 1) (m�x f ) = approx (k+ 1) (m�x 0 f )

Pick an arbit rary function f . The proof proceeds by caseanalysis on the value of f ? .

If f ? = ? , then both sides yield ? by the strictness property. If f ? = [ ], then

f = const [ ] by monotonicity, and both sides yield [ ] by Proposition 2.6.1. The case

when f ? is a cons-cell is a bit more involved. By monotonicit y, we have

f x = (head � f ) x : (tail � f ) x = [(head � f ) x] ++ (tail � f ) x (4.11)

for all x, since f will always produce a cons-cell given any argument . Furthermore, the

list monad satis�es Equation 3.8, and hencem�x 0 must satisfy Equation 3.10 by Proposi-

ti on 3.4.2, where � = ++. Now, it is easy to see that:

2SeeAppendix B.6 for a more detailed example use of this lemma.
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m�x 0 f = m�x 0 (� x. [(head � f ) x] ++ (tail � f ) x)

= m�x 0 (return � head � f ) ++ m�x 0 (tail � f )

= return (�x (head � f )) ++ m�x 0 (tail � f )

= [�x (head � f )] ++ m�x 0 (tail � f )

= �x (head � f ) : m�x 0 (tail � f )

f Eqn. 4.11g

f Eqn. 3.10g

f purity g

Also note that Equation 4.4 will take its second branch when f ? is a cons-cell. Therefore,

the proof obligation reducesto:

head (�x (f � head)) : approx k (m�x (tail � f ))

= �x (head � f ) : approx k (m�x 0 (tail � f ))

by the de�n ition of approx, and the above derivation. But this equation is immediate:

First elements are equivalent by the dinaturalit y of �x , and the tails are equivalent by the

induction hypothesis. �

Pr opert ies It is not very hard to show that the sliding and nest ing properties hold. By

the last equation in Proposition 4.3.1, distrib utivi ty holds as well (Property 3.4.1). On

the negative side,both strong sliding and right shrinking propert ies fail, as pointed out in

Corollary 3.1.7.

Remark 4.3.4 The maybe monad embeds into the list monad, as described in Sec-

ti on 3.5. Furthermore, the value recursion operator for the maybe monad is exactly the

one predicted by Equation 3.14.

Remark 4.3.5 We closethis section by discussing failing de�n itions of m�x for the list

monad. Consider the function:

f xs = [take 3 (1 : xs); take 3 (2 : xs)] (4.12)

What should m�x f be? Our de�n ition yields: [[1; 1; 1]; [2; 2; 2]]; but the reader might

wonder about [[1; 1; 1]; [2; 1; 1]]; or [[1; 2; 2]; [2; 2; 2]]; which are produced by the

two alternatives we have seen at the beginning of this section, i.e., by pivoting over the

�r st and second elements of the result. As we have mentioned, there is an in� nite family

of such operators:3

m�x i f = �x (f � head � tail i ); i � 0 (4.13)

3Note that these alternat ivesdo not form a chain; they are all incomparable. Furt hermore, they are all
incomparable to our de�n ition of m�x (i.e., Equat ion 4.4) as well.
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How about propert ies? It is easy to seethat strict ness holds for all m�x i , but that's

where the good news ends. Except for m�x 0, all members violate purit y. We have:

m�x i (return � f ) = return (f ? ); i > 0

Furthermore, the left shrinking property fails for all of them. For instance,

m�x 0 (� x. [1; 2] � = � y. [y; x]) = [1; 1; 2; 1]

[1; 2] � = � y. m�x 0 (� x. [y; x]) = [1; 1; 2; 2]

compromising the equivalence of do and mdo expressions in the absence of recursion.

Intuiti vely, thesede�n itions causeinterferencebetween elements. Note that:

� x. [1; 2] � = � y. [y; x] = � x. [1; x; 2; x]

and there is no reason to expect anyt hing but ? to play the role of x in the � xed-point ,

as there is no information on what it can be. Indeed,our de�n it ion of m�x yields:

m�x (� x. [1; 2] � = � y. [y; x]) = [1; ? ; 2; ? ]

[1; 2] � = � y. m�x (� x. [y; x]) = [1; ? ; 2; ? ]

In the light of this discussion, we seethat neither the list [[1; 1; 1]; [2; 1; 1]]; nor the

list [[1; 2; 2]; [2; 2; 2]] constitute a viable �x ed-point for the function de� ned by Equa-

ti on 4.12. Each indicate interference between the elements of the �xed-p oint, violat ing

the left shrinking property.

In Section 9.1, wewill seean exampleuseof value recursion on the list monad, providing

practical evidencefor the de�n it ion givenby Equation 4.4 being preferableover thosegiven

by Equation 4.13.

4.4 State

State monads capture the notion of computations that depend on modi� able stores,pro-

viding safe accessto imperative featur es [51, 52]. A typical state monad, manipulating an

internal state with type � , has the following st ructure [7, 91]:

t yp e ST � � = � ! (�; � )

return x = � s. (x; s)
f � = g = � s. let (a; s0) = f s

in g a s0
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The corresponding value recursion operator is given by:

m�x ! :: (� ! ST � � ) ! ST � �

m�x ! f = � s. let (a; s0) = f a s

in (a; s0)

(4.14)

(The reason for the name will be clear in a moment. )

Remark 4.4.1 The following pictur e depicts the operation of the value recursion oper-

ator for the state monad, providing the intuit ion for the diagrams we have beenusing so

far (see also Remark 2.2.2):

state in state out

a

f
value out

The monads we have considered up to now (i.e., identit y, exceptions, and lists) enjoy

the property that they all have unique value recursion operators. Is this the case for

the state monad as well? Referring to the picture above, we seethat the result ing state

transformer is required to return the �xed-p oint value in the value out line in order to

satisfy purit y, but it is not clear how we should determine the �n al state, i.e., the value of

the state out line. Equation 4.14 captures the case when state out is obtained by running

f on the � xed-point value and the current state. It is possibleto consider an alternativ e

semant ics, where the resulting state is determined without any regard to the value part ,

i.e., without any useof the � xed-point value. That is, a de� niti on of the form:

m�x f = � s. let (a; ) = f a s in (a; � 2 (f ? s)) (4.15)

with the following picture:

state in state out

f
value out

f

We might thin k of this operator as being strict ly sequentia l in the state, i.e., it does

not make use of any \ futur e" knowledgein determining what the � nal state should be.

There is a whole family of such operators, using approximati ons to the �xed-p oint value:

m�x i f = � s. let (a; ) = f a s in (a; pick i f s); i � 0 (4.16)
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where

picki f s = � 2 (f (( �a: � 1 (f a s)) i ? ) s) (4.17)

For instance, the picture for pick2 is:

state in state out

ff f

Note that m�x 0 is precisely the operator de� ned by Equation 4.15. By construction,

each picki is an approximat ion to the next , i.e., picki v picki +1 , implying m�x i v m�x i +1 .

Furthermore, it is easy to seethat :

m�x ! =
1G

i =0

m�x i (4.18)

where the m�x ! on the left hand side is the operator de� ned by Equation 4.14.

Example 4.4.2 The functions m�x i , for all i , and m� x! will always agree on the value

part of the �xed-p oint. It is the �n al state that will be approximated by each m�x i , the

limit being delivered by m�x ! . To demonst rate, consider the following function:

f :: [Int ] ! ST [Int ] [Int ]

f xs s = (1 : xs; xs)

We have:

� 2 (m�x i f [ ]) =

i times
z }| {
1 : 1 : : : : : 1 : ?

As expected, � 2 (m� x! f [ ]) yields the in�n it e list of 1's. Notice how approximations are

re
ect ed in the � nal state. (In all cases� 1 (m�x f [ ]), i.e., the value part, wil l always be

the in�n ite list of 1's.)

Pr oposition 4.4.3 The functions m�x i , for all i (Equation 4.16), and m�x ! (Equa-

ti on 4.14) are value recursion operators for the state monad.

Pr oof For brevit y, we wil l only consider m�x ! here. Proofs for m�x i are a bit more

tedious, but equally easy. For strict ness,we note that a function f of type � ! ST � � is

strict exactly when f ? � s = (? � ; ? � ) for all s. We have:

m�x ! f s = let (a; s0) = f a s in (a; s0)

= let a = �x (� a. � 1 (f a s)) in (a; � 2 (f a s))
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Because the function �a: � 1 (f a s) is strict, its �xed -point is ? . Therefore, m�x ! f s =

(? ; ? ), establishing that m�x ! f is ? .4

For purit y, we have:

m�x ! (return � f ) = � s. let (a; s0) = (return � f ) a s in (a; s0)

= � s. let (a; s0) = (f a; s) in (a; s0)

= � s. let a = �x (� a. f a) in (a; s)

= � s. (�x f ; s)

= return (�x f )

For left shrinking, we need to show that:

m�x ! (� x. g � = � y. f x y) = g � = � y. m�x ! (� x. f x y)

Simple symbolic manipulat ion reducesboth sidesto:

� s. let (a; s0) = g s

(a0; s00) = f a0 a s0

in (a0; s00)

completing the proof. �

Remark 4.4.4 Abusing the terminology a bit , one might consider m�x ! as a lazy-in-

the-state value recursion operator, while m� x0 is strict . As we will see in Section 4.8

and in Chapter 8 in detail, the operation of m�x 0 is quite similar to the operation of

value recursion operators for stream processing and IO monads. It is hard to develop

a corresponding intuit ion for m�x i when i 6= 0. We do not know any applications that

might bene�t from them. Furth ermore, they behave st rangely wit h respect to the nest ing

property, as we will see shortl y.

Pr opert ies Having established that m�x i for all i , and m�x ! are value recursion oper-

ators, we now take a look at other properti es. It turns out that sliding (Property 2.4.1)

is satis� ed by all of them, but nesting (Property 2.5.1) only holds for m�x 0 and m�x ! .

Strong sliding and right shrinking properti esonly hold for m�x ! .

Coun terexample 4.4.5 Let us �r st consider nesting. Let

4We cautio n the reader about the use of t rue products. In case of li fted products, we would get
m�x f = � s. (? ; ? ) 6= � s. ? ; violati ng strictness. But th is is hardly surpri sing|ev en monad laws fail
in this case. It is easy to seethat (� s. ? ) � = return = � s. (? ; ? ); faili ng the right unit law.
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f :: ([In t ]; [Int ]) ! ST [Int ] [Int ]

f x s = (1 : � 1 x; � 2 x)

Considering left and right hand sides of Equation 2.7, for each i > 0, we have:

� 2 (m�x i (�x: m� xi (�y : f (x; y))) [ ]) = 1i +1 : ?

� 2 (m�x i (�x: f (x; x)) [ ]) = 1i : ?

where 1k denotes a list of k 1's. Since the � nal statesdi�er, nesting fails. (The value part

will be the in� nite list of 1's in both cases.) For the single call to m� xi in the second line,

we simply get a snapshot of the value after i iterations, that is, exactly i 1's. The nested

calls to m�x i , and hence to picki , result in the extra 1 in the �r st line. This behavior is

tru ly bizarre from the viewpoint of value recursion. In caseof m�x 0, the � nal states wil l

both be ? , sincethe inner call to pick will be ignored by the outer one. In caseof m�x ! ,

the � nal state will be the in�n it e list of 1's, as expected.

For strong sliding (Section 2.7.1), consider:

f :: [Int ] ! ST [Int ] [Int ]

f xs s = (xs; xs)

h :: [Int ] ! [Int ]

h xs = 1 : xs

Note that f (h ? ) = �s :(1 : ? ; 1 : ? ) 6= � s:(? ; ? ) = f ? , hencesliding (Property 2.4.1)

does not apply. Considering Equation 2.5, we have:

� 2 (m�x 0 (map h � f ) [ ]) = ?

� 2 (map h (m�x 0 (f � h)) [ ]) = 1 : ?

showing that strong sliding fails. For right shrinking (Property 2.7.3), let

f :: [Int ] ! ST [Int ] [Int ]

f xs s = (1:xs; xs)

g :: [Int ] ! ST [Int ] [Int ]

g xs ( : k : ) = (xs; [k])

We leave it to the reader to show that right shrinking fails for m�x 0 with this instanti ation.

It is possibleto generalize these examplesfor all other m� xi , whenever i is � nite.

Remark 4.4.6 We do not know whether there are other value recursion operators for

the state monad.

4.5 Output monad and monads based on monoids

Every monoid gives rise to a monad, referred to as its representation monad [2]. In pro-

gramming, the best known example is the output monad, as we will see short ly. Let
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(M ; � ; unit ) be a monoid, where M is the underlyin g type. The corresponding represen-

tation monad is given by:

t yp e RepM � = (�; M )

return x = (x; unit )

ma � = f = let (a; m) = ma

(b; n) = f a

in (b; m � n)

For instance, substitut ing String for M , \" for unit, and ++ for � , one obtains the usual

output monad [7, 91]. The obvious value recursion operator is given by:

m� x! :: (� ! RepM � ) ! RepM �

m�x ! f = let (a; m) = f a in (a; m) (4.19)

As with the state monad, the choice of the name m�x ! is not arbitr ary. We have a

family of recursion operators:

m�x i f = let (a; ) = f a in (a; pick i f ); i � 0 (4.20)

where

picki f = � 2 (f (( � 1 � f ) i ? )) (4.21)

A straight forward calculation (analogous to Equation 4.18) shows that:

m�x ! =
1G

i =0

m�x i (4.22)

The correspondencewith the state monad is not accidental. Any such representat ion

monad embedsinto the state monad via the embedding:

� (a; m) = � n. (a; n � m) (4.23)

with the left inverse: � ` f = f unit. Furth ermore, � works uniformly over all value

recursion operators, including m�x ! . That is, for any monoid M :

� (m�x RepM
i f ) = m� xST

i (� � f ) (4.24)

where i is either a natur al number or ! . It is an easy exercise to show that the embedding

requirements (i.e., Equations 3.11-3.13) hold for � .
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Pr opert ies By Proposition 3.5.3, whenever an m�x for the state monad satis� es pu-

rit y or left shrink ing, the corresponding operator for the representation monad of a given

monoid will satisfy it too. Note that � is not st rict, hence strict ness is not automati -

cally guaranteed (see Remark 3.5.4). However, it is easy to seethat all m� xi and m�x !

satisfy strict ness. Therefore, we have an in�n ite family of value recursion operators for

representation monads, similar to the casefor the state monad.

By Proposition 3.5.5, sliding, nesting, strong sliding, and right shrinking properti es

hold whenever the corresponding operator for the state monad satis�es them. On the

negativ e side, all of the counterexamples we gave for the state monad can be converted

to counterexamples for representation monads with no di�c ult y, invalidating nesting for

m�x i when i > 0, and strong sliding and right shrinking for all but m�x ! .

If the underlying monoid is idempotent , the representat ion monad wil l be idempo-

tent as well. Similarly, commutat ivit y of the monoid implies the commutativit y of the

monad. In both cases, m�x ! wil l preserve idempotency and commutativit y (Proper-

ti es3.2.1 and 3.3.1). Unfortu nately, this result does not extend to m� xi automatically.5

Remark 4.5.1 Simil ar to the case for the state monad, it is an open question whether

there are other value recursion operators for monads basedon monoids.

4.6 Environmen t s

The environment monad, also known as the reader monad, captures computations that

use a store to read valueswithout modifying them. Using an environment of type � , the

environment monad has the following structure:

t ype Env � � = � ! �

return x = � e. x
f � = g = � e. g (f e) e

The corresponding value recursion operator is given by:

m�x :: (� ! Env � � ) ! Env � �

m�x f = � e. let a = f a e

in a

(4.25)

5For instance, Equation 3.4 will hold for m�x 0 only when � 2 (f ? ) � � 2 (f (� 1 (f ? )) ) = � 2 (f ? ),
which is not guaranteed just by the fact that � is idempotent. Similar arguments apply to Equati ons 3.5
and 3.7 as well.
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Remark 4.6.1 It is an easy exercise to show that Equati on 4.25 is equivalent to the

generic m�x given in Section 1.4. To the best of our knowledge, identi ty and environ-

ment monadsare the only examples where the generic version acts as the value recursion

operator.

Unsurprisingly, the environment monadembeds into the state monad. Theembedding6

is given by � f = � s. (f s; s); wit h the left inverse � ` f = � 1 � f . It is easy to see

that strict ness holds for Equation 4.25. Therefore, Proposition 3.5.3 guarantees that

Equation 4.25 de� nesa value recursion operator for the environment monad.

Pr opert ies By Proposition 3.5.5 and the observations made above, Equation 4.25 sat-

is�es all the properties satis� ed by m�x ! of the state monad. That is, sliding, nesting,

strong sliding, and right shrinking properties,along wit h the basic requirements of strict -

ness,purit y and left shrinkin g are all satis�ed .

Finally, the environment monad is both idempotent and commutativ e, and Proper-

ti es3.2.1 and 3.3.1 are both satis�ed.

Remark 4.6.2 We do not know whether Equation 4.25 de� nes the unique value recur-

sion operator for the environment monad.

4.7 Tree monad

In this section, we wil l brie
y cover the tree monad [42]:

data Tree � = Leaf � j Fork (Tree � ) (Tree � )

return x = Leaf x
Leaf x � = f = f x
Fork l r � = f = Fork (l � = f ) (r � = f )

The e�ect of � = is to splice new subt rees on every Leaf of the �r st argument. The

corresponding value recursion operator is given by:

m�x :: (� ! Tree � ) ! Tree �

m�x f = case �x (f � unL) of

Leaf x ! Leaf x

Fork ! Fork (m�x (lc � f )) (m�x (rc � f ))

(4.26)

The functions unL, lc, and rc are de� ned as follows:

6 It doesnot matter which m�x is chosen for the state monad (i.e., m�x ! of Equation 4.14, or any m�x i

given by Equation 4.16).
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unL :: Tree � ! �

unL (Leaf x) = x

lc; rc :: Tree � ! Tree �

lc (Fork l r ) = l

rc (Fork l r ) = r

Compared to the value recursion operator for the list monad (Equation 4.4), we see

that unL plays the role of head, while tail is replaced by lc and rc, projecting out the

children at each node. Otherwise, the de� niti ons are structurally the same.

Remark 4.7.1 Despite all the similarities, the list monad does not embed into the tree

monad. There is no suitable element to map [ ] to, since our t reesare always non-empty.

(A n alternati ve formulation of tr ees, where data is stored in the nodes and leaves are

empty, doesnot give rise to a monad structur e.)

Pr oposition 4.7.2 The function m�x given by Equation 4.26 satis�es:

m�x f = ? , f ? = ? (4.27)

unL (m�x f ) = �x (unL � f ) (4.28)

lc (m�x f ) = m�x (lc � f ) (4.29)

rc (m�x f ) = m�x (rc � f ) (4.30)

m�x (� x. Fork (f x) (g x)) = Fork (m�x f ) (m�x g) (4.31)

Pr oof Similar to the proof of Proposition 4.3.1. �

Pr oposition 4.7.3 Equation 4.26 de�n es the unique value recursion operator for the

tree monad.

Pr oof Analogous to the proof for the list monad (Proposition 4.3.3). Note that we

needto usea di�eren t version of approx that works on trees [38] (seeAppendix B.6). For

uniqueness,we cannot refer to distrib uti vit y, as the tree monad is not additiv e. (Th ere is

no appropriate unit element. ) However, we still have the operator: x � y = Fork x y;

which satis� es:

x � y � = f = x � = f � y � = f

hence a similar argument applies as in the casefor the list monad. We leave the details

to the reader. �
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Pr opert ies Sliding and nest ing properties can be shown to hold for the tree monad,

while strong sliding and right shrinkin g fails by Propositions 3.1.5 and 3.1.6.

4.8 Fudgets

In this section, we will take a look at fudgets,7 a monad that has been designed to model

stream basedcomputations. In it s simplest form, the fudgetsmonad looks like:

data Fudget � = Val �
j Put Char (Fudget � )
j Get (Char ! Fudget � )

return = Val

Val a � = f = f a
Put c m � = f = Put c (m � = f )
Get h � = f = Get (� c. h c � = f )

We will model functional I/ O using a simple interpreter over this data type:8

run :: Fudget � ! String ! (String; �; String)
run (Val a) inp = (\ " ; a; inp)
run (Put c m) inp = let (o; a; r ) = run m inp in ('!' : c : o; a; r )
run (Get f ) [ ] = error \ tr yin g to Get fro man empty strea m!"
run (Get f ) (c:cs) = let (o; a; r ) = run (f c) cs in (' ?' : c : o; a; r )

The function run accepts a fudget and an input st ream, runs the computation and

delivers the list of I/O operations that took place, together with the � nal value and the

remainder of the input. The list of operations consists of all characters that are printed

via Put (pre� xed by ! ), and all characters that are read from the input via Get (pre� xed

by ?). Note that the order is important, as it indicates the temporal relationship between

I/O actions. For instance, we have:

run (Put 'a' (Get (� c. Put c (Val c)) )) \ 123" = (\ !a?1!1" ;'1';\ 23" )

For value recursion, we are interested in the meanings of fudgets of the form:

m�x (� xs. Put 'a' (Val (1 : xs))) (4.32)

7 It would me more appropria te to call these\ fudget-style stream processor monads," as the presentation
here is only loosely based on the original work on fudgets by Carlsson and Hallgren [28, 29]. For brevity,
however, we will contin ue using the word fudget.

8We wil l investigate Haskell' s internal IO monad in detail in Chapter 8.
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which intuit ively models a computation that will print the character a and then deliver

an in�n it e list of 1's. Or, more interest ingly:

m�x (� cs. Get (� c. Val (c : cs))) (4.33)

which wil l � rst read a character from the input stream (if available), and then return an

in� nite list containing copiesof that character.

One possible value recursion operator for the fudgetsmonad is given by:

m�x f = case f ? of

Val ! �x (f � unVal)

Put c ! Put c (m�x (unPut � f ))

Get ! Get (� c. m�x (unGet c � f ))

(4.34)

where

unVal (Val a) = a
unPut (Put m) = m
unGet c (Get h) = h c

With this de�n it ion, Expression4.32 yields:

run (m�x (� xs. Put 'a' (Val (1 : xs))) ) \ z" = (\! a" ; 1; \ z")

where �1 denotes the in� nite list of 1's. The result indicates that there wasoneI/O action,

which wasprinti ng the character 'a'; and no input was consumed. Expression 4.33 yields:

run (m� x (� cs. Get (� c. Val (c : cs))) ) \ z" = (\ ?z" ; 'z'; \ " )

indicating that the character 'z' is read from the input, the in� nite list of z's are retur ned,

and all of the input was consumed. If the input stream was empty to start wit h, we would

end up with the error case, i.e., the result would be unde� ned.

So far, the behavior of m�x seemsto be consistent wit h the way we perceive I/ O. Here

is a slightl y more challenging expression:

m�x (� c. Put c (Val 'a')) (4.35)

What should the result be? Two possibil ities arise. If we consider Put asan action causing

I/O, weseethat it will not have its character ready for print ing unt il after the computat ion

proceeds. That is, we should have:

run (m�x (� c. Put c (Val 'a')) ) \ " = (\ !? " ; 'a' ; \ ")
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leaving the printed character unde�n ed.9 Another option is to make the �xed-p oint value

available thr oughout the whole computat ion, yielding:10

run (m�x (� c. Put c (Val 'a') )) \ " = (\! a" ; 'a'; \ " )

However, this alternative behavior is quit e questionable. Consider the expression:

m�x (� c. Put c (Get (� d. Val d)))

In this case, we have to look past Get to determine what Put should print. However,

this character is simply not available unt il we run this fudget wit h a part icular input

stream. Such an operator would violate the temporal relationship between Put and Get.

(Furthermore, to achieve this e�ect , one would need to combine the operation of run and

m�x , making the input stream available when the �xed-p oint is computed.)

Pr oposition 4.8.1 Equation 4.34 de� nesa value recursion operator for fudgets.

Pr oof Strict ness and purity are immediate. Left shrinking can be established by

induction. (As discussed brie
y above, uniquenessis not guaranteed as we can speculate

on the character to be printed whenever we have a Put constructor.) �

Pr opert ies St rong sliding and right shrinkin g both fail by Propositions 3.1.5 and 3.1.6.

Alt hough wehavenot constructed theproofs,webelievethat sliding and nesting properti es

should hold.

4.9 Monad transfo rmers

As pointed out in Section 3.6, monad tr ansformers allow const ruction of new monads

from old ones. Although there is no magic recipe that will automatically lift a given m�x

thr ough a transformer, it is possible to do soin many practical cases.In thissection, wewil l

study thr ee of the most common instances, namely error, environment, and state monad

transformers. (For a discussion of the continuation monad t ransformer, seeSection 5.2.)

Liang de� nesthe error monad transformer as follows [53]:

9The m�x we have given in Equation 4.34 producesth is answer. As we wil l seein Chapter 8, the function
�x IO, the value recursion operator for Haskell's IO monad, behaves similarly. (See Example 8.2.2.)

10 Ignori ng the Get constructor, the fudgets monad is very similar to the output monad of Sect ion 4.5.
The second alternativ e corresponds to the function m�x ! (Eqn. 4.19), while the � rst one corresponds to
m�x 0 (Eqn. 4.20). It is possible to th ink of operators that correspond to m�x i when i 6= 0 too.
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data Err � = Ok � j Err String
t yp e Err T m � = m (Err � )

return a = return (Ok a)
m � = k = m � = � a. case a of

Ok x ! k x
Err s ! return (Err s)

lift m = m � = � a. return (Ok a)

Note that the return and � = on the left hand side are the de� nit ions for the new

monad Err m, while thoseon the right belong to the monad m. If m hasa value recursion

operator m�xM , we can lift it up to Err m as follows:

m�x ErrM :: (� ! ErrT m � ) ! ErrT m �

m�x ErrM f = m�xM (f � unErr )

where unErr (Ok a) = a

(4.36)

The similarities between Equations 4.36 and 4.2 are not accidental. The function

unErr plays the same role as unJust, it providing accessto the value part of the compu-

tation. While the value recursion operator for the maybe monad uses�x (i .e., the value

recursion operator for the identi ty monad) to t ie the recursive knot, m�xErr M usesthe

value recursion operator for the underlying monad to do so.

Pr oposition 4.9.1 Let m�xM be a value recursion operator for a given monad m. The

function m�xErr M, de�n ed by Equation 4.36, is a value recursion operator for the monad

ErrT m.

Pr oof See Appendix B.7. �

Let us now consider the environment monad t ransformer, which adds an immutable

store to arbit rary monads. Thede� niti ons for the environment monadtransformer are[53]:

t yp e EnvT � m � = � ! m �

return a = � e. return a
m � = k = � e. m e � = � a. k a e

lift m = � e. m

If the underlying monad has a value recursion operator m�xM , we can lift it to the

transformed monad as follows:

m�xEnvM :: (� ! EnvT � m � ) ! EnvT � m �

m�xEnvM f = � e. m�xM (� a. f a e)
(4.37)
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The de�n it ion of m�xEnvM exactly mimics the value recursion operator for the envi-

ronment monad (Equation 4.25), just like the casefor the error monad t ransformer and

the maybe monad. Analogous to Propisit ion 4.9.1, we have:

Pr oposition 4.9.2 Let m�xM be a value recursion operator for a given monad m. The

function m�xEnvM , de� ned by Equation 4.37, is a value recursion operator for the monad

EnvT � m. �

Finally, we consider the state monad transformer [53]:

t yp e StateT � m � = � ! m (�; � )

return a = � s. return (a; s)
m � = k = � s. m s � = � (a; s0). k a s0

lift m = � s. m � = � x. return (x; s)

Applying the patt ern we have seen with the previous two examples,a given m�xM can

be lifted through the state monad transformer as follows:

m�xSta teM :: (� ! StateT � m � ) ! StateT � m �

m�xSta teM f = � s. m�xM (� r . f (� 1 r ) s)
(4.38)

Pr oposition 4.9.3 Let m�xM be a value recursion operator for a given monad m. The

function m�x StateM, de�n ed by Equation 4.38, is a value recursion operator for the monad

StateT � m. �

Remark 4.9.4 The lifti ng given by Equation 4.38 behavesanalogously to m�x ! asgiven

by Equati on 4.14. It does not seem possible to li ft arbitrary value recursion operators so

that they wil l behave similarly to any of the m�x i where i is �n it e (Equation 4.16).

4.10 Summa ry

In this chapter we have considereda wide range of monadsand value recursion operators

for them. Although thereis no magic recipe to automate theprocess,the examplesprovide

su�c ient detail to guide the construction of value recursion operators for new monads.

There is one notable except ion, however. The continuation monad does not seem to

possess a value recursion operator. Chapter 5 contains the details.

We summarize the propert ies of value recursion operators we have studied in this

chapter in the following table, along wit h the IO monad (studied in Chapter 8). The last
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column indicates whether the corresponding value recursion operator is unique. A cell

marked wit h � indicates a conjecture.

Str. Pure Left Slide Nest S. Slide Right Unique

Identi ty X X X X X X X X

Except ions X X X X X 7 7 X

Lists X X X X X 7 7 X

m�x 0 X X X X X 7 7

State m�x i X X X X 7 7 7 7

m�x ! X X X X X X X

m�x 0 X X X X X 7 7

Monoids m�x i X X X X 7 7 7 7

m�x ! X X X X X X X

Environment X X X X X X X X �

Tree X X X X X 7 7 X

Fudgets X X X X � X � 7 7 7

IO X X X X � X � 7 7 X �

Let us conclude this chapter by making several observations about value recursion

operators:

� We might hope that m�x constructs a � xed point value in the processof compu-

tation. Unfortunately, in general, we cannot expect to � nd a value zf such that

m�x f = f zf : Consider the function f xs = [1 : xs; 2 : xs]. There is no inte-

ger value zf such that f zf = [1 : 1 : ...; 2 : 2 : ...]; which is the required result

in this case. Simil arly, in the case of the state monad, the closest we can get is:

� s. f (�x (� a. � 1 (f a s))) s; which shows that the state in which the recursive

computation gets performed is essentia l in determining the �n al result. Similar

comments apply to the expression m�x f = m f � = f as well.

� Similarly, one might hope for a morphism suppress :: m � ! m �; such that

m�x f = suppress (m� x f ) � = f

The aim of suppress is to strip out e� ects. There are some monads for which such a

morphism is available, but not in general. For instance, for the state monad:

suppress f = � s. let (a; ) = f s in (a; s)
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Intuit ively, suppresscan only exist when there is a clear structural separation be-

tween values and e�ec ts. For instance, such a separation seems impossible for the

maybe or list monads

� The equality m�x f � g = f ? � g does not hold in general. Since the value

produced by m�x f is discarded, one might thin k that the recursive computat ion

may be skipped as well. However, g might depend on the e�ect s performed by the

�r st computat ion, which might very well be di�e rent for m�x f and f ? .

� It is worth reemphasizing some di�erences between �x and m�x . Recall that �x

satis�es the equalit y �x (f � f ) = � x f ; for all f . However, it is not the casethat :

m�x f = m� x (� x. f x � = f ); unless f is pure. In general, this equation only

holds when the underlying monad is idempotent (seeSection 3.2). Similarly, the

equation � x (f � h) = f (�x (h � f )) t ranslates into

m�x (map h � f ) = map h (m�x (f � h))

and requires f ? = f (h ? ) (see Section 2.4). Most important ly, the de� ning

equation for �x , �x f = f (�x f ); simply does not have any counterpart in the

value recursion world. The unfolding view of recursion is not suitable for explaining

value recursion except for very mild e�ec ts (such as ident it y and environments), as

it doesnot dist inguish between values and e�ects at all.



Chapter 5

Con tin uat ions and value recurs ion

Is there a value recursion operator for the conti nuation monad? Originally designed to

model jumps, continuations come close to being the \ universal" monad [24], and their

interaction with recursion proves to be quit e int ricate. In this chapter, we will take a

closer look at the structur e of cont inuations from the viewpoint of value recursion.

Synopsis. We start with a review of the cont inuation monad, and cont inue by showing

that a value recursion operator for cont inuations is highly unlikely to exist. After a brief

discussion of the cont inuation monad transformer, we turn to � rst-class continuations,

as found in Standard-ML and Scheme languages. We explore the interaction between

recursive binding constructs and � rst-classcont inuations, showing that the left shrinking

property is unatta inable in such a setti ng.

5.1 A monad for conti nuations

Traditi onally, conti nuation-passing style (CPS) has been used to model jumps in pro-

gramming languages [90]. Cont inuations provide an extremely powerful e�ec t, especially

�r st-class cont inuations as supported by SML of New Jersey and Scheme [31, 44], hence

e�ective use of conti nuations require great care: As demonstrated by Thielecke, many

seemingly obvious equivalencesfail to hold in the presenceof a call-by-current -continuation

construct [84]. We wil l seea part icular example related to recursion in Section 5.3.

Computations basedon CPS can bedescribedusing monads. Wadler discussesmonads

for conti nuations in a typed setti ng [90], while Espinosa's thesis contains a discussionin

the untyped world [22]. A typical continuation monad has the following structure:

t yp e Cont � � = (� ! � ) ! �

return x = � k. k x

m � = h = � k. m (� v. h v k)
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The type variable � encodesthe result type. For any type � , cont inuation-basedcomputa-

ti onswith a result value of type of � are modeled by the monad Cont � . Other operations

on continuations include run, which provides an initi al conti nuation; abort, which ignores

it s conti nuation and immediately returns a result; and callcc, which enablessaving the

current conti nuation for later use:

run :: Cont � � ! � abort :: � ! Cont � �

run m = m id abort e = � k. e

callcc :: (( � ! Cont � � ) ! Cont � � ) ! Cont � �

callcc h = � k. h (� v. (� c. k v)) k

It is worth noti ng that run takes continuations of type Cont � � , i.e., the argument and

the result types are the same. (Similarly, the result of abort is also rest ricted.) In callcc,

the function h is given a handle to the current cont inuation k. If h uses it s �r st argument ,

the cont rol wil l be transferred to the point where callcc h was originally invoked. Note

that the inner argument, �c: k v, ignores its own conti nuation c, transferring the cont rol

back to k. Otherwise h might ignore its � rst argument , proceeding normally.

Let us now tur n to the question of value recursion for the cont inuati on monad. Recall

that a value recursion operator has type (� ! m � ) ! m � , where m is the underlying

monad. Expanding this type for cont inuations, we get

m�x :: (� ! (� ! � ) ! � ) ! (� ! � ) ! � (5.1)

where � is the type of answers. Following the general pattern for value recursion, we

need to perform the � xed-point computation over � . However, it is simply not possible

to obtain a plausible value of type � by only using the arguments to m�x . Indeed, we

were not able to produce a plausible de�n ition of m�x of even the correct type for the

continuation monad, let alone a de� niti on that would satisfy the required properties.

Let us explore the situati on a bit more closely. Being explicit about the quant i� cation,

we can rewrite Type 5.1 as:

8� :8�: (� ! (� ! � ) ! � ) ! (� ! � ) ! � (5.2)

What are the inhabitants of this type? Fixing an answer type � , we see that the Type 5.2

is isomorphic to:

8�: (( � ! � ) ! � ! � ) ! (� ! � ) ! � (5.3)

and it is not hard to seethat this type is (in� nitely) inhabited if we have a �xed-p oint
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operator. Each one of the following cases forms a class of inhabitants:

m�x 0 f k =

8
>>><

>>>:

f i (const v) ? � ; i � 0; v 2 �

f i k ? � ; i � 0

(�x f ) ? �

(5.4)

By v 2 � , we mean that v is an element of the domain that models the type � . Each m�x 0

gives rise to an m�x via the equation m�x = m�x 0 � 
 ip, and vice versa.1

We conjecture that the Equation set 5.4 completely covers all the inhabitants of

Type 5.3. The proof att empt for such a claim would require an in-depth analysis of

the type, and is beyond the scope of the current work.

Conjecture 5.1.1 Let � be an arbitr ary type. Every inhabitant of Type 5.3 falls into

one of the categories given by Equation set 5.4. �

Pr oposition 5.1.2 Noneof the candidate de�n it ions for m�x 0 gives rise to an m�x that

would satisfy the purit y law.

Pr oof We will only prove the case

m� x 0 f k = f i k ? � ; i � 0

Other casesare similar, if not simpler. Let � be a type and h be a function of type � ! � .

By purity, we must have:

m�x (return � h) k = return (�x h) k = k (�x h)

Fix a natural number i . By the chosende�n it ion of m�x 0, we need:

(
 ip (return � h)) i k ? � = k (�x h) (5.5)

It is easy to seethat :

(
ip (return � h)) i k = k � hi (5.6)

Subst ituting 5.6 in 5.5, we get:

k (hi ? � ) = k (�x h) (5.7)

Obviously, Equation 5.7 does not hold for all k and h, given that i is a � xed natur al

number. �

1The function 
ip is de�ned by the equation 
i p f x y = f y x.
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Remark 5.1.3 By the previous proposition, we conclude that the continuation monad

(as de� ned in Section 5.1) does not possessa value recursion operator, provided Conjec-

tur e 5.1.1 holds.

The reader might wonder what happens if we restrict � to be the sameas � in the

Type 5.1, providing positive occurrences of � to work on. It is possibleto show that there

is an in� nite family of candidate m�x 's in this caseas well, but none of them satisfy our

requirements. We leave the detai ls to the interested reader.

5.2 The contin uation monad tra nsformer

The continuation monad transformer [53] is de� ned by:

t yp e ContT � m � = (� ! m � ) ! m �

return a = � k. k a
m � = f = � k. m (� a. f a k)

lift m = � k. m � = k

Let m�xM be a value recursion operator for a monad m. Can we lift it through

the conti nuation monad transformer, obtaining a value recursion operator for the monad

ContT � m? Following the recipe set forth by the examplesof Section 4.9, we are led to

the following ill-t yped de�n ition:

m�xCont M :: (� ! ContT � m � ) ! ContT � m �

m�xCont M f = � k. m�xM (� a. f a k) -- il l � typed!
(5.8)

Since the argument to m�x M has type � ! m � , the application is ill-t yped. This failure

is hardly surprising, as setti ng m to be the identi ty monad would have result ed in a value

recursion operator for the conti nuation monad.

Remark 5.2.1 Magnus Carlsson has suggested that such a lift ing might be possible

when restricted to monads that support the notion of mutable variables (personal com-

munication). In collaboration with Carlsson, we invest igated a number of possible li ft ings,

but none of our attempts were satisfactory. In each case, it was fairly easy to show that

the required properties were violated. We conjecture that a viable lift ing is not possible

even in this restricted setti ng, leaving the exploration of this idea for futu re work.
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5.3 First -class contin uations and value recursion

What sort of properties can we expect from value recursion operators in a setting with

�r st-class cont inuations? First-class continuations allow programs to seize the cont rol

state of their own evaluators [31]. This facilit y is de� nitely more powerful than what

the cont inuation monad of Section 5.1 provides, where programs can only manipulate

continuations that are explicitl y created and passedaround by the programmer.

Many seemingly obvious equivalences fail to hold in the presence of �r st-classcontinu-

ations. For instance, as shown by Thielecke, the equivalence(� x: False) (k True) = False

fails in the context callcc (�k : [ ]). (We refer the interested reader to Thielecke's work for

many other interesting examples [84].) When we consider the equivalencesdictated by our

properties, we seethat they are simply too strong to hold in a language with � rst-class

continuations as well. For instance, consider the left shrinkin g property (Section 2.3),

which states the following equivalence:

m�x (� x. a � = � y. f x y) = a � = � y. m�x (� x. f x y)

Recall that the computation represented by a doesnot use the recursion variable x (i.e.,

x is not free in a). However, in the presence of �rs t classcont inuations, a can capture its

continuation via a call to callcc, thereby getting a handle on f which uses x. That is, a

can indirectly accessx through f , breaking the left shrinking property.

The following example in Scheme provides further insight into the problem. The

example demonstrates that a simple equalit y betweenrecursiveand non-recursivebindings

(even simpler than our left shrinkin g law) fails to hold in the Schemecase. (This example

was brought to our att enti on by Amr Sabry, who traces it back to a message sent to the

comp.l ang. schemenewsgroupin 1988 by A. Bawden, t itl ed \letr ec and callcc implement

references.") Consider the following two Schemeexpressions:

(d efin e (t est 1)
(let rec ((x (ca ll-w ith -cur rent -co ntin uati on

(la mbda(c) (l ist #T c))) ))
(i f (c ar x) ( (cad r x) (l ist #F (lam bda () x)))

( eq? x ( (cad r x) ))) ))

(d efin e (t est 2)
(let ((x (ca ll-w ith -cur rent -co ntin uati on

(la mbda(c) (l ist #T c))) ))
(i f (c ar x) ( (cad r x) (l ist #F (lam bda () x)))

( eq? x ( (cad r x) ))) ))

Note that these two expressions are the samecharacter for character, except the � rst

one uses the recursive binding construct (letr ec) of Scheme, while the second one uses
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the non-recursive version (let ). Intuiti vely, theseexpressionsshould evaluate to the same

result, since the bound variable, x, is not even menti oned in the right hand sidesof the

bindings. Alas, thesetwo expressionsare not equivalent! When run, te st1 evaluates to

#T, i.e., True, while te st2 yields#F, i.e., False. Regarding thisexample, Bawden wondered

if there wereany \ . . . real compilers that makethis mistaken optimization," regarding that

we might view t est 2 as an opt imized version of te st1 . Of course, our concern is quit e

the opposite. We rather ask if there are any language constructs that might render the

implied equivalenceinvalid.

Understanding why theseexpressionsyield di�eren t values requires an understanding

of how Scheme is interpreted. We will t ry to convey the idea here as it is essenti al in

understanding why the left shrinkin g property is likely to be too strong a requirement in

the presenceof � rst-class continuations. To keep the notation simple, let us rewrit e these

expressionsin a more Haskell-l ike syntax:2

test1 �

let rec x = callcc (� c. (True; c))

in if fst x

then snd x (False; const x)

else eq? x (snd x () )

test2 �

let x = callcc (� c. (True; c))

in if fst x

then snd x (False; const x)

else eq? x (snd x ())

Intuiti vely, letrec x = A in B in Schemeis implemented by allocating a cell called x

with a bogus error value, computing the value of the expression A (with x in scope), and

then overwriting the cell x with the result [44]. This allocate-compute-overwrite paradigm

practically achieves the knot-t ying implementation of recursion. The evaluati on then goes

on wit h the expression B , again with x in scope. A simple let binding, on the other hand,

does not create a cell to start wit h: let x = A in B is interpreted by evaluating A, storing

the result into a newly created cell x, and evaluating B wit h x in scope. Wi th this model

in mind, consider the letrec expression in the de� nitio n of test1:

let rec x = callcc (�c: (True; c)) in : : :

To interpret this expression, oneallocates a cell namedx, and init ializes it with ? . Then,

the right hand side is interpreted. The crucial point is realizing what conti nuation is

captured by the call to callcc. Recalli ng our description above, the following continuation

will be captured:

1. Let a be the argument passed to the conti nuation. Overwrit e the cell x with a,

2The function eq? checks for pointer equality in Scheme, rather than structu ral equalit y.
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2. Evaluate the expression part of letrec , i.e., evaluate:

if fst x then snd x (False; const x)

else eq? x (snd x ())

Let us call the cont inuation described above � . Now, the right hand side of the letrec

binding iscomputed, which returns the tuple (True; � ). Since the de� niti on is not actually

recursive, the initia l (unde� ned) value of x is not used. Then, the cell pointed to by x

is overwritten by this tuple and the interpreter cont inues on with the evaluation of the

body. Since fst x is True, the condit ional takes it s �r st branch. And it is exactly at

this point that we invoke the cont inuation thr ough the expression snd x, which is passed

the argument (False, const x). Recalli ng the descript ion of � above, this tuple overwrit es

the cell x. It is crucial to note the cyclic structur e thus created: When called with an

argument , the function stored in the second element of x will return a pointer back to the

tuple itself. As dictated by step 2 of � , we now evaluate the body with this new value

stored in the cell pointed to by x. But this ti me fst x is False, hencewe end up evaluating

the expressioneq? x (snd x ()) . Since, snd x () retur ns a pointer back to x, the call to

eq? checks for the pointer equality of x and x, which simply result s in the value True.

What happens wit h test2? Since we have a non-recursive let expression, the cell for

x is not created before the right hand side is computed. Let us call this conti nuation � .

Here is our description of it :

1. Let a be the argument passed to the conti nuation. Store a in a new cell called x,

2. Evaluate the expression part of let , which is exactly the same as before.

To evaluate test2, we proceed by computi ng the right hand side of the let binding.

As before, we immediately get back the tuple (True; � ). Now a new cell named x is

created, which stores this tuple. The condit ional again takes its �r st branch, and the

continuation is called wit h (False, const x). Unlike the previous case, however, the call to

the continuation createsa new cell named x, shadowing the earlier value of x: The cyclic

structur e is no longer available! It is not hard to seewhat happens now. The body is

evaluated asbeforeand the condit ional takes its second branch. But this time we compare

two di� erent tuples in the call to eq?. Hence the result is simply False.

The relevanceof this example to the left shrinking property is obvious. Basically, the

right hand side of the letrec binding, which is not recursive, corresponds to the constant

computat ion in the left shrinking property. If left shrinking were to hold, we would be

allowed to pull it out of the m�x loop, i.e., replace the recursive binding with a non-

recursive one. As we have seen, at least in the Schemecase, such a transformati on is not

valid in the presenceof �r st-classcontinuations.
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5.4 Summary

As we have seen, the cont inuation monad in Haskell (as de� ned in Section 5.1) does

not seem to have a suit able value recursion operator. A similar comment applies to the

continuation monad transformer. Furth ermore, in the caseof �r st-classcontinuations, the

properties we expect to hold for value recursion operators are simply too strong.

Regarding the handling of recursive de� niti ons arbit rarily mixed wit h computational

e�ects in Scheme,Andrzej Fili nski states(personal communication):

...as far as I know, the only popular functional language that allows such de� -

niti ons is Scheme; and I believe that allowing them was a mistake. The extra

generality is virtuall y never used, but it disallows some useful optimizations

by unnecessarilyconstraining the implementation. It is well known that in the

presenceof call/ cc, one can exposethe imperativ e nature of letrec and use it

to de�n e a general mutable cell; any RnRS-conforming system must support

this behavior no matter how it implements recursion...

We share the same point of view.



Chapter 6

Traces and valu e recursion

Traceoperators were introduced into category theory by Joyal et al., as a means for model-

ing feedback operations arising in physicsand mathemati cs [43]. Later work by Hasegawa

bridged the gap between recursion and t races, establishing a one-to-one correspondence

between �xed-p oint operators and t racesover cartesian categories[9, 10, 32, 33, 79]. Can

we explain value recursion in this framework as well? The aim of this chapter is to review

the recent research in this area, trying to gain a better understanding of value recursion.

Synopsis. First, we will introduceparameterized value recursion operators, making the

dependence on the environment explicit. After reviewing t raced monoidal categories, we

will show that value recursion operators give riseto t races for a rest ricted classof monads.

Alt hough the set of monads for which this is possible is quite small, the correspondenceis

strong enough for us to explore. The restrict ion arisesas a consequenceof trace axioms,

which are simply too strong for value recursion in general. Motivated by this discussion,

we will brie
y review recent work by Paterson [66], and Benton and Hyland [5], which

aims to generalize t racesto premonoidal categories.

6.1 Parame teri zed value recursi on

Recall that a value recursion operator for a monad m has type (� ! m � ) ! m � . In a

categorical setting, one needs explicit ly to account for terms that contain free variables,

i.e., variables that are de� ned in the enclosing environment . To do so, we parameterize

our type to:

((e; � ) ! m � ) ! (e ! m � )

where e represents the environment. In the concrete case,e is generally a product, using

the cartesian structure of the underlyi ng language. Parameterizedand non-parameterized

66
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value recursion operators are interde� nable:

pm�x e;� :: ((e; � ) ! m � ) ! (e ! m � )

pm�x e;� f = �e: m�x � (�a: f (e;a)) (6.1)

m� x� :: (� ! m � ) ! m �

m�x � f = pm� x � ;� (f � � 2) () (6.2)

where
�

is the terminal object whoseonly element is writ ten (). Thechoice for the terminal

object is the natural one for e in Equation 6.2, as it represents the empty environment .

In fact, any type would do, sincethe environment is simply ignored.

Remark 6.1.1 Beforeproceedingfurther, a word on notation is in order. In thischapter,

we will be using a more categorical notat ion whereappropriate. For instance, types wil l be

written with capital letters (as objects in a certain category), products will bewritten with

� , etc. This shift is unfortunate, but necessary. We do not want to imposea Haskell- like

notation when talking about categorical const ructs: Such a coercion seemsto complicate

matters even more. As an example, the type for pm�x in 6.1 will be writt en:

pm�x A;X : D(A � X ; T X ) ! D(A; T X )

where D is the category of domains and T is the underlying functor for the monad we are

considering. (The notat ion D(A; B ) denotes the set of arrows from A to B in D.) We

will stick to Lat in lett ers for objects, following the general practice. The useof part icular

letters (i.e., X for the recursion variable, and A for the parameter) is inherited from

Hasegawa's work [33]. Also, we will usecategorical products and function spaces, rather

than Haskell's lifted versions.

The second generalization we want to make is more technical than the �rs t . Rather

than considering the morphisms in the base category, we move to the Kleisli category of

the given monad. There is one di� culty, however. The Kleisli category is not necessarily

cartesian. More speci�ca lly, the binary operator inherit ed from the cartesian product of

the basecategory is not necessarily bifunctorial. We will seethe details and implications

of this problem in Section 6.4.2. For the t ime being, let us just assume that we have

a product-like operation in the Kleisli category, named � . Let DT denote the Kleisli

category of a given strong1 monad T over D. It is easy to seethat pm� x can be considered

1A monad over a category with a monoidal operation 
 is called strong if there exists a natu ral
transformat ion tA;B : A 
 T B ! T (A 
 B ), called the strength, subject to cert ain conditi ons [63]. It turns
out that all Haskell monads are strong, with the st rength de�ned ast (a; tb) = tb � = � b. return (a; b).
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as a family of functions with the type:

pm�x A;X : DT (A � X ; X ) ! DT (A; X ) (6.3)

If DT is cartesian, Type 6.3 is precisely the same as that of a Conway operator (see

Appendix A). This view of value recursion wil l prove essent ial in the following discussion.

6.2 Pre limi naries

In this section, we review the centra l notions in Joyal et al., and Hasegawa's work [33, 43],

covering symmetric monoidal categories, t races, and the correspondencebetween traces

over cartesiancategoriesand Conway operators.

6.2.1 Symm etric monoid al cat egor ies

In computer science, we often deal with binary operators that are associat ive only up to

isomorphism. Monoidal operators and monoidal categories provide a setting where such

operators can be modeled formally [2, 55]:

De�nition 6.2.1 (Symmetric Monoidal Category.) A symmetric monoidal category,

SMC for short, M = (M ; 
 ; I ; a; l ; r ; s) is a category M wit h a bifunctor 
 : M �M ! M ,

an object I 2 M , and natural isomorphisms:

aA;B ;C : A 
 (B 
 C) ! (A 
 B ) 
 C lA : I 
 A ! A

sA;B : A 
 B ! B 
 A r A : A 
 I ! A

such that the following diagrams commute:

Associativit y Pentagon:

A 
 (B 
 (C 
 D)) a //

A
 a
��

(A 
 B ) 
 (C 
 D) a //((A 
 B ) 
 C) 
 D

A 
 ((B 
 C) 
 D ) a
//(A 
 (B 
 C)) 
 D

a
 D

OO

Unit triangles and symmetry:

A 
 (I 
 B )

a
��

A
 l

&&MMMMMMMM
MMM A 
 B

A
 B

$$II
III

III
II

s

��

A 
 I

s

��

r

!!D
DD

DD
DD

DD

(A 
 I ) 
 B
r 
 B

//A 
 B B 
 A s
//A 
 B I 
 A

l
//A
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Bi linearit y:

A 
 (B 
 C) a //

A
 s
��

(A 
 B ) 
 C s //C 
 (A 
 B )

a
��

A 
 (C 
 B ) a
//(A 
 C) 
 B

s
 B
//(C 
 A) 
 B

Example 6.2.2 All cartesian categories are symmetric monoidal. Let C = (C; � ;
�

) be

a cartesian category where � is the direct product with projections � 1 : A � B ! A and

� 2 : A � B ! B . In this case,the natural isomorphisms of De� niti on 6.2.1 are given by:

a = hh� 1; � 1 � � 2i ; � 2 � � 2i l = � 2 r = � 1 s = h� 2; � 1i

a� 1 = h� 1 � � 1; h� 2 � � 1; � 2i i l � 1
A = h!A ; Ai r � 1

A = hA; !A i s� 1 = h� 2; � 1i

where !A : A !
�

denotes the unique map to the terminal object. In Haskell notat ion

thesemorphisms correspond to the following functions (with more suggestive names):

assoc (x; (y; z)) = ((x; y); z) assoc� 1 ((x; y); z) = (x; (y; z))
left (() ; y) = y left� 1 y = (( ); y)
right (x; ()) = x r ight � 1 x = (x; () )
swap (x; y) = (y; x) swap� 1 (y; x) = (x; y)

6.2.2 Traced sym metric mon oida l categories

Trace operators provide a categorical framework for studying cyclic structur es:2

De�nition 6.2.3 (Traced SMC.) A t racedsymmetric monoidal category is a symmetric

monoidal category M = (M ; 
 ; I ; a; l ; r ; s) with a family of functions:

TrX
A;B : M (A 
 X ; B 
 X ) ! M (A; B )

subject to the following conditio ns:

� Natur alit y in A (left t ightening):

A

g

��

M (A 
 X ; B 
 X )
TrX

A;B //M (A; B )

A0 M (A0 
 X ; B 
 X )
TrX

A 0;B

//

M (g
 X ;B 
 X )

OO

M (A0; B )

M (g;B )

OO

For all f : A0
 X ! B 
 X ; g : A ! A0, Tr (f � (g 
 X )) = Tr f � g.

2The original work on traces was presented in the slightly more general sett ing of braided monoidal
categories [43]. Following Hasegawa [33], we only consider symmetric monoidal categories here.
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� Natur alit y in B (right tightening):

B

g

��

M (A 
 X ; B 
 X )
TrX

A;B //

M (A
 X ;g
 X )
��

M (A; B )

M (A;g )
��

B 0 M (A 
 X ; B 0 
 X )
TrX

A;B 0

//M (A; B 0)

For all f : A 
 X ! B 
 X ; g : B ! B 0, Tr ((g 
 X ) � f ) = g � Tr f .

� Dinatur alit y in X (sliding):

X

g

��

M (A 
 X 0; B 
 X )
M (A
 g;B 
 X ) //

M (A
 X 0;B 
 g)
��

M (A 
 X ; B 
 X )

TrX
A;B

��
X 0 M (A 
 X 0; B 
 X 0)

TrX 0

A;B

//M (A; B )

For all f : A 
 X 0 ! B 
 X ; g : X ! X 0, Tr (f � (A 
 g)) = Tr ((B 
 g) � f ).

� Vanishing:

{ For all f : A ! B , Tr I
A;B (r � 1 � f � r ) = f .

{ For all f : A 
 (X 
 Y ) ! B 
 (X 
 Y ),

TrX
A;B (TrY

A
 X ;B 
 X (a � f � a� 1)) = TrX 
 Y
A;B f :

� Superposing: For all f : A 
 X ! B 
 X ,

TrX
C
 A;C
 B (a � (C 
 f ) � a� 1) = C 
 TrX

A;B f :

� Yanking: For all X , TrX
X ;X (sX ;X ) = X .

The graphical versions of these axioms are given in Figure 6.1 [33, 43]. It is worth

comparing these diagrams to those that we have given in Chapter 2 for m� x. The thick

lines in the � gures for m�x represent monadic actions, i.e., side-e�ec ts, changes in the

state, etc., while the corresponding lines in Figure 6.1 represent data 
 ow. The �xed-

point argument (i.e., X ) is not directly available to the outside world in the formulat ion

of trace (alt hough this limita tion can be easily circumvented). In m�x , however, the result

is the � xed-point value together with monadic actions.

6.2.3 Traces and Conway operat ors

The following theorem of Hasegawa (also independently established by Hyland) states the

connection between traces and Conway operators (SeeAppendix A for a brief review of

Conway operators):
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g f
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Figure 6.1: Trace Axi oms

Theorem 6.2.4 (Hasegawa, Hyland) A cartesian category is traced exactly when it

possesses a Conway operator.

Pr oof See Theorem 7.1.1 of Hasegawa's thesis [32]. �

The correspondencecan be summarized as follows. Assuming we have a trace operator

Tr, we can de�n e a Conway operator (�)y : C(A � X ; X ) ! C(A; X ) as follows:

f y = TrX
A;X (� X � f ) : A ! X (6.4)

Similarly, given a Conway operator (�)y, we can de� ne the following trace operator:

TrX
A;B f = � 1 � f � hA; (� 2 � f )yi : A ! B (6.5)

Since Conway operators provide a generalization of � xed-point operators on domains,

traceson symmetric monoidal categories provide a �r m categorical framework for studying

�x ed-point operators.

Example 6.2.5 In the setti ng of domains and cont inuous functions, the unique least

�x ed-point operator for a function f : A ! A is given by:

�x f =
G

i

f i ? A

which gives riseto the following Conway operator: Given f : A � X ! X ,

f y a = �x (�x:f (a; x)) : A ! X
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And, by Equation 6.5, we obtain the following (unique) trace operator: Given f : A � X !

B � X ,

TrX
A;B f = � 1 � f � hA; �a: � x (�x: � 2 (f (a; x)) )i : A ! B

In Haskell-like notation, this de� nitio n simply reads:

trace :: (( �; 
 ) ! (� ; 
 )) ! � ! �

trace f a = let (b; x) = f (a; x)

in b

(6.6)

which clearly shows the intent : The recursive knot is ti ed over x, leaving a function of

type A ! B as the residue.

6.3 Traces and value recursion

As we have seen in the preceding section, tr aces provide a natural framework for studying

�x ed-point operators, and by virtue of Theorem 6.2.4, the usual notion of recursion can

be explained by tracesover cartesian categories. Does the correspondence hold up when

we consider value recursion? It tur ns out that a close relat ionship can be established

for commutat ive monads whose Kleisli categories are traced, but the trace axioms are

simply too strong for the general case. Sti ll, we wil l explore this limited correspondence

closely, as it will help us ident ify the problemsthat arise in the general case. We start by

examining two part icular classes of monads: commutative monadsand monadsbasedon

commutative monoids.

6.3.1 Com mutativ e mona ds and tr aces

Let T be a st rong commutative monad over an SMC M = (M ; 
 ; I ; a; l ; r; s) with the

given strength t. We write � for the unit , and � for the multiplie r of T. The monoidal

structur e over M carr ies over to the Kleisli category of T, denoted M T , as follows:

M T = (M T ; 
 0; I ; � � a; � � l ; � � r; � � s)

The monoidal operator 
 is lifted to M T as follows. On objects, 
 0 is de�n ed to be the

sameas 
 . On arrows, f 
 0g is de� ned to be the arrow � � (f 
 g) in M , where

� : T A 
 T B ! T (A 
 B )

� = � � T t � t0

Recall that t0 is the dual of t, given by T s � t � s. Since T is commutative, the other

candidate for �, i.e., � � T t0� t , yields exactly the samearrow.
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In the caseof CCC's, a trace operator on the Kleisli category of a commutative monad

gives rise to a parameterized value recursion operator on the underlying category. To see

this, let C be a CCC, and T be a commutative monad over C. If CT is traced, we have a

family of functions:

TrX
A;B : CT (A � 0X ; B � 0X ) ! CT (A; B )

which implies the existence of the following family of functions in C:

TrX
A;B : C(A � X ; T (B � X )) ! C(A; T B)

Hence, a candidate parameterized value recursion operator can be de�ned by setting:

pm�x E ;A f = TrA
E ;A (T 4 A � f ) (6.7)

where � a = (a; a).

Example 6.3.1 The environment monad provides a nice example of obtaining a value

recursion operator from a trace. For a �xed object E in a CCC, the functor T A = E ) A,

i.e., the exponenti ation functor with the �r st argument � xed, givesrise to the environment

monad. For convenience,we will stick to the Haskell notation. The monad structure and

the st rength are given by:

return a = � e. a

join f = � e. f e e

t (a; f ) = � e. (a; f e)

It is easy to see that T is commutativ e. The Kleisli category is traced, and the

corresponding family of functions in the basecategory is given by:

trace :: (( � ; � ) ! (E ! (� ; � )) ) ! � ! (E ! � )

trace f a = � e. let (b; x) = f (a; x) e

in b

(6.8)

Using Equations 6.7 and 6.2 we get:

m�x :: (� ! (E ! � )) ! E ! �

m�x f = � e. let (b; x) = (map (� z. (z; z)) � f � � 2) (( ); x) e

in b

Recalling map f g = f � g for the environment monad, we can simpli fy this de� niti on to:

m�x f = � e. let x = f x e

in x
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which is precisely the value recursion operator that we have given in Section 4.6 for the

environment monad.

Example 6.3.2 This example demonstrates that having a commutat ive monad is not

su�c ient to guaranteethe construction of a value recursion operator: The corresponding

Kleisli category should be t racedas well. As an example, consider modeling excepti ons in

Set by disjoint sums, using the endofunctor T A =
�

+ A, where
�

is the terminal object.

In Haskell-like notation, the monad structure and the strength are given by:

� a = inr a

� (inl ()) = inl ()

� (inr a) = a

t (a; inl ()) = inl ()

t (a; inr b) = inr (a; b)

It is easy see that T gives rise to a commutati ve monad, and hence its Kleisli category

is symmetr ic monoidal. If SetT is traced, then we should have a family of arrows Tr X
A;B :

SetT (A 
 X ; B 
 X ) ! SetT (A; B ), where
 is the lifti ng of the cartesian product. Hence,

we must have a family of arrows Set(A � X ;
�

+ (B � X )) ! Set(A;
�

+ B). However,

sincethe computation might fail, we do not have a way of gett ing an X to tie the recursive

knot. In this case, the Kleisli category does not seem to possessa trace.

The reader might appreciate the situati on in Haskell. The except ion monad is the

usual Maybe monad, except the Haskell version is not commutative (due to the possibilit y

of non-termination). Ignoring the non-terminat ion issue for a moment , we would need to

�n d a trace operator with the type:

(( �; � ) ! Maybe (� ; � )) ! � ! Maybe �

Here, � is the recursion argument , on which we need to ti e the recursive knot. However,

the required t race operator just does not exist, since we are not guaranteed to get a � to

form the required recursive loop. (Recall that there is no such problem for value recursion

in our setting|see Section 4.2 for detai ls.)

6.3.2 M onads arising from commuta t iv e mono ids

In Section 4.5, we explored monads that arise from monoids. In this section, we wil l

concent rate on those monads that are obtained from commutativ e monoids, and see how

a t raceoperator in the underlying category can beusedto obtain a value recursion operator

for the corresponding representation monad.

The usual de� nit ion of monoids on sets can be generalized to arbitrary monoidal

categories [55]. Let M = (M ; 
 ; I ; a; l ; r ; s) be a symmetric monoidal category. A monoid
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in M is a trip le M = (M ; + ; e) where M 2 M , + : M 
 M ! M , e : I ! M , with the

usual associat ivit y and unit laws. (The monoid iscommutative if + �s = + , i.e., if the order

of arguments to + doesnot matter.) For such a monoid, the endofunctor T A = M 
 A

gives rise to the following strong monad, known as M 's representation monad [2]:

� A = (e 
 A) � l � 1
A

(6.9)

� A = (+ 
 A) � aM ;M ;A (6.10)

tA; B = a� 1
M ;A;B

� (sA;M 
 B ) � aA;M ;B (6.11)

If M is commutati ve, then T will be commutativ e as well.

After all this machinery, we can �n ally state our goal. Let M be a traced SMC, M

be a commutativ e monoid in M , whoserepresentation monad is T. As we have seen,T

is commutat ive and henceits Kleisli category is symmetric monoidal. Furthermore, the

traceon M li fts into M T , i.e., M T is also traced. If TrX
A;B : M (A 
 X ; B 
 X ) ! M (A; B )

is the trace operator on M , the trace operator on M T is given by:

Tr0X
A;B : M T (A 
 0X ; B 
 0X ) ! M T (A; B )

Tr0X
A;B f = TrX

A;M 
 B (a � f ) (6.12)

Example 6.3.3 Consider the monoid: (N; + ; 0), where N is the 
at domain of natur al

numbers, and + is additi on. The corresponding functor is: T A = N � A. As outli ned

above, the monad structure is given by (in Haskell):

return x = (0; x)

join (m; (n; x)) = (m+ n; x)

t (x; (m; y)) = (m; (x; y))

t 0 ((m; x); y) = (m; (x; y))

Since map f (m; x) = (m; f x); we have:

(join � map t 0 � t ) ((m; x); (n; y)) = (n+ m; (x; y))

(join � map t � t 0) ((m; x); (n; y)) = (m+ n; (x; y))

Hence, the commutat ivit y follows from the commutativi ty of +, as promised. Recall from

Example 6.2.5 that the t race on the underlyi ng category is given by:

trace f a = let (b; x) = f (a; x) in b

which, by Equation 6.12, can be t reated as a trace operator on the Kleisli category of T

with the type: (A � X ! N � (B � X )) ! (A ! N � B ). More explicitl y, we have (where

we useInteger to represent N):
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tr 0 :: (( �; � ) ! (Integer; (� ; � ))) ! (� ! (Integer; � ))

tr 0 f a = let (b; x) = (assoc � f ) (a; x) in b

By Equation 6.7, we obtain the following parameterized value recursion operator:

pm�x f = � a. let (b; x) = (assoc � map (� x. (x; x)) � f ) (a; x)

in b

which gives riseto the following value recursion operator by Equation 6.2:

m�x :: (� ! (Integer; � )) ! (Int eger; � )

m�x f = let (b; x) = (assoc � map (� x. (x; x)) � f ) x in b

By expanding the de�n it ions and simpli fying, one obtains:

m�x :: (� ! (Int eger ; � )) ! (Integer; � )

m�x f = let (n; x) = f x

in (n; x)

(6.13)

which is precisely the value recursion operator we have given for monadsbasedon monoids

(Equation 4.19) in Section 4.5.

Remark 6.3.4 It is important to note that the commutativit y of the monoid does not

play any role in establishing the requirements of value recursion, although it is essentia l

for constructing a trace. If the monoid is not commutat ive, the representation monad wil l

not be commutative either, failing to yield a monoidal structure on the Kleisli category. In

that case,one cannot even talk about the notion of t race, as De�n it ion 6.2.3 only applies

to symmetric monoidal categories. We will return to this issue in Section 6.4.2.

6.3.3 Th e corresp ondence

We now tur n to the correspondencebetween value recursion operators for commutativ e

monads and t race operators over Kleisli categories. Before doing so, we will need to

consider what t race axioms mean in the Kleisli category of a given monad. Let T be the

monad under consideration. In this setti ng, the trace axioms read:3

3 In these equations, we use the Haskell notatio n and try to name variables according to their types,
i.e., a variable named a is of type A. Note the use of shadowing in � -bind ings, where we reuse variable
names to stick to our convent ion. Compared to the original trace axioms, these versions are indeed very
ugly to look at, but they are much more intu itiv e from a programming perspect ive. Also, to save space,
we use � to abbreviate return.
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� Left ti ghtening: For all f : A0� X ! T (B � X ), g : A ! T A0,

Tr (� (a; x). g a � = � a0. f (a0; x)) = � a. g a � = Tr f (6.14)

� Right tightening: For all f : A � X ! T (B � X ), g : B ! T B 0,

Tr (� (a; x). f (a; x) � = � (b; x). g b � = � b0. � (b0; x))

= � a. Tr f a � = g
(6.15)

� Sliding: For all f : A � X 0 ! T (B � X ), g : X ! T X 0,

Tr (� (a; x). g x � = � x0. f (a; x0))

= Tr (� (a; x0). f (a; x0) � = � (b; x). g x � = � x0. � (b; x0))
(6.16)

� Vanishing: For all f : A ! T B ,

Tr (� (a; ()) . f a � = � b. � (b; () )) = f (6.17)

and, for all f : A � (X � Y ) ! T (B � (X � Y )),

Tr (Tr (� ((a; x); y). f (a; (x; y)) � = � (b; (x; y)). � ((b; x); y)) )

= Tr f
(6.18)

� Superposing: For all f : A � X ! T (B � X ),

Tr (� ((c; a); x). f (a; x) � = � (b; x). � ((c; b); x))

= � (c; a). Tr f a � = � b. � (c; b)
(6.19)

� Yanking:

Tr (� (x1; x2): � (x2; x1)) = � (6.20)

After thesepreliminaries, we can � nally state the main result of this chapter:

Pr oposition 6.3.5 Let D be the category of domains, and T be a commutativ e monad

over D. Let m�x be a value recursion operator for T, further satisfying st rong sliding,

nesting, and right shrinking laws. Then, the family of functions

traceX
A;B : D(A � X ; T (B � X )) ! D(A; T B )

trace f = �a : m�x B � X (� (b; x): f (a; x)) � = � � � 1 (6.21)

will satisfy Equations 6.14-6.20, i.e., it will provide a trace operator for DT .
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Pr oof SeeAppendix B.8 for the full derivation. We try to summarize the correspon-

dence at a higher level here. Unsurprisingly, left and right tightenings depend on the left

and right shrinking properties of m�x respectively. Sliding requires the use of Proposi-

ti on 3.3.2, which depends on the commutativit y of the monad and strong sliding (of m�x ).

The �r st vanishing rule depends on left shrinking and purit y, the second one also uses

nesting. The superposing rule only needs pure right shrinking (which is guaranteed by

right shrinkin g). Final ly, yanking is a direct consequenceof purit y. �

Remark 6.3.6 Ideally, we should also establish that a trace operator on the Kleisli

category of a commutative monad yieldsa value recursion operator, using a translation of

the form:

m�x A : (A ! T A) ! T A

m� x f = TrA
� ;A (� ( ; a): f a � = �a: � (a; a)) ()

But we will refrain from pursuing the correspondencein this direction for the following

reasons:

� Our treatment of value recursion operators takesplace in the setting of conti nuous

functions over domains. On the other hand, t race operators are presented in the

abstract setting of monoidal categories, hence the assumpti ons for the underlying

structur e are signi� cantly weaker. For instance, it is not clear what our st rictness

axiom (i.e., f ? � = ? T � i� m� x� f = ? T � ) would correspond to in this setting. 4

� As we explored above, the correspondence of t races and value recursion is rather

limited. Very few monadsare commutative, and even fewer have their Kleisli cate-

gories t raced. What we should seek,then, is a notion of tr ace in the non-monoidal

case. In short, trace axioms are just too strong for value recursion.

6.4 Dro pping t he monoidal requiremen t

As we have seen in the preceding section, the t race-based categorical account of �xed-

point operators falls short of explaining value recursion for all but a very restricted set

of monads. Is it possible to generalize the theory of traces so that we can accommodate

value recursion more satisfactoril y? In this section, we wil l brie
 y review two recent

4Hasegawa suggests that it might be possible to study strictness via the not ion of uniform trace opera-
tors. SeePropositio n 7.1.4 in Hasegawa's thesis [33].
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attempts in this direction. First, we will look at Paterson's work, which li fts m�x to

the world of arrows [66]. Second, we wil l review Benton and Hyland's work on t raced

premonoidal categories [5]. It turns out that both attempts describe essentia lly the same

axiomatization, although presented in slightly di�e rent contexts. The general idea is to

move to premonoidal categories, e�ectiv ely dropping the monoidal requirement .5

6.4.1 Arro ws and loop

Hughes int roduced arrows as a generalization of monads, making the input-output 
 ow

more explicit [36]. An arrow ) is a binary type constructor equipped with:

arr : (� ! � ) ! (� ) � )

o : (� ) � ) ! (� ) 
 ) ! (� ) 
 )

�rst : (� ) � ) ! (� � 
 ) � � 
 )

Intuiti vely, � ) � represents a computation that receives an input of type � , performs

a computation with possibleside e�ects, and delivers a result of type � , corresponding

to what an imperativ e programmer might call a procedure. The morphism arr makes a

procedure out of a pure function, while o runs two procedures in sequence, threading the

result of the �r st to the second. The function � rst lets informati on to be passed around for

later use, mainly used for storing results of intermediate computations. The morphisms

arr, o , and �r st are required to satisfy a number of laws, similar to monad laws.

Example 6.4.1 Arr ows generalize monads in the following sense.For every monad m,

the type Kleisli m givesrise to an arrow, where:

t yp e Kleisli m � � = � ! m �

arr f = return � f

f o g = � a. f a � = g

�r st f = � (a; c). f a � = � b. � (b; c)

Paterson arguesthat Power and Thielecke's Freyd categoriesareequivalent to Hughes's

arrows [73]. (We wil l brie
 y review Freyd categories in Section 6.4.2.)

Is there a corresponding notion of value recursion for arrows? Paterson generalizes

m�x to arrows, introducing the following loop operator [66]:

loop : (� � 
 ) � � 
 ) ! � ) � (6.22)

5 We mentio n in passing that Je� rey also used the so-called part ial traces (ordina ry tra ces that are
restri cted to be applied only to certain maps) to model 
o w graphs and recursion in programming lan-
guages [39]. We will not review his work here, however, as it is not directly related to value recursion.
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Note the similarit y between this type and the type of trace operators (De� niti on 6.2.3).

As expected, value recursion operators give rise to loop operators for the corresponding

Kleisli arrows. Given a value recursion operator m�x , Patersonde� nes:

loop f = map � 1 � m�x � f 0

where f 0 x y = f (x; � 2 y)
(6.23)

which can be shown to be equivalent to the function we have given for obtaining a trace

operator from m�x (Equation 6.21).

Paterson generalizesthe trace axioms of Section 6.2.2 for loop, and adds a law called

extension, similar to our purit y property. As expected, he weakens the sliding axiom

so that the function moved over is of the form arr k for some function k, syntactically

guaranteeing purity. Unlike our sliding property for m�x , however, Paterson does not

require a further guarding equation to regulate the behavior on ? (i.e., the antecedent in

Equation 2.5). Simil arly, right t ightening is postulated as an axiom as well. Therefore,

the failure of strong sliding or right shrinkin g properties for the underlying m�x wil l cause

the t race axioms to fail. Similar comments apply to arrows that are not derived from

monads as well. Paterson makes similar observations, although he does not weaken his

axiomatization to accommodate accordingly [66].

6.4.2 Traced premo noida l cat egories

Closely related to Paterson's work is Benton and Hyland's recent generalizati on of traces

to premonoidal categories [5]. As we have seen throughout this chapter, the crux of

the problem lies in the monoidal requirement that comes with t races. Motivated by

this observation, Benton and Hyland generalize traces to premonoidal categories. If the

category is indeedmonoidal, their de� nit ion simply reducesto theusualde�n it ion of traces

over monoidal categories.

Let us review the problem with the monoidal requirement more formally. What hap-

pens when the monad is not commutative? Let C be symmetric monoidal, with 
 as

the monoidal operation. Let T be a strong monad over C, with strength t. We do not

assume that T is commutative. Consider the Kleisli category of T, CT . For clarit y, we

will use the symbol * to denote arrows in CT . The symmetry in C lift s into CT with

no problems, i.e., CT is symmetric as well. For any � xed object A, we have the functor

A 
 { in CT , mapping a given object B to A 
 B and an arrow f : B * B 0 to the

arrow t � (A 
 f ) : A 
 B ! T (A 
 B 0) in C, which corresponds to the required arrow

A 
 B * A 
 B 0 in CT . It is easy to seethat { 
 A also yields a functor in CT . However,


 is not a bifunctor, unlessT is commutative. To see this, let f : A * A 0 and g : B * B 0
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be two arrows in CT . There are two ways of obtaining the arrow f 
 g : A 
 B * A 0
 B 0,

as captured by the following Haskell expressions:

� (a; b). f a � = � a0. g b � = � b0. return (a0; b0)

� (a; b). g b � = � b0. f a � = � a0. return (a0; b0)

The �r st composition is denoted by n , i.e., f n g = A 0 
 g � f 
 B . Similarly , we de� ne

f o g = f 
 B 0 � A 
 g. Unless the monad is commutativ e, these two compositions

are generally di�e rent, as they re
ect the order in which f and g are performed. This

discrepancy is the main reason why the monoidal structure in the basecategory does not

li ft to a monoidal structure in the Kleisli category.

Of course, even when we only have a non-monoidal operation, there might exist a

subset of arrows for which the order does not matt er|th ink of f (or g) having the form

return�h in the expressionsabove. Such arrows are called central. More formally, an arrow

f is central if, for all g, f n g = f o g, and g n f = g o f .

Generalizing from this example, Power and Robinson int roduced premonoidal cate-

gories [72]. In short , a premonoidal category is just like a monoidal category, except the

binary operation is only required to be functorial in each of the variables separately. (Note

that every monoidal category is t rivially premonoidal.) As we have sketched above, Kleisli

categories of strong monadsare examplesof premonoidal categories.

Given a symmetric premonoidal category, can we come up with a notion of trace?

Recall that traces are only meaningful in symmetric monoidal categories. Naively, one

might hope that the de� niti on of trace (De�n ition 6.2.3) might very well apply in this

caseas well. Unfortunately this is not the case:

Pr oposition 6.4.2 (Benton, Hyland [5]) A symmetric premonoidal category with a trace

(De�n it ion 6.2.3) is actually monoidal. �

As expected, the sliding axiom causesthe t rouble. Benton and Hyland show that

sliding implies f n g = f o g for all arrows f and g, establishing that the category

is indeed monoidal. To remedy the situat ion, Benton and Hyland generalize traces to

centered symmetric premonoidal categories. A centered symmetric premonoidal category

is a premonoidal category K, wit h a dist inguished monoidal center M , and an ident it y-

on-objects strict symmetric premonoidal functor J : M ! K [72]. For our purposes,it

su�c esto consider M as a subcategory of K, where all arrows in M are cent ral.

Kleisli categories of strong monads over symmetric monoidal categories are classical

examples of premonoidal categories. Let M be symmetric monoidal, and let T be a strong

monad over M . As we have seen above, M T is symmetr ic premonoidal. Recall that a

Kleisli category has the same objects as the basecategory. Let the functor J : M ! M T



82

be de� ned as follows. On objects, J is the ident it y. Given an arrow f : A ! B , let

J f = � b � f : A * B , where � is the unit of T. Then J : M ! M T is a centered

symmetric premonoidal category, wit h the distinguished monoidal center M . (Of course,

J is nothing but the usual inclusion functor.) In this case, a cent ral arrow in M T is simply

any arrow that is li fted from the monoidal center, i.e., any arrow that factors through �

in the base category.

The intuit iveunderstanding of a centered symmetric premonoidal category J : M ! K

is as follows: K is considered to be the category where arrows denote computat ions,

possibly wit h observable e�ect s. As expected, K does not possess a monoidal structur e.

M , on the other hand, is a subcategory of K denoting values, i.e., where we can swap

the order of computations, duplicate values only to discard later, etc. A crude analogy in

programming terms is given by any \ almost" functional language: For instance, think of

K as corresponding to the Standard-ML language, containing referencesetc., and M as

the purely functional subset of Standard-ML.

Gett ing back to t races, Benton and Hyland de�n e [5]:

De�nition 6.4.3 (Traced centered symmetric premonoidal categories.) A t race on a

centered symmetric premonoidal category J : M ! K is a family of functions:

TrX
A;B : K(A 
 U;B 
 U) ! K(A; B )

satisfying thesameconditi onsasgiven in De� nitio n 6.2.3, except (i) thesliding conditio n is

weakened such that g is assumed central , and (ii ) given a cent ral arrow f : A 
 X ! B 
 X ,

TrX
A;B f : A ! B is required to be central .

It is easy to seethat this de�n ition generalizesthe notion of trace, since all arrows are

central in a symmetric monoidal category.

In order to generalize Theorem 6.2.4, Benton and Hyland also develop the notion

of Conway operators on Freyd categories. Brie
y , a Freyd category is a symmetric pre-

monoidal category J : C ! K, where C is cartesian [73]. A parameterized �xed point

operator on a Freyd category J : C ! K is de�n ed to be a family of functions

(�)�
A;X : K(A 
 X ; X ) ! K(A; X ) (6.24)

Benton and Hyland require (�) � to satisfy the so-called center preservation, naturalit y, and

central � xed-point propert ies, corresponding to our left shrinking and purit y laws.

To be able to establish a correspondence between traces over Freyd categories and

parameterized �xed point operators, Benton and Hyland de� ne Conway operators, which

further satisfy laws that correspond to our right shrinking and nesting properties. Hence,
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similar to Paterson's axiomatizati on of loop, the correspondence with premonoidal traces

only holds for the set of value recursion operators that further satisfy strong sliding and

right shrinking properti es. As we have seen in Section 3.1, thesetwo properties are unsat-

is�able for value recursion operators in general (Corollary 3.1.7).

6.5 Summary

In this chapter, we summarized the notion of tracesfrom category theory, and investigated

how value recursion might � t into the pictur e. As we have seen, for a very small classof

monads, value recursion operators correspond to trace operators over Kleisli categories.

The environment monad is the most important example exhibiting this correspondence

(other than the obviousident it y monad). In the generalcase,however, the correspondence

fails becauseof the monoidal requirement in the formalizati on of t race operators.

It turns out that Paterson's loop axioms and Benton and Hyland's generalization of

traces to premonoidal categories are essentia lly the same, although developed indepen-

dently and presented in slightl y di�e rent contexts [5, 66]. Both these axiomatizations take

the correspondenceone step further, but not to the point where a satisfactory theory for

value recursion can emerge. To summarize, both require right shrinkin g and strong slid-

ing properties, which are known to be unsatis�able for many monads(see Chapter 3). In

terms of concrete monads, their work can handle the lazy state and the output monads,

but not except ions, lists, strict state, and the IO monad of Haskell. In this respect, we

consider both att empts to be signi�cant steps in understanding and generalizing value

recursion, but not the �n al categorical account of the whole problem.



Chapter 7

A recursive do-notat ion

Haskell's do-notation simpli�es monadic programming signi�ca ntly , but it lacks support for

recursive bindings, a key syntactic feature for value recursion. In this chapter, we describe

an enhanced translat ion schema for the do-notat ion and its integration into Haskell. 1

The new translat ion will allow variables to be bound recursively, provided the underlying

monad comesequipped with a value recursion operator.

Synopsis. We start with a motivating example,showing the need for recursive bindings

in the do-notation. The issuesrelated to let-generators and the needfor segmentat ion are

discussed next, followed by a detailed description of the t ranslation algorithm. We also

provide several comments on the integration of the new do-notation into Haskell.

7.1 In t ro ducti on

Recursive declarations are ubiquit ous in the functional paradigm. While � xed-point op-

erators provide a solid framework for reasoningabout and understanding recursion, they

are hardly suitable for practical programming tasks. For instance, compare:

let sum n = if n = = 0 t hen 0 else n + sum (n � 1) in sum 10

to it s non-recursive equivalent:

let sum = �x (� f.� n. if n = = 0 then 0 else n + f (n � 1)) in sum 10

Clearly, the useof �x makes the de� niti on much harder to read, especially for beginning

programmers. The situat ion gets worsewit h mutually recursive bindings.

As we have brie
 y menti oned in Section 1.3, a similar problem arises in the framework

of value recursion. Rather than using explicit calls to m�x , we would like to have a

complementary binding construct, providing syntactic support for value recursion. In the

1The material in th is chapter is based on a paper that appears in the Haskell Workshop'02 [19].

84
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context of Haskell, an extension to the do-notation allowing recursive bindings seemsto

�t the bil l. To il lustrate, we will revisit the circuit modeling example from Section 1.2.

This t ime, we wil l model a simple counter, one that increments its output by 1 at each

clock tick. The count goes back to 0 whenever the reset line goeshigh:

zero

inc

out

next

MUX

reset

DELAY 0

0

+1

By extending the Circuit class (seeSection 1.2) with multiple xers and monadic lift

functions, we can model this circuit monadically as follows:

counter :: Circuit m ) Sig Bool ! m (Sig Int )

counter reset = m�x (� ~(next; inc; out; zero).

do next  delay \ zer o" 0 inc

inc  lif t1 \ add1" (+1) out

out  mux reset zero next

zero  lif t0 \ zero " 0

return (next; inc; out ; zero))

� = � (next; inc; out; zero). return out

As we have argued in Section 1.2, the monadic implementation has numerous advan-

tages. Syntactically, however, it carries a lot of baggage, making it hard to understand and

maintain. (Note that binders can be arbitra ry patt erns in general, as in \ Just x  f x" ,

making the situation even worse.) As pointed out by Launchbury et al. [49], and as we

have out lined in Section 1.3, what we need is a recursive counterpart of the do-notation,

allowing us to writ e simply [49]:

counter reset = do next  delay \ zero " 0 inc

inc  lift1 \ add1" (+1) out

out  mux reset zero next

zero  lift0 \ zero " 0

return out

eliminating the explicit call to m�x . Note that this description of the circuit follows the

diagram given above almost li terally. The translat ion we will introduce in this chapter

will handle such recursive de� niti ons automatically, without bothering programmers with

the details of the necessary plumbing.
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7.2 The basic tra nslati on and design guideli nes

For clarit y, we refer to the recursive version of the do-notation as the mdo-notation, and

write mdo-expressions using the keyword mdo .2 Whenever we refer to the do-notation,

we mean the currentl y available notation in Haskell that does not allow variables to be

bound recursively.

Inspired by the counter circuit example of the previous section, one might naively

translate mdo-expressions as follows:

mdo p1  e1

...

pn  en

e

=)

m�x (� ~BV. do p1  e1

..

pn  en

return BV )

� = � BV. e

where BV stands for the tuple consisting of all variables occurrin g in patterns p1 : : : pn .

The lazy match, obtained by ~, is essentia l in avoiding strictnessproblems.

However, there are a number of problems raised by the schema above. First of all,

do-expressions in Haskell can use let-generators to introduce polymorphic bindings for

pure expressions [68]. It is not clear how such bindings can be integrated into this trans-

lation. Similarly, ordinary do-expressionscan bind identi�ers repeatedly, later bindings

shadowing earlier ones. When bindings can be recursive, shadowing becomes problem-

atic. Furthermore, the useof a single m�x to handle recursion over the entire body of an

mdo-expressionmay inducepoor termination propert ieswhenever the right -shrinking laws

fails (see Section 7.2.2)|in tuitiv ely, recursion should only be performed over generators

that depend on each other cyclically, leaving the rest untouched. Finally, we would like

to addresstheseissueswithin the boundaries of the \syntactic-sugar" approach. That is,

the translation should produceonly valid (well- formed and well- typed) Haskell code. This

approach keeps the extension simple, providing a smooth transiti on.

To summarize, the basic design guidelines for the mdo-notat ion are:

� Syntactic agreement with thedo-notation: Programmersfamili ar with the do-notat ion

should have no tr ouble using the recursive version.

� Semant ic agreement with thedo-notation: To the extent possible, valid do-expressions

should also be valid mdo-expressions, with their meanings preserved.

� Segmentation: Calls to m�x should be isolated to recursivesegments only, leaving the

non-recursive parts out of the � xed-point computation. As we will see, segmentat ion

2The closest we can get to � do using ASCI I.
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is essenti al becauseextending the scope of recursion can give poorer results for those

monadsthat fail to satisfy the right shrinking property.

� Pure syntactic sugar: The tr anslation should only produce well-formed and well-

typed Haskell code.

In the remainder of this section, we addresstheseissues,re� ning the basic translat ion

scheme as we go along.

7.2.1 Let generat ors

The do-notati on of Haskell allows let-generators, with the following translation [68]:

do let p1 = e1

...

pn = en

stmts

=)

let p1 = e1

...

pn = en

in do stmts

The variables bound in p1 : : : pn can be polymorphically typed. In mdo-expressions,these

variables should be visible throughout the entire body as well, suggesting the translation:

mdo stmts1

let p1 = e1

...

pn = en

stmts2

e

=)

m�x (� ~BV. do stmts1

let p1 = e1

...

pn = en

stmts2

return BV )

� = � BV. e

where the variables bound in p1 : : : pn wil l appear in BV as well. Unfortunately, the

resulting code is not guaranteed to be well-typed. To ill ustrate, consider:

mdo z  f 2 y

y  f 'a' z

let f x = return x

return (f y z; f z y)

=)

m�x (� ~(z; y; f ).

do z  f 2 y

y  f 'a' z

let f x = return x

return (z; y; f ))

� = � (z; y; f ). return (f y z; f z y)

Since f is � -bound, it becomesmonomorphically typed, making its use at two di�e rent

types illegal. In fact, the situation is even worse: Referring to the schematic translat ion

above, let-bound variables in patt erns p1 : : : pn will have monomorphic types over stmts1
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and e, while they will retain their polymorphic typings over stmts2 and e1 : : : en . This

situat ion is quit e bizarre. Unfortunately, there is no easy soluti on to this problem. Since

the tuple BV is � -bound, the variables that appear in it will be monomorphically typed

when we attempt to type check the body of the do-expressionand the �nal expression e.

How should wedeal with thisproblem? Clearly, it is unacceptable to ban let-generators

completely becausethey are quite useful in practice. (Requiring let-bound variables to

be visible only in the textually following generators would also be wrong.) An alternativ e

is to go slightly beyond Haskell 98, using records with polymorphically typed � elds [40].

Rather than using tuples, we can package the arguments into a record with polymorphic

�elds, retaining the polymorphic typings of let-bound variables. However, the result ing

translat ion is overly complicated (as we needto perform type inference during the trans-

lation), making it hard to formalize and automate [17]. One might also argue that we

can go beyond the \syntactic-sugar" approach, i.e., let the t ranslation produce il l-t yped

code, provided we can come up wit h special typing rules for mdo-expressions. We wil l not

pursue this option here, however, in order to be able to keep the translat ion as simple as

possible. (We will return to this point in Section 7.3.3.)

Thesolutio n weadopt is to require let bindings to bemonomorphic in mdo-expressions.

That is, let becomesjust a syntactic sugar wit hin mdo, t ranslated as:

let p1 = e1

...

pn = en

=)

BV  return (let p1 = e1

...

pn = en

in BV )

where BV is the tuple corresponding to the variables bound in p1 : : : pn . This idea easily

extends to more complicated forms of function de�n itions as well. For instance:

mdo let f [ ] = 0

f (x:xs) = 1 + f xs

return (f [1;2;3]; f [ ])

=)

mdo f  return (let f [ ] = 0

f (x:xs) = 1 + f xs

in f )

return (f [1;2;3]; f [ ])

Note that we do not commit to a speci�c monomorphic type for f . As long as f is used

consistentl y at a single monomorphic type, the t ranslation wil l be well-t yped.

We expect this restrict ion to be negligible in practice. Such polymorphic let-generators

are hardly ever used in practice, and experiencesuggests that there is almost always an

obviousway to rewrite the required polymorphic bindings using an explicit let-expression,

avoiding the whole problem. Therefore, we believe that the simplicity of this design far

outweighsany generalit y that might beobtained by morecomplicated translat ion schemas.
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Remark 7.2.1 It might help programmers if monomorphic bindings were visually dis-

ti nguishable from polymorphic ones. In a recent paper, Hughes argues that the syntax

of let-expressionsshould be extended to allow monomorphic bindings, suggesting the use

of the symbol := to di�e rentia te them from polymorphic ones[34]. If this idea ever gets

adopted in Haskell, let-generators in mdo-expressions can be restricted to use := as well,

emphasizing the fact that they will be monomorphically typed.

7.2.2 Segment at ion

Consider the following mdo-expression, which creates two in� nite lists consisting of 1's

and 2's respectively, and its translation:

mdo putStr \ all 1s"
ones  return (1 : ones)
putStr \ all 2s"
twos  return (2 : twos)
putStr \ done"

=)

m�x (� ~(ones; twos).
do putStr \ all 1s"

ones  return (1 : ones)
putStr \ all 2s"
twos  return (2 : twos)
return (ones; twos))

� = � (ones; twos). putStr \ done"

The resulting code is quite unsatisfactory. The only recursion we need is in independent ly
computing the lists ones and twos, suggesting a segmented translat ion of the form:

do putStr \ al l 1s"
ones  mdo ones  return (1 : ones)

return ones
putStr \ al l 2s"
twos  mdo twos  return (2 : twos)

return twos
putStr \ done"

where the inner mdo-expressions will further be translated accordingly. This processis

analogousto thehandling of ordinary let-expressionsin Haskell, wheremutual ly dependent

bindings are grouped together to enhance types of bound variables [68]. In our case, all

variables are � -bound, i.e., monomorphic, so typing is not an issue. However, we stil l

needsegmentation to avoid the unwanted interferencefrom trai ling computations. As an

example, let

checkSingle :: [Int ] ! IO ()

checkSingle [x] = putStr \ singl eton "

checkSingle = putStr \ not � singl eto n"
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and consider the following t ranslati on:3

mdo xs  return (1 : xs)

checkSingle xs

return ()

=)

�xIO (� xs. do xs  return (1 : xs)

checkSingle xs

return xs)

� = � xs. return ()

Intuiti vely, we expect this mdo-expression to print \ not-s ing leto n" , as the value of xs

should simply be the in�n ite list of 1's. Alas, the translation will diverge! The reason

is simply that the patt ern matching in checkSingle is too strict for the computation to

proceed, failing the match immediately. However, wit h segmentation, we will get the code:

do xs  �xIO (� xs. return (1 : xs))

checkSingle xs

return ()

which will happily print \ not-si ngl eton " , avoiding the unintended interference. Interest-

ingly, if the � nal \ return ()" is omitt ed, the original translation will work as well, sincethe

call to checkSinglewil l be the � nal expression,automatically pushed outside of the m�x

loop. Just adding \ return () " should not changethe result, pointing out the need for seg-

mentati on. Note that this problem wil l arisewhenever right shrinking fails (Section 2.7.2),

which is the casefor many practical monadsof interest. (See Corollary 3.1.7.)

7.2.3 Shadowing

The current syntax of do-expressions allows variable namesto be bound repeatedly, later

bindingsshadowing earlier ones. Onecan accommodatesuch bindings in the mdo-notat ion

as well, by appropriately renaming them. As a design choice, however, we reject this pos-

sibilit y. Al though shadowing might be convenient at times, it is also a constant source of

bugs. Sincebound variables are visible throughout the entire body in an mdo-expression,

allowing repetit ions is much more likely to causeconfusion.4 Therefore,we disallow shad-

owing in mdo-expressions. (This design choice also implies that the scoping rules for

mdo-expressionsare the sameas those for let and where expressions, providing a consis-

tent view of scoping in Haskell's binding constructs, both pure and monadic.)

3As we will seein Chapter 8, the li brary function �xIO :: (� ! IO � ) ! IO � is the value recursion
operator for Haskell's IO monad [20].

4 In a simil ar vein, it can be argued that repeti tions should not have been allowed in the do-notation
either. Li st comprehensions becomeespecially horrible: f x = [x j x  [x .. x+5] ; x  [x .. x+ 10]] is
a confusing (yet legal) Haskell funct ion.
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7.3 Transla tion of mdo-expressi ons

We now present an algorithm to translate mdo-expressions to core Haskell.

7.3.1 Prelim inarie s

In the following discussion,we assume that let-generators are already de-sugaredinto their

return equivalents, asdescribed in Section 7.2.1. We use the meta-variable p to rangeover

patt erns, v over variables, and e over expressions.

De�nition 7.3.1 (De�ned variables.) A generator p  e de� nes the variables that

appear in the pattern p. If the generator is of the form e, i.e., wit hout any binding

patt erns, then it de�n es no variables. An mdo-expression m de� nes a variable v, if v is

de� ned in a generator of m.

De�nition 7.3.2 (Used variables.) A de�n ed variable v is used in a generator p  e if

v occurs free in e. (And similarly when there is no binding patt ern p.)

De�nition 7.3.3 (Recursive variables.) Let m be an mdo-expression, and v be a used

variable of m. Let g be the generator that de� nes v. The variable v is recursive if it is

either used by g itself, or by a generator of m that appearstextually before g.

Remark 7.3.4 Every de�n ed variable comesfrom a distinct generator, due to the no-

repetiti on requirement. Furthermore, only de�n ed variables can be used, and only used

variables can be recursive. That is, for an arbitrary mdo-expression,we have:

Recursive Variables � UsedVariables � De�n ed Variables

De�nition 7.3.5 (Dependent generators.) A generator g is dependent on a textually

following generator g0, if

� g0 de�n es a variable that is usedby g,

� or, g0 textuall y appears in between g and g00, where g is dependent on g00.

Remark 7.3.6 Thesecond condition in the abovede� nitio n can beconsidered as interval

closure. Note that, unlike a usual let-expression,we cannot reorder the generators: Order

does matter in performing side e�ec ts. Hence, if a generator is dependent on another, we

are forced to package them together with all the generators in between.
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De�nition 7.3.7 (Segments.) A segment of an mdo-expression is a minimal sequence

of generators such that no generator of the sequence depends on an outside generator. As

a special case, although it is not a generator, the � nal expression in an mdo-expression is

consideredto form a segment by itself.

Remark 7.3.8 To compute the segments, it su�ces to start with the � rst generator of an

mdo-expression,and search for the last generator that it depends on. If such a generator

exists, we add all the generators up to and including it to the segment. This processis

repeated for each and every oneof the generators in the segment, until we cannot add any

new generators. Once a segment is found, the very next generator starts a new segment .

Note that the number of segments is bounded above by the number of generators in the

mdo-expression,plus one for the segment corresponding to the � nal expression.

De�nition 7.3.9 (Free variables of a segment.) Let m be an mdo-expression, v be a

de� ned variable, and s be a segment of m. We say that v is free in s if (i) v appears

free in the right hand side of a generator of s, and (i i) v is de� ned in a segment textually

preceding s.

De�nition 7.3.10 (Exported variables of a segment.) A variable that is de� ned in a

segment is exported if it is free in any of the textuall y following segments.

7.3.2 Th e trans lation algorithm

We describe the algorit hm step by step using the following schematic running example:

mdo f a bg  f c dg

f eg  f f g

f gg  f hg

f f g  f ag

f i j g  f i eg

f j g kg

s0

s1

s2

s3

s4

s5

where f v1 : : : vng stands for a patt ern that binds the variablesv1 : : : vn on the left hand side

of a generator, and for an expression whosefree variables are v1 : : : vn on the right hand

side. Note that the actual patterns or expressions are not important for our purposes.For

instance, the generator s3 uses the variable a, and de�n es f . Generator s2 de� nesg, but

does not use h, since h is not de�n ed in this expression. For our purposes, it is nothing

but a constant . Similar remarks apply to the variablesc; d, and k as well.
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Segmentation step: Starti ng with the � rst generator, form the segments as described

in Remark 7.3.8.

To perform this step, we wil l need the de�n ed (D i ) and used variables (Ui ) of each

generator si . Luckil y, for our running example, thesesets are obvious:

D0 = f a;bg D1 = f eg D2 = f gg D3 = f f g D4 = f i ; j g D5 = ;

U0 = ; U1 = f f g U2 = ; U3 = f ag U4 = f i ; eg U5 = f j ; gg

To compute the segments, we start with s0. Since s0 does not use any variables, it

cannot depend on other generators, i.e., it forms a segment by it self. The next generator

to consider is s1, which uses the variable f . Since f is de� ned by s3, we have to package

everything in between, i.e., s1; s2, and s3 together. Since none of them depends on s4 or

s5, we stop the it eration, forming our second segment. It is easy to seethat s4 and s5

form the next two segments by themselves. Hence, we obtain:

S0 = f s0g; S1 = f s1; s2; s3g; S2 = f s4g; S3 = f s5g

Analysis step: For each segment Si do the following: For each variable v de� ned in the

segment, determinewhether it is recursive (De� nit ion 7.3.3). Collect all recursivevariables

of the segment Si in the set Ri . If Ri is empty, this segment does not need �xed-p oint

computat ion, leave it untouched. If R i is not empty, compute the exported variables of

the segment , E i , and mark this segment as recursive for futur e processing. Retur ning to

our example, we have:

R0 = ; R1 = f f g; E1 = f e;gg R2 = f ig; E2 = f j g R3 = ;

Since only R1 and R2 are non-empty, we mark S1 and S2 as recursive; other segments

are left untouched. (Note that the last segment can never be recursive.)

Translation step: At this point, we are left wit h a number of segments, someof which

are marked recursive by the previous step. For each marked segment , create the tuples

ET and RT corresponding to the sets E and R. (If E is empty, ET wil l be the empty

tuple.) Create and add a brand new variable v to the tuple RT. Then, form the generator:

ET  m�x (� ~RT. do .....
.....
v  return ET
return RT )

� = � RT. return v

where the dotted lines are � lled with the generators of the segment.
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Note that segments that are marked recursive by the previous step are turned into

a single generator, while non-recursive segments are left untouched.5 Returning to our

example, we create the following generator for S1:

(e; g)  m�x (� ~(f ; v). do f eg  f f g

f gg  f hg

f f g  f ag

v  return (e; g)

return (f ; v))

� = � (f ; v). return v

and the following for S2:

j  m�x (� ~(i ; v). do f i j g  f i eg

v  return j

return (i ; v))

� = � (i ; v). return v

Finalization st ep: Now, concatenate all segments and form a single do-expression out

of them. For our example, we obtain:

do f a bg  f c dg

(e; g)  m�x (� ~(f ; v). do f eg  f f g

f gg  f hg

f f g  f ag

v  return (e; g)

return (f ; v))

� = � (f ; v). return v

j  m�x (� ~(i ; v). do f i j g  f i eg

v  return j

return (i ; v))

� = � (i ; v). return v

f j g kg

Remark 7.3.11 If there are no recursive bindings present to start with, the algorit hm

we have described will just leave the input untouched (except for replacing the keyword

mdo by do). That is, the left shrinking propert y is automatically appliedby thealgorit hm

to get rid of unnecessary calls to m�x . (See Section 2.3.)

5Depending on the sets E and R, several other improvements are possible in forming the required
generator. For instance, if E is a subset of R, then we do not need a new variable. We skip a detailed
discussion of these improvements here, as they are not essenti al for the translation.
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Desug aring step: Now we are left wit h a non-recursive do-expression, and we can apply

the standard translation to replace the do with explicit � ='s, completing the t ransla-

ti on [68].

7.3.3 T yp e checkin g md o-exp ressions

To accommodate for the overloading of the name m� x, we simply add the following type

classto Haskell:

class Monad m ) MonadFix m wher e

m�x :: (� ! m � ) ! m �

Intuiti vely, an mdo-expression is well-t yped if it s translation produces a well-t yped

Haskell expression. In order to perform type-inference, a type judgement of the form:

� 0 ` ei : m � i � 0 ` pi : � i � 0 ` e : m �
� ` mdo f pi  ei g e : m �

su�c es,with the side conditi on that m must belong to the MonadFix class. In this rule, � 0

is obtained by extending � with the variablesde�n ed in the given mdo-expression. Each

such variable is assigned a monomorphic type variable to begin with. (For simplicity, we

assume all generators have the form p  e.) The only special care is needed in handling

let-generators, which can be typed similarly to normal let-expressions. To ensure that

let-bound variablesare monomorphic, it su� cesto leave out the generalization step in the

type inferencealgorithm for let-bound variables[17, 41].

As we have promised in Section 7.2.1, let us reconsider the typing of let-generators,

aiming to �nd a solutio n that would allow polymorphic bindings. In fact, it is arguable

that we should have a more liberal scheme,wherenormal bindings can be polymorphic as

well. For instance, there is no reason why the following expression should be ill- typed:

poly :: Maybe ([Bool ]; [Int ]) -- il l � typed

poly = do nil  return [ ]

return (True : nil ; 1 : nil )

However, poly is not a well-typed Haskell expression, since the binding to nil is re-

quired to be monomorphic. Of course, we cannot allow polymorphic typings arbitrarily ,

as illustrat ed by the infamous ML-t yping problem [93], coded here in Haskell:

do rf  newSTRef (� x. x)

writeSTRef rf (� x. x + 1)

f  readSTRef rf

return (f True)
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Following the previous example, we might think that rf might be assigned the type

8� . STRef s (� ! � ); which leads to disaster. So, it seems that the maybe monad is

mild enough that generalization is acceptable, but the state monad is not. It is beyond

the scope of our current work to investigate exactly when one might allow generalization,

but we conjecture that it is safeto do so in the following two cases:

� For any variable, provided the underlyi ng monad is completely de�n able in Haskell,

and not built on top of one of the internal state or IO monads,

� Or, variablesbound by the let-generators, regardlessof the underlying monad.

Since checking for the �r st condition seems to be rather expensive, we might settl e

for allowing generalization in let-bound variables only, which coincides wit h the t reatment

of let-generators in the current do-notation. (Such a solut ion would be similar to ML's

value restriction, where only \ syntactically distinguishable" valuesare typed polymorphi-

cally [93].) Of course, a more detailed study is needed before such an approach can be

adopted. We leave the exploration of this idea for future work.

7.4 Curren t stat us and rel ated work

The mdo-notation is implemented both by the Hugs interpreter [37] and the GHC com-

piler [26]. Details on theseimplementati ons can be found on the web [74].

Predating our work, the need for recursive bindings in the do-notat ion was also dis-

cussedin the framework of Nordlander's O'Haskell language, a concurrent, object-oriented

extensionto Haskell [65]. O'Haskell extends the do-notation with a variety of newfeatures.

Wi th regard to recursion, O'Haskell provides a special keyword �x , providing a way to

specify a block of generators wit h mutual dependencies. The t ranslation for � x-blocks is a

simpler version of ours: No segmentation is performed and let-generators are not allowed.

The t ranslation seems to permit shadowing, but that appears to be an oversight, rather

than a conscious design decision. The addition of the �x keyword to the do-notation in

O'Haskell arose from practical programming needs; the syntax and the translat ion was

not designed to meet a general need.

Paterson's arrow-notation supports recursive bindings aswell, provided the underlying

arrow comes equipped with a loop operator [66]. (SeeSection 6.4.1 for a discussion of

arrows and loop operators.) Simil ar to O'Haskell, mutually dependent generators are

explicitl y marked, using the keyword rec. No segmentat ion is performed on recursive

blocks. Current ly, let-generators arenot supported in the arrow-notat ion, but the addit ion

of such bindings seemsstraight forward. We note that all variables become � -bound after
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the translat ion in thearrow-notation, forcing monomorphic types. Hence, regardlessof the

support for recursive bindings, let-generators wil l su�e r from the monomorphism problem

in the arrow-notati on.

7.5 Summary

In this chapter, we have described an alternati ve translat ion schema for the do-notati on of

Haskell, providing syntactic support for recursive bindings. The abilit y to bind variables

recursively in the do-notat ion is an essent ial feature for value recursion as it elegant ly

hides the useof explicit value recursion operators.

Recalling the design goals we have set for the mdo-notation, we can conclude that

our t ranslation ful� ll s its purpose. To review brie
y , we have aimed for syntactic and

semant ic agreement with the do-notation, segmentat ion for grouping minimally dependent

sequencesof statements together, and preservation of the syntactic-sugar status. Our

translat ion achieves all thesegoals, except for syntactic agreement for a relativ ely small set

of do-expressions.Since let-generators become monomorphic and shadowing is no longer

allowed, any do-expressionusing thesefeatures wil l be rejected. However, we believe that

neither of these rest rictions will causeserious problems in practice. Al so, if desired, the

typing problem might be remediedby devising a solut ion along the lines we have described

in Section 7.3.3.

It is our belief that Haskell should have just one version of the do-notat ion. Just like

let-expressions, do-expressions should be capable of expressing both recursive and non-

recursive bindings. (The type system will insist on the MonadFix instance only when

recursive bindings are used.) However, such a change will potent ially break existing pro-

grams, due to the minor incompatibili tiesment ionedabove. Therefore, a separatenotat ion

(using the keyword mdo ) has been adopted for the t ime being, possibly switching to the

new translat ion in a future version of the Haskell standard.



Chapter 8

Th e IO monad and �x IO

The IO monad of Haskell comesequipped with a value recursion operator, namely the

function �xIO .1 Both the IO monad and �x IO are language primit ives in Haskell, i.e.,

they cannot be de�n ed within the languageitself. Therefore, any att empt to formally

reason about �x IO is futil e wit hout a viable semant ics for computations in the IO monad.

Recentl y, Peyton Jonesint roduced an operational semanti cs based on observable transi-

ti ons as a method for reasoning about I/ O in Haskell [67]. In this chapter, we build on

his framework, and show how one can model �xIO as well.2

Synopsis. We start with a brief discussion of the operati on of �xIO , showing how it

�ts wit hin the rest of the IO monad. We then describe a core language basedon Haskell,

with basic monadic I/O faciliti es. We continue by giving a layered semant ics for this

language. Finally, we show that our model of �xI O satis�es the requirements for being a

value recursion operator wit h respect to our semant ics.

8.1 In t ro ducti on

Ever since Peyton Jones and Wadler showed how monads can be used to model I/ O in

a language with non-strict semant ics, monadic I/ O became the standard way of dealing

with input and output in Haskell [69]. The IO monad in Haskell comesequipped wit h a

value recursion operator, namely the function �xIO . As Achten and Peyton Jonespoint

out, and as with all value recursion operators, �x IO \ ... allows us to manipulate results

[of IO computations] that are not yet computed, but lazily available" [1, Section 4.1].

Unlike many other monads, the IO monad of Haskell is built into the language, as it

cannot be de� ned wit hin Haskell itself. As a consequence, �xIO is a language primitiv e

1The function �xIO is not part of the standard Haskell library [68]. Imp lementations, including Hugs
and GHC, provide it generally in the IOExts library .

2This chapter is based on a paper that will appear in the Journal of Theoretical Informatics and
Applications [21]. A preliminary version of the material presented in th is chapter appeared in the Fixed
Points in Computer Science Wor kshop'2001 [20].

98
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as well. Given we do not have direct accessto the internals of the IO monad, how can

we understand the operation of �xIO ? Or, in general, how can we understand IO-based

computat ions? Recent ly, Peyton Jonesintroduced a semanti cs for Haskell IO [67], similar

to the monadic transiti on systems of Gordon [27]. In such a system, IO computations

are viewed as sequences of labeled transitio ns. Each label indicates an e�ec t observable

in the real world, similar to those found in processcalculi [61]. Peyton Jones's work

used an embedding of a denotat ional semant ics for the functional layer into the IO layer.

However, it bypassedthe detai ls of this embedding. Such an approach is �n e, as long as

oneis interested in the big pictur e. If, on the other hand, onewants to reason about �xIO ,

it becomes necessary to be explicit about the relationship between the IO and functional

layers. One aim of this chapter is to bridge this gap.

Our semantics is structured in two layers: IO and functional. The semantics for the

IO layer is based on the approach taken by Peyton Jones [67]. The semant ics for the

functional layer is basedon the natur al semant ics for lazy evaluati on of Launchbury [48].

A � nal set of rules precisely shows how these two layers interact with each other. It is

this interaction that allows us to give a semant ics for �x IO. (Th e material in this chapter

builds directly on Peyton Jones's and Launchbury's work mentioned above. We assume

that the reader is already famil iar wit h these papers.)

8.2 Moti vating examples

Alt hough �x IO is just li ke any other value recursion operator we have seen so far, the fact

that we cannot give a Haskell de�n it ion for it makes it rather mysterious. Al so, the IO

monad providesmutable variables,a featur e that we will have to deal with explicitly . We

start by considering several examples to get famili ar with the operation of �xIO .

Example 8.2.1 Our � rst example shows the interaction of �xIO with input operations:

�xIO (� cs. do c  getChar

return (c : cs))

When we run this computation, a character will be read from the standard input, say

a. Then, the computation will immediately deliver an in�n ite list of a's.3 We wil l be

able to pull out as many characters as we wish out of this list , following the demand-

driven evaluati on policy of Haskell. There are two crucial points: (i) the action getChar

3 Note that, by applying the left shri nking and purit y properties, we can reduce th is expression to
getChar � = � c. return (�x (� cs. c:cs)) ; guaranteeing the describ ed behavior axiomatically. Of course,
we have not yet established that these two properti es hold for �xIO , but we wil l do so in Section 8.6.
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is executed only once, and (ii) the computation terminates immediately after the reading

is done, i.e., the in� nit e list is not constructed prior to its demand. In other words, the

fact that the IO monad is strict in actions but not in values is preserved by �xIO .

Here, we also get a feel for what �xIO provides: It provides a means for recursively

de� ning values result ing from IO computat ions. That is, it allows naming results of

computat ions that will only be available later on. For instance, in the expression above,

wewereable to namethe result of the computation ascs, beforewehad its valuecomputed.

In this sense,the semantics is similar to the semanti cs of the pure expression:

let cs = 'a' : cs in cs

which is a convenient way of writi ng �x (� cs. 'a' : cs); where �x is the usual �xed-p oint

operator. Except, of course, in the �x IO casethe character in the list is determined by the

call to getChar, i.e., it depends on the actual input availablewhen werun the computation.

Example 8.2.2 Let us revisit the fudgets example given by Expression 4.35. In terms

of �xIO , the corresponding computat ion is given by:

�xIO (� c. do putChar c

return 'a')

When run, this computation diverges as c is not yet available when requested by putChar.

(Note that this behavior is in accordance with m�x as discussedin Section 4.8.)

Example 8.2.3 Here is a Haskell expression showing the interaction of �x IO with mu-

table variables:

� xIO (� ~(x; ). do y  newIORef x

return (1:x; y))

� = � ( ; l ). readIORef l

In this expression, we allocate a cell in which we store the value of the variable x, before

we know what that value really is. The value of x, determined thr ough the � xed point

computat ion, is the in� nite list of 1's. The call to � xIO returns the value (which is

discarded) and the addressof the cell that storesthis cyclic structure. Outside of the call

to � xIO, we dereferencethe addressand get back the lazily computed list of 1's. Alt hough

this example might look super� cial, it basically captures the essenceof cyclic st ructures

with mutable nodes. (See Section 9.4 for an example, where we use a similar idea to

implement doubly linked circular lists in Haskell.)

Once we describe our semantics, we will revisit theseexamplesto seehow our system

works in practice.
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8.3 The language

In this section, we de� ne a language basedon Haskell [68], supporting monadic IO primi-

ti ves,mutable variables, usual recursive de� niti ons, and value recursion.

Notat ion 8.3.1 We usethe following naming conventions for variables:

c 2 constructors

x; y; z; w 2 heap variables

r; s; t 2 mutable variables

To simpli fy the discussion,we syntactically dist inguish between heap and mutable vari-

ables: They are drawn from di�eren t alphabets.

De�nition 8.3.2 (Terms and values.) Terms and values are de�n ed mutuall y recur-

sively by the following grammars, respectively:

M, N ::= x
j V
j M N
j let ~x = ~M in N
j case M of f ci ~x i ! N i g

V ::= c x1 x2 ... x i

j � x. M
j return M j M � = N
j getChar j putChar M
j �xIO M j updatez M
j r
j newIORef M
j readIORef M
j writ eIORef M N

The function updatez, associated wit h the heap variable z, cannot appear in a valid

input program, and it is never the result of any program either. It is only usedinternally,

in giving a semantics to �x IO. We will explain its role in detail later. All other constructs

have the samemeaning and type asthey do in Haskell [7]. Note that IO actions are values

as far as the purely functional world is concerned.

For the purposesof this chapter, we only work wit h well- typed terms, and ignore the

issues of type checking and inference. We assume that the usual Haskell rules apply to

determine well typed terms. (Typing of Haskell programs has been discussedin detail in

the lit erature [41, 68].) Notice that return, � = , �xIO , etc., are polymorphic constants.

As usual, let expressions provide recursive (and possibly polymorphic) bindings.

A constructor c of arit y i is treated as a function �x 1 : : : x i : c x1 : : : x i , which becomes

a value of it s own when fully applied. This caseis captured by the �r st alternati ve in the

de� nit ion of values, where c is assumed to have arit y i . We model constants as nullary

constructors, that is, numbers,characters,etc., are treated asconstructors with zeroarity.

(A s a notational hint, we will use the letter k to refer to constants.)
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Remark 8.3.3 It is worth noting that the grammar we gave describes the syntax for

the reduced terms of our language rather than the concrete syntax that we will allow

ourselvesto use. In particular, we wil l freely usethe do-notation and pattern bindings in

� -abstractions. In each case,however, the translation to the core language will be trivial .

De�nition 8.3.4 (IO and pure terms.) A well- typed term of type I O � , for some type

� , is called an IO term. All other terms are called pure.

De�nition 8.3.5 (Terminal values.) A value is called terminal if it has one of the

following forms:

� c x1 x2 : : : x i , where c is a constructor of arit y i ,

� �x: M ,

� r etur n M ,

where M is an arbitrary term in the second and third cases.

De�nition 8.3.6 (Heaps.) A heap is a �n it e parti al function from heap variables to

terms extended with a special black hole value � :

� :: Heap Variables * Terms [ f� g

A heap binding can be polymorphically typed. A black hole binding, such as z 7! � ,

indicatesthat thevariable is known but not directly accessible. Intuit ively, � is a detectable

bottom.

Notat ion 8.3.7 Although heaps are functi ons, we wil l allow ourselves to use the set

notation freely on them: The notat ion x 7! M 2 � simply states that � maps x to M .

The empty heap is denoted fg . The notation (� ; x 7! M ) denotes the heap � extended

with a new binding x 7! M . In this case, x cannot be already bound in �, but might

appear free in M .

Sinceour languageallows input operations, the meaningof a term might dependon the

input stream it receiveswhile being run. To accommodate this view, we have to consider

terms and input streams together.

De�nition 8.3.8 (Input streams.) An input stream is a list of characters, not neces-

sarily � nite.
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Notat ion 8.3.9 We wil l usethe Haskell list notation to denote input streams. [ ] (or "" )

denotes the empty input stream, i.e., the casewhen the input is exhausted. Otherwise, a

stream is of the form (c : I ), where c is a character and I is an input stream.

De�nition 8.3.10 (Term and program states.) A running program is identi�ed by its

program state, which consists of an input stream, a heap and a term state:

(Terms States) P ::= M Current term

j P j hxi r Passive container

j � r:P Restriction

We usethe notation I : � : P to denote program states.

A term state is simply the current term under consideration, together wit h a number

of passive containers. A passive container hxi r represents a mutable variable named r ,

which holds a heap variable x. (We only store heap variables in these containers; the

actual contents are stored in the heap.) Restrictions convey the scoping information for

mutable variables. Notice that a program state contains enoughinformation to capture a

program in execution.

Remark 8.3.11 To reduce clutte r, we will generally skip the bits of the program state

that are not needed in the discussion, especially when we write our rules. That is, we

will use � : P, if the input stream is irrelevant, and similarly I : P, when the heap is

not needed. There is no chance of confusion, however, becausewe only usecapital Greek

letters for heaps and never skip the term state.

De�nition 8.3.12 (The functions bn and fn.) The function bn takesa heapand returns

all the variables bound in it , i.e., bn(�) = f x j x 7! M 2 � g. The function fn is de�n ed

for term states and heaps. Given a term state, fn retur ns the set of free variables in it . A

heap variable x is free if it is not in the scope of a �x binding. A mutable variable r is

free if it is not in the scope of a � r binding. For a heap �, fn(�) =
S

f fn(M ) j x 7! M 2

� g � bn(�) . We t reat fn as a variable-arit y function to simplify the notation: fn(A; B )

means fn(A) [ fn(B ), and similarly for more arguments.

De�nition 8.3.13 (Slice of a heap.) The slice of a heap �, with respect to a term

state P, writ ten � =P, is the subset of � that is reachable from the free namesof P. More

precisely, for a given � and P, let

S0 = fn(P)

Si +1 = Si [ (
[

f fn(M ) j x 2 Si ^ x 7! M 2 � g)
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and let S =
S

i 2 �

Si . Then,

� =P = f x 7! M j x 2 S ^ x 7! M 2 � g (8.1)

De�nition 8.3.14 (Closed program states.) A program state S : � : P is closed if

fn(�) = ; , and fn(P) � bn(�) . (Note that if the second condit ion is satis�ed, no mutable

variable in P can be free.)

De�nition 8.3.15 (Type of a program state.) Let S : � : P be a closedprogram state,

and let M be the term associated with P. We say that S : � : P has type � , and writ e

(S : � : P) :: � , when M has type � when typed in the heap � .

De�nition 8.3.16 (Terminal program state.) A program state S : � : P is terminal if

the term associated with P is terminal (De� niti on 8.3.5).

8.4 Semanti cs

We describe the semantics of our language in layers. The IO layer takes care of input -

output and managesmutable variables. The functional layer handlespure computat ions.

A �n al set of rules regulate the interaction between thesetwo layers.

Given a term, we needto be able to extract the part that is going to be executed next.

We usecontexts to guide this search:

De�nition 8.4.1 (Execution Contexts.) Execut ion context s are described by the fol-

lowing grammar:

(Execution Contexts) � ::= [�]
j � � = M

An executi on context is a term wit h onehole, where the hole itself is � lled with a term.

The notation � [M ] denotes the context � � lled with the term M . An empty context is

one where there are no � = 's, as captured by the �r st alternati ve. Otherwise, the context

is non-empty, i.e., it is someIO action followed by others.4 If the context is empty, the

term �lli ng the context might be pure.

8.4.1 IO layer

Figure8.1 givesthe transition rules for theIO layer. A rule isa (possiblylabeled) t ransition

from a program state to another. The label !̀c' indicates that the character c is printed

4Oth er authors use the term evaluation context for this concept [23]. We prefer the term executi on,
since a non-empty context can only be �lle d by an IO action which is going to be executed next.
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� [putChar c ] !c� ! � [return () ] (PUTC )

(c : I ) : � [getChar ] ?c� ! I : � [return c ] (GETC )

� [return N � = M ] � ! � [M N ] (LUNIT )

r =2 fn( � [newIORef M ]) ^ x =2 bn(�)
� : � [newIORef M ] � ! (� ; x 7! M ) : � r :( � [return r ] j hxi r )

(NEWIO )

� [readIORef r ] j hxi r � ! � [return x ] j hxi r (READIO )

y =2 bn(� )
� : � [writ eIORef r N ] j hxi r � ! (� ; y 7! N ) : � [return () ] j hyi r

(WRITEIO )

z =2 bn(�)
� : � [� xIO M ] � ! (� ; z 7! � ) : � [M z � = updatez ]

(FI XIO )

(� ; z 7! � ) : � [updatez M ] � ! (� ; z 7! M ) : � [return z ] (UPDATE )

Figure 8.1: Semant ics: IO layer

on standard output, and the one labeled `?c' indicates that the next character from the

input stream (which happens to be c) is consumed.5

To simpli fy the notation, we use a couple of conventi ons in writi ng our rules (which

are going to be formalized in Section 8.4.4). Rather than a verbal explanation, we wil l

consider several il lustrativ e examples:

Example 8.4.2 Consider the program state

" ab" : � : getChar � = putChar

for some heap �. The term state consists of the single term getChar � = putChar.

When we match this term to the context grammar given in De�n ition 8.4.1, we seethat

there are two possibil iti es. Either we can have the empty context, � lled with the term

getChar � = putChar, or the context [�] � = putChar, � lled wit h the term getChar. Upon

inspection of our rules, we seethat only the second has a chance of matching a rule,

namely GETC. Since the GETC rule requires the input stream to be of the form (c : I ),

5Note that this is the same conventio n as we have used for the executio n of fudgets in Section 4.8.
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we have to make sure that we have a non-empty stream. Because"ab" is not empty, the

GETC rule is applicable. Hence,we end up with the t ransition:

"ab" : � : getChar � = putChar ?a� ! " b" : � : return 'a' � = putChar

Note that the GETC rule doesnot make useof the heap, henceit is not even ment ioned.

The heap is simply carried acrossunchanged.

Example 8.4.3 Consider what happenswhen wecontinuetheprecedingexample. Again,

there are two possiblechoicesfor the context . The empty context, �lle d wit h the term

return 'a' � = putChar, or the context [�] � = putChar, �lle d with the term return ' a' .

Unlike the preceding case, however, the � rst choice matches the LUNIT rule, while the

second one does not match any. Sincethe LUNIT rule doesnot constrain the input st ream

or the heap in any way, it is applicable. Hence, we end up with the transitio n:

"b" : � : return 'a' � = putChar � ! "b" : � : putChar 'a'

Since PUTC rule does not make useof the input stream or the heap, it doesnot explicit ly

menti on them. They are both simply copied. It should now be obvious that the next

transiti on is:

" b" : � : putChar 'a' !a� ! "b " : � : return ()

and there are no more transiti ons from this state, as none of the rules match.

Example 8.4.4 Consider the program state I : � : newIORef 5 � = readIORef, for some

I and �. The only matching choice for the context is [�] � = readIORef, with the term

newIORef 5 �lli ng the hole. The NEWIO rule applies. To satisfy the preconditi on of this

rule, we have to pick variablesr and x such that r =2 fn(newIORef 5 � = readIORef ) and

x =2 bn(� ). We simply pick fresh variables to satisfy these requests. Let us call them r

and x for simplicity. We end up with the transitio n:

I : � : newIORef 5 � = readIORef

� ! I : (� ; x 7! 5) : � r :(return r � = readIORef j hxi r )

Example 8.4.5 We will continue with the previous example. Clearly, we want to apply

the LUNIT rule, but it is not clear how we get over the rest riction � r . If we look at

the LUNIT rule, we see that only a term in context is speci�ed (as in all rules except

READIO and WRITEIO ). The convention we adopt in this caseis the following: If a rule
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only ment ions a term in a context in the term state position, then we consider the term

associated with the current program state and try to match it. Any remaining restrict ions,

passive containers, etc., are copied along. In this case,we obtain:

I : (� ; x 7! 5) : � r:(return r � = readIORef j hxi r )

� ! I : (� ; x 7! 5) : � r:(readIORef r j hxi r )

Example 8.4.6 Final ly we show how to handle rules that have both a term in context

and a passive reference ment ioned in their left hand sides, namely the WRITEIO and

READIO rules. Cont inuing the previous example, we seethat the READIO rule needs

to be applied, which requires a term of the form readIORef r next to a passive container

namedr . In this case, our convent ion is the following: If a rule menti onsa term in context

next to a passive container, then a program state matches it if and only if we can show

that the term associated with it matches the term in context, and we are next to the

corresponding passive container. In our case,we get the following t ransition:

I : (� ; x 7! 5) : � r :(readIORef r j hxi r )

� ! I : (� ; x 7! 5) : � r :(return 5 j hxi r )

Remark 8.4.7 The careful reader must have noticed that it is not necessarily the case

that we will always have the required passive container positioned nicely. For example, if

we start with the program state

[ ] : fg : newIORef 0 � = � r. newIORef 1 � = � s. readIORef r

we will end up wit h:

[ ] : f x 7! 0; y 7! 1g : � r :(� s:(readIORef r j hyi s) j hxi r )

Clearly, we want to apply the READIOREF rule here as well. Al as, the rule does not

match. In these cases, we wil l need to use structur al rules, which provide means for

transforming the program state into an equivalent one such that there is an applicable

rule. Structur al rulesare covered in Section 8.4.4.

Somecomments about the FIXIO rule are in order. The function �xIO is modeled

after knot tying recursion semanti cs. We �r st create a new heap variable, called z, whose

value is not yet known. This is achieved by binding it to � . Then, we call the function and

passit the argument z, and proceed normally. If the evaluation of this function needs to
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know the value of z, the derivation will get stuck with a detected black hole. Otherwise,z

could be passed around, stored in data structures, etc.: Note that it is just a normal heap

variable. Once the function call completes, we update the heap variable z by the result ,

e�ectively tying the knot by an applicati on of the UPDATE rule. In summary, z holds

the value of the ent ire computation, which might in turn depend lazily on it s own value,

i.e., it is recursively de� ned.

Al though the rules of our IO layer are quite similar to thosegiven by Peyton Jones[67],

the following di�e rencesare worth ment ioning:

� We keep t rack of the input stream explicitly , rather than assuming that standard

input will be consulted whenever a getChar is executed,

� As in the natur al semantics of Launchbury [48], we keep track of a separate global

heap to store values of variables,

� Unlike Peyton Jones's semantics, our reference cells only store heap variables, rather

than arbitrary terms. This restriction is necessaryin order to model sharing implied

by lazy evaluati on.

8.4.2 Functional layer

Our rules for the functional layer, given in Figure 8.2, follow Launchbury's natur al seman-

ti cs for lazy evaluation closely [48]. Note that none of the rules in this layer menti on the

input stream, as it is irr elevant at this layer. Also, we use the notation +, rather than

� ! , for reductions. Compared to the IO layer, where we have a small step semantics, the

rules in the functional layer encode a big step natural semant ics.

� : V + � : V (VALU E )

� : M + � : �y :M 0 (� ; w 7! N ) : M 0[w=y] + � : V
� : M N + � : V

(APP )

(� ; x 7! � ) : M + (� ; x 7! � ) : V
(� ; x 7! M ) : x + (� ; x 7! V ) : V

(VAR )

(� ; x̂1 7! M̂ 1 � � � x̂n 7! M̂ n ) : N̂ + � : V
� : let x1 = M 1 � � � xn = M n in N + � : V

(LET )

� : M + � : ck ~xk � : M k [~xk=~yk ] + � : V
� : case M of f ci ~yi ! M i g + � : V

(CASE )

Figure 8.2: Semanti cs: Functional layer
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Comparedto Launchbury's natural semant ics [48], someminor di�erences worth men-

ti oning are:

� We introduce a new black hole binding,

� The APP rule is generalized to application of terms to terms, rather than terms to

just variables. Correspondingly, we do not need to perform the normalization pass,

� We perform renaming in the LET rule, rather than the VAR rule.

In the APP rule, we require w =2 bn(�) . In the LET rule, we renameall bound variables

x1 : : : xn to x̂1 : : : x̂n so that there wil l not be any name clashes in the heap when we do

the addit ions. Simil arly, the term M̂ i denotes the term M i , where each occurrence of x i

is replaced by x̂ i . (Simil arly for N̂ .) The VAR rule is not applicable if the variable being

looked up is bound to � in the heap. If this case ever occurs, the derivation will simply

terminate wit h failur e, corresponding to a detectable black hole.

We refrain from going into details of this layer, as such systems are rather well studied

in the literatur e. The interested reader is referred to Launchbury's original exposition [48],

and Sestoft' s work on abst ract machines basedon such systems [78].

8.4.3 Th e marriage

� : M + � : k
� : � [putChar M ] � ! � : � [putChar k ]

(PUTCEVAL )

� : M + � : r
� : � [readIORef M ] � ! � : � [readIORef r ]

(READIOEVAL )

� : M + � : r
� : � [writeIOR ef M N ] � ! � : � [writeIOR ef r N ]

(WRITEIO EVAL )

� : M + � : V
� : � [M ] � ! � : � [V ]

(FUN )

Figure 8.3: Semantics: Marriage of layers. All these rulesare subject to the side condit ion
that M is not a value.

Given separate semant ics for the IO and functional layers, we need to specify exactly

how they interact. There are two di�eren t kinds of interaction. First , whenever we try

to reduce a term of the form, say, putChar M, we � rst need to consult the functional

layer to reduce the term M to a character. The IO layer wil l then perform the output .

(Note that the PUTC rule of the IO-layer only applies when the argument to putChar is

a constant. ) We need similar rules for readIORef and writeIOR ef as well. The � rst thr ee
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s =2 fn(P)
� : � r:P � � [s=r ] : � s:P[s=r]

(ALP HA1 )

y =2 fn(� ; M ; P) ^ y =2 bn(�)
(� ; x 7! M ) : P � (� ; y 7! M )[x=y] : P[x=y]

(ALPHA 2)

x =2 bn(� ) ^ x =2 fn(� ; P)
� : P � (� ; x 7! M ) : P

(HEAPEXT )

P j Q � Q j P (COMM )
P j (Q j R) � (P j Q) j R (ASSOC)

� r:� s:P � � s:� r :P (SWAP )

r =2 fn(Q; � =Q)
� : (� r:P) j Q � � : � r:(P j Q)

(EXTRUDE )

Figure 8.4: Semantics: Structural rules, Part I

rules in Figure 8.3 take care of this interaction. The second kind of interaction allows

handling of applications, let and case expressions, and variable lookups. This interaction

is provided by embedding the functional world into the IO world, as modeled by the FUN

rule. In all theserules,M is assumed to be a non-value: The functional layer is consulted

to reduce M to a value.

8.4.4 St ructural rules

Finally, we need a set of structur al rules to shape our derivations. As discussedin Re-

mark 8.4.7, structural rules do not perform evaluation steps as do the other rules, but

they might be necessary in order to transform a program state to an equivalent one such

that one of the transitio n rules can apply.

The �rs t set of structural rules, presented in Figure 8.4, state that certain program

states are equivalent to others. As usual, we menti on input streams and heaps only

when they are relevant . The ALPHA rules state that heap and mutable variables can be

renamedat will, i.e., we do not dist inguish program states that di�e r only in the names

of variables. (Substit uti on on heaps is de�n ed as �[ x=y] = f z 7! M [x=y] j z 7! M 2 � g.)

Note that we do not need a side condit ion of the form s 62bn(�) in ALP HA1, since only

heap variablescan be bound in the heap.

The HEAPEXT rule states that we can add new bindings, as long as they do not

interfere wit h existing bindings. See Section 8.6 for an exampleuseof this rule.6 The rules

6We can also add a garbage collection rule to get rid of unreachable heap variables and passive con-
tai ners. We wil l avoid such a rule for the sake of brevit y, as it is not essentia l for our current purposes.
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P �� ! Q

� : P �� ! � : Q
(HEAPIN )

P �� ! Q

I : P �� ! I : Q
(STREAMIN )

P �� ! Q

P j R �� ! Q j R
(PAR )

P �� ! Q

� r:P �� ! � r :Q
(NU )

� : P � � : P0 � : P0 �� ! � : Q0 � : Q0 � � : Q

� : P �� ! � : Q
(EQUIV )

Figure 8.5: Semantics: Structur al rules, Part I I. The label � rangesover empty transitions
as well.

COMM, ASSOCand SWAP stateobvious equivalences. Finally EXTR UDE shows how we

can manipulate the scoping of referencevariables. The side conditi on in the EXTRUDE

rule guaranteesthat no dangling referenceswill becreated. (SeeExample 8.5.4 for details.)

The second set of structural rules,presented in Figure 8.5, formalize our conventi onsin

applying the rules. The �rs t four rulessimply state that wecan concentrat eon the relevant

bits of the derivation and add the extra bits later on. And �n ally, EQUIV states that we

only need to consider program states up to equivalencewhen performing t ransitions.

Example 8.4.8 We will reconsider the examplediscussed in Remark 8.4.7. Recall that

we had the program state:

[ ] : f x 7! 0; y 7! 1g : � r :(� s:(readIORef r j hyi s) j hxi r )

By applying EXTRUDE, ASSOC, COMM, ASSOC and READIOREF rules (and by ap-

propriat e applications of the rules in Figure 8.5 to enable them), we get:

� [ ] : f x 7! 0; y 7! 1g : � r:(� s:((readIORef r j hyi s) j hxi r ))

� [ ] : f x 7! 0; y 7! 1g : � r:(� s:((readIORef r j hxi r ) j hyi s))

� ! [ ] : f x 7! 0; y 7! 1g : � r:(� s:((return x j hxi r ) j hyi s))

There are no matching rules for the resulting program state. We can apply structur al

rules again, but none wil l give us a program state where a non-structural rule can apply.

Remark 8.4.9 One can extend � to an equivalence relation on program states,simply

by adding rules to make it re
exiv e and transitiv e. However, the current de�n ition of �

given in Figure 8.4 is simply too crude to be useful for this purpose. Intuitiv ely, we want to
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be able to identify program statesif their \o bservable behavior" are the same[27, 57, 71].

We leave the exploration of this idea for futu re work.

8.4.5 M eaning of program stat es

The meaning of a closedprogram state is its derivation:

De�nition 8.4.10 (Derivations.) Let I : � : P be a closed program state. The

derivation for I : � : P is a sequence of labeled t ransitions, where at each step a rule is

applied. Structural rulescan be applied at any time, as longasthey t rigger the application

of a non-structur al rule. The derivation cont inuesuntil there are no applicable rules.

Simple inspection of our rules reveals that we have a deterministi c systemmodulo the

structur al rules. That is, given a program state there is at most one non-structur al rule

that can apply to it.

De�nition 8.4.11 (E� ect of a derivation.) The e�ect of a derivation is the concatena-

ti on of its t ransition labels. Empty t ransitions do not contrib ute to the e�ect.

The e�ect of a program state is simply a (possibly in� nite) li st , where each element is

of the form `?c' or !̀c' for somecharacter c.

Notat ion 8.4.12 As usual, � ! � is the re
exiv et ransitiv eclosureof � ! . Wewill shorten

multi ple steps of derivations using the notation I : � : P �� ! � I 0 : � 0 : P0.

De�nition 8.4.13 (Divergent and normal program states.) A closed program state

I : � : P is called divergent if the derivation starting from I : � : P either

� conti nues inde�n itely (i .e., we never run out of non-structural rules to apply) ,

� or, gets stuck in a non-terminal program state (De�n it ion 8.3.16) where no non-

structur al rule applies.

Otherwise, I : � : P is called normal.

Example 8.4.14 It is easy to comeup with divergent terms. For instance, onecan show

that the derivation for:

I : � : let loop = putChar 'a' � loop in loop (8.2)
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diverges,since we never run out of rules to apply. However, the derivation for:

I : � : let x = x in x (8.3)

will divergeby gett ing stuck. The FUN rule will never � re, becausethere are no reductions

for this term in the functional layer. (Notice that the �r st application of the VAR rule

will result in I : (� ; x 7! � ) : x, but no other rule will apply since the VAR rule is only

applicable when the binding is not a black hole.) Similarly, a derivation can get stuck via

the use of the FIX IO rule (which int roduces a black hole binding in the heap). A �n al

possibility is the application of the GETC rule when the input stream is empty.

Lemma 8.4.15 (Derivations for normal program states.) Let I : � : P be a normal

program state. The derivation start ing at this state wil l take the form

I : � : P �� ! � I 0 : � : Q

where I 0 is a su�x of I . Furthermore, Q can be transformed using only the structur al

rules to the form � ~r :(N j C), where N is a terminal value (De�n it ion 8.3.5), and C is a

number (possibly zero) of parallel passive containers. The restrictions encoded by ~r cover

all passive containers in C.

Pr oof (Sketch.) By de� nitio n 8.4.13, our proof obligati on reducesto establishing that

Q can be transformed into the required � ~r :(N j C) form. By inspection of the structur al

rules, we see that the rule EXTR UDE can be repeatedly used to move restrict ions to the

top, obtaining the required form. (ALP HA rules can be usedto resolve naming con
ic ts,

if any.) To see the correspondence between restrictions and the passive containers, just

noticethat they are introducedtogether by NEWIO , they are never removed, and all rules

respect the scoping of � bindings. �

Observ ation 8.4.16 Note that derivations apply to both pure and IO terms. A deriva-

ti on either diverges, or ends up with an abstraction or a saturated constructor application

for a pure term, or wit h a term of the form return M for an IO term.

Pr oposition 8.4.17 (Derivations for IO terms in contexts.) Let I : � : � ~r :( � [M ] j C)

be a closedprogram state, where M is an IO term. The derivation start ing at this state

will either diverge, or take the form:

I : � : � ~r :( � [M ] j C) �� ! � I 0 : � : � ~r 0:( � [return N ] j C0)
�

� ! � I 00: � : � ~r 00:(return O j C00)

where I 0 is a su�x of I , and I 00is a su�x of I 0.
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Pr oof By inspection of our rules, we see that if the derivation for � : � ~r :( � [M ] j C)

terminates, then so must the derivation for � : � ~r :(M j C). Hence, by the previous

lemma, it must do so in the required intermediate form. The form of the � nal state is

again guaranteed by the previous lemma. �

To be able to talk about strictness(Equation 2.1), we need to say what ? means for

the type I O � :

De�nition 8.4.18 (Silent derivations.) A derivation is silent if its e�ect is empty.

De�nition 8.4.19 (Bottoms of IO. ) A closed program state (I : � : M ) :: I O � is a

bottom element (? ) for the type I O � , i� the derivation for I : � : M silent ly diverges.

Example 8.4.20 It is easy to seethat Program State 8.2 is not a ? of IO, but Program

State 8.3 is. While they both diverge, the former is not silent.

De�nition 8.4.21 (Strict functions.) Let � be a heap and M be a term such that the

program state ([ ] : � : M ) :: � ! I O � is closed. M is strict , if, for all I and � � � =M ,

x =2 bn(�) , the derivation for

I : (� ; x 7! � ) : M x

is silent ly divergent.

8.5 Example s

We revisit the examplesgiven in Section 8.2, and show how our semant ics can handle

them. In these examples, we will use the letters a; b;: : : to represent heap variables as

well. To save space, we wil l apply the structural rules silently .

Example 8.5.1 We wil l revisit Example 8.2.1. We � rst remove the do notati on in favor

of explicit � ='s:

�x IO (� cs. getChar � = � c. return (c : cs))

To reduce clutt er, we will not write the input stream explicitl y. We have:

fg : �x IO (� cs. getChar � = � c. return (c : cs))

� ! � (FIXIO - FUN)

f z 7! � ; a 7! zg : getChar � = � c. return (c : a) � = updatez
?ch� ! (GETC { assume input stream has ch in front)
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f z 7! � ; a 7! zg : return ch � = � c. return (c : a) � = updatez

� ! � (LUN IT - FUN)

f z 7! � ; a 7! z; b 7! chg : return (b : a) � = updatez

� ! (LUNIT)

f z 7! � ; a 7! z; b 7! chg : updatez (b:a)

� ! (UPDATE)

f z 7! b : a; a 7! z; b 7! chg : return z

Thederivation terminateswit h a terminal program stateat this point . Hencethe initia l

program state is normal. The �n al heap contains the cyclic structur e that represents the

in� nite list of ch's: The character that was read by getChar. In case elements of this

list are demanded in a context, the usual demand-driven rules modeled by our semanti cs

would let us produceenough elements to satisfy the need. If the input stream is empty to

start with, the derivation will simply block at the point where the GETC rule is applied,

and wait forever, i.e., the derivation will divergeby gett ing stuck.

Example 8.5.2 Showing that Example 8.2.2 diverges is fair ly easy. We have:

fg : �x IO (� c. putChar c � = � d. return 'a')

� ! � (FIXIO - FUN)

f z 7! � ; a 7! zg : putChar a � � d. return 'a'

And now, weneedto apply thePUTCEVAL rule to reducethevariablea to a character.

The functional layer � rst reducesa to z using the VAR rule, but gets stuck at that point ,

as z is bound to � in the heap and the VAR rule doesnot apply anymore.

Example 8.5.3 Wenow reconsider Example 8.2.3, which involvesreferencecells. Again,

removing do-notation and simpli fying the patterns, we get:

� xIO (� t. newIORef (fst t ) � = � y.

return (1 : fst t ; y))

� = � u. readIORef (snd u)

Since there are no calls to getChar, the input st ream doesnot matt er. That is, we wil l

simply copy the sameinput stream through all transiti ons in our derivation. Therefore,

we simply do not write it explicit ly in what follows.
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We will � rst consider the �xIO call. To save space, we will abbreviate newIORef to

new and readIORef to read:

fg : �x IO (� t. new (fst t ) � = � y.return (1 : fst t ; y))

� ! � (FIXIO - FUN)

f z 7! � ; a 7! zg : new (fst a) � = � y. return (1 : fst a; y) � = updatez

� ! (NEW IO)

f z 7! � ; a 7! z; b 7! fst ag :

� r :(return r � = � y.return (1 : fst a; y) � = updatez j hbi r )

� ! � (LUN IT - FUN)

f z 7! � ; a 7! z; b 7! fst a; c 7! r g :

� r :(return (1 : fst a; c) � = updatez j hbi r )

� ! � (LUN IT - UPDATE)

f z 7! (1 : fst a; c); a 7! z; b 7! fst a; c 7! r g : � r :(return z j hbi r )

When we consider the original expression, it is not hard to seethat we will have:

� ! (LUNIT - FUN)

f z 7! (1 : fst a; c) ; a 7! z; b 7! fst a; c 7! r; d 7! zg :

� r :(read (snd d) j hbi r )

� ! (READIOEV AL)

f z 7! (e; f ); a 7! z; b 7! fst a; c 7! r; d 7! (e; f ); e 7! 1 : fst a; f 7! r g :

� r :(read r j hbi r )

� ! (READIOREF)

f z 7! (e; f ); a 7! z; b 7! fst a; c 7! r; d 7! (e; f ); e 7! 1 : fst a; f 7! r g :

� r :(return b j hbi r )

Now, if we chase the value of b in the heap, we seethat we wil l end up wit h a cyclic

structur e e�ec tiv ely representing the in� nite lists of 1's, as intended. The most interest ing

step in this derivation is the application of the READIOEVAL rule. The function snd is

a short hand for case over the pairing constructor. The VAR rule in the functional layer

arrangesfor sharing, resulting in an abundance of variables in the resulti ng heap. Notice

that , abusing the notation slightly , in the above derivation (1 : fst a; c) refers to a function

application: the pairing constructor applied to the terms 1 : fst and c. In the last two



117

lines, however, (e; f ) is a value, i.e., in this case, the pairin g constructor applied to the

right number of arguments.

Example 8.5.4 This example demonst rates the importance of the side conditio n of the

EXTRUDE rule. Consider:

do j  new 5
k  new j
l  read k
read l

By removing the do-notat ion, we get:

new 5 � = new � = read � = read

We will try to give a derivation for this expression, ignoring the side conditio n of the

EXTRUDE rule. Again the input stream is irrelevant, and hence ignored:

fg : new 5 � = new � = read � = read

� ! (NEW IOREF)

f x 7! 5g : � j :(return j � = new � = read � = read j hxi j )

� ! � (LUN IT-N EWIOREF)

f x 7! 5; y 7! j g : � j: (� k:(return k � = read � = read j hyi k) j hxi j )

� ! (COMM)

f x 7! 5; y 7! j g : � j: (hxi j j � k:(return k � = read � = read j hyi k ))

� ! (EXTR UDE { incorrect application)

f x 7! 5; y 7! j g : � j: (hxi j ) j � k:(return k � = read � = read j hyi k)

� ! � (LUN IT - READ - LUNIT)

f x 7! 5; y 7! j g : � j: (hxi j ) j � k:(read y j hyi k )

� ! (READIOEV AL)

f x 7! 5; y 7! j g : � j: (hxi j ) j � k:(read j j hyi k )

And now we are stuck! The mutable variable j is not visible at this point . Since we

were not careful in applying the extru de rule, we have created a dangling reference. Let

us construct the slice when the rule is applied:

S0 = f yg; S1 = f y; j g; S2 = S1 = S1

By Equation 8.1, the slice is: f y 7! j g. Since j 2 fn(f y 7! j g), EXTR UDE is not

applicable. The side conditi on prevents the creation of the dangling reference.
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8.6 Prop erti es of �xIO

Equipped with the semantics we have presented so far, we are now in a position to look

at the propert ies of �xIO .

Strictness. Consider Equation 2.1, and let � be a heap where f is properly bound.

Assuming f is strict (De�n it ion 8.4.21), we will have:

I : � : �xIO f � ! I : (� ; z 7! � ) : f z � = updatez

by a single application of theFI XIO rule. Thecurrent context speci�es that the application

f z should be evaluated. By De�n it ion 8.4.21, the derivation wil l silentl y diverge. But

then, by De�n ition 8.4.19, this divergence implies that �xIO f is ? .

Example 8.6.1 Using if as a shorth and for case over the boolean type, consider:

I : fg : �x IO (� x. if x == 0 then return 1 else return 2)

� ! (FIXIO - FUN)

I : f z 7! � ; a 7! zg : if a = 0 then return 1 else return 2 � = updatez

... detected black hole ...

In the last step, the FUN rule is not applicablebecausethere are no reductions for the

current term in the functional layer.

Example 8.6.2 Consider the following non-st rict function:

� x. return x :: Char ! IO Char

Notice that it returns a computation successfully. Of course, if the result of the �xed-

point computation is used, it will st ill diverge, but for a di�eren t reason:

I : fg : �x IO (� x. return x) � = putChar

� ! (FIXIO - FUN)

I : f z 7! � ; a 7! zg : return a � = updatez � = putChar

� ! (LUNIT - UPDATE - LUNIT )

I : f z 7! a; a 7! zg : putChar z

... detected black hole ...

The last step diverges,becausethe VAR rule will get stuck tr ying to reducez to a character.
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Example 8.6.3 Consider the function:

� a. putChar 'q' � if a = = 1 t hen return 1 else return 2

which is not strict according to our semanti cs. Here is the derivation for it:

I : fg : �x IO (� a. putChar 'q' � if a = = 1 then return 1 else return 2)

� ! � (FIXIO - FUN)

I : f z 7! � ; a 7! zg :

putChar 'q' � if a == 1 then return 1 else return 2 � = updatez
!q

� ! (PUTC )

I : f z 7! � ; a 7! zg : if a = = 1 t hen return 1 else return 2 � = updatez

... detected black hole ...

Before getting stuck, we see the character q printed, which is the correct behavior.

Pu rit y. Consider Equation 2.2, where we wil l use a let expression to capture �x :

�xIO (return � h) = return (let a = h a in a)

Assume � is a heap such that ([ ] : � : h) :: � ! � . On the left hand side, we have:

I : � : �x IO (return � h)

� ! � (FIXIO - FUN)

I : (� ; z 7! � ; a 7! z) : (return � h) a � = updatez

� ! (LUNIT)

I : (� ; z 7! � ; a 7! z) : updatez (h a)

� ! (UPDATE)

I : (� ; z 7! h a; a 7! z) : return z

Considering the right -hand-side,we immediately get: I : � : return (let a = h a in a).

We should now prove that thesetwo program statesare equivalent , i.e., that the rules

in our systemcannot tell them apart . Such an argument would requirea notion of program

state equivalencethat is more general than what our structural rulesprovide. Intuitiv ely,

the program statesabove will be considered equivalent if we can show that

I : (� ; z 7! h a; a 7! z) : z � I : � : let a = h a in a

Note that the second program state reduces to I : (� ; z 7! h z) : z. Hence, the equiva-

lence is clear provided we adopt a compaction rule that gets rid of the indirection via a in
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the �r st heap. To formalize this argument , we need a precisede�n ition of program state

equivalenceand a proof system for showing when two program states are the same. We

leave the development of a such a system for future work.

Left shrinking. Consider Equation 2.3, where we will refer to the computation a as q

to avoid confusion with heap variables. For the left hand side we get:

I : � : �x IO (� x. q � = � y. f x y)

� ! � (FIXIO - FUN)

I : (� ; z 7! � ; a 7! z) : q � = � y. f a y � = updatez

On the right hand side, we have I : � : q � = � y. �xIO (� x. f x y). Now, if the

derivation for q diverges, both derivations wil l diverge in the exact same way, that is both

sidesare equivalent. Otherwise, by Lemma 8.4.15, we will have:

I : � : q �� ! I 0 : � : � ~r :(return qv j C)

The C on the right hand side captures the passive containers that might be introduced

in the derivation for q, along with the associated restrictions � ~r . Since these containers

will get copied in exactly the same way, we do not show them explicitly in the following

discussion. Using the HEAPEXT and EXTR UDE rulessilently , the left hand side yields:

I : (� ; z 7! � ; a 7! z) : q � = � y. f a y � = updatez
�� ! � (ASSUMPTION)

I 0 : (� ; z 7! � ; a 7! z) : return qv � = � y. f a y � = updatez

� ! � (LUN IT, FUN)

I 0 : (� ; z 7! � ; a 7! z; b 7! qv) : f a b � = updatez

Let us look at the right hand side:

I : � : q � = � y. �xIO (� x. f x y)
�� ! � (ASSUMPTION - LUNIT )

I 0 : (� ; b 7! qv) : �xIO (� x. f x b)

� ! � (FIXIO - FUN)

I 0 : (� ; b 7! qv; z 7! � ; a 7! z) : f a b � = updatez

Hence, the left shrinking property holds for �xIO . We conclude that , with respect to our

semant ics, �xIO is a legitimate value recursion operator for the IO monad.
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Other properties. As pointed out in Corollary 3.1.7, neither strong sliding nor right

shrinkin g propert ies hold for Haskell's IO monad. Both of them fail wit h respect to the

semant ics we have given in this chapter aswell. (Application of our rulesto functionsused

in Propositions 3.1.5 and 3.1.6 su�ces to show the failur e in both cases.) We believe that

sliding and nesting propertiesshould hold, both for Haskell's IO monad and our semantics.

We leave the constructi on of proofs for thesepropert ies for futur e work.

8.7 Summary

In this chapter, we have described an operational semantics for a non-strict functional

language extended wit h monadic IO, references, and value recursion, improving on our

earlier work [20]. Our cont ributions are: (i) we show how a purely functional language

and its semanti cs can be embedded into a language wit h monadic I/O primitiv es and

references, (i i) we model sharing explicitly at all levels, giving an account of call by need

in both the functional and the IO layers, and (iii ) we provide a semanti cs for �xIO and

show that it is a value recursion operator.

Our work can be extended in several ways. Addit ion of threads and synchronized

variables seemsto be fairly easy[67]. The di� culty, however, lies in adding support for

asynchronousexcept ions [56]. Although except ions can be modeled nicely in the IO layer,

we currently do not see a complementary way of capturing them in the functional layer

using our method.

More work is needed in formalizing our arguments. Of the highest importance is the

development of a notion of program equivalence, and tools for reasoning about program

states which may contain symbolic terms. In this direction, program equivalence based

on observational behavior seemsto be the right framework [27, 61].

One important issue we have side-stepped in this chapter is that of parametricity. How

do we know that the constants of our language (i.e., return, � =, �xIO , newIORef, etc.)

are parametric? To talk about parametricit y, we � rst need to de�n e what it means for

two program states to be related. Our earlier attempts at stating and establishing para-

metricit y failed, mainly due to the lack of an appropriate notion of program equivalence.

Pitt s's work on observati onal equivalence and parametric polymorphism [71] can be used

as a basis for such a work, although it is not immediately clear how to accommodate for

references and input/ output operations. Simil arly, Launchbury and Peyton Jonesdiscuss

parametricit y of constants for manipulat ing referencesin the context of the state monad

of Haskell [52], but their results are not directly applicable in our framework due to dif-

ferences in the notion of reference variables, handling of the heap, and the additional

complexit y int roduced by input/ output.
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Examples

In this chapter, we wil l consider a number of practical programming examples, ill ustrat ing

the useof value recursion operators and the mdo-notation.1

Synopsis. Starti ng with the famousrepmin problem, weconsiderapplications in sort ing

networks, screen layout in GUI's, interpreters, cyclic graphs, and the implementation of

logical variables.

9.1 The repmi n proble m

The repmin problem is concerned with the replacement of all the numbers in a binary t ree

by their minimum. The challengeis to do so in a single pass[6, 16]. In 1984, Richard Bird

deviseda beaut iful solution to this problem, exploiti ng lazinessand cyclic de� niti ons:

data Tree � = L � j B (Tree � ) (Tree � ) deriving Show

copy :: Tree Int ! Int ! (Tree Int ; In t )

copy (L a) m = (L m; a)

copy (B l r ) m = let (l 0; ml ) = copy l m

(r 0; mr ) = copy r m

in (B l 0 r 0; ml `min ` mr )

repmin :: Tree In t ! Tree Int

repmin t = let (t 0; m) = copy t m in t 0

Here's an example run:

Main> repmin (B ( L 11) ( B (L 2) (L 3)))
B (L 2) (B (L 2) (L 2))

1Before proceeding with the examples in this chapter, the reader may want to review our motiv ating
circuit modeling example, covered in Sections 1.2 and 7.1.

122
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Thesingle passsolutio n isachievedby the clever useof recursion in the let-expression of

the function repmin. By virtue of the recursive binding, the function copy simult aneously

computes and replacesall the leaves with m, the minimum value in the tree.

Benton and Hyland take the problem one step further [5]. What if we also want

to perform an e�ect, such as printi ng the values stored in the nodes during this single

traversal as well? It is easy to modify copy to achieve this e�ec t:

copyPrint :: Tree Int ! Int ! IO (Tree Int ; Int )

copyPrint (L a) m = do print a

return (L m; a)

copyPrint (B l r ) m = do (l 0; ml )  copyPrint l m

(r 0; mr )  copyPrint r m

return (B l 0 r 0; ml `min ` mr )

But, it is not clear at all how to modify repmin accordingly. Obviously, the attempt:

copyPrint t m � = � (t 0; m). return t 0

is 
a wed, since m is no longer recursively bound! We need to tie the recursive knot with

an appropriate value recursion operator. In this partic ular case,the appropriate operator

is the one for the IO monad, i.e., �xIO of Chapter 8:

repminPrint :: Tree Int ! IO (Tree Int )

repminPrint t = �xI O (� ~(t 0; m). copyPrint t m)

� = � (t 0; m). return t 0

Or, using the mdo-notation:

repminPrint :: Tree In t ! IO (Tree Int )

repminPrint t = mdo (t 0; m)  copyPrint t m

return t 0

hiding the explicit call to �xIO , considerably improving readabilit y.

Note that we can accommodate arbitrary e�ects during the traversal of the original

tree, as long as the underlying monad comes equipped with a value recursion operator.

To ill ustrate, consider the following variation of the repmin problem, demonstrating the

use of value recursion for the list monad (Section 4.3). Consider the data type:

dat a Exp = C Int j A Exp Exp

representing simple arithmeti c expressions formed out of integer constants and addit ions.

The problem is to �n d all possiblepair-swaps of a given expression.A swapping is de�n ed
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to be the exchange of any two constants, not necessarily distinct .2 Solving the swap-

pings problem is not a terribly hard task. Here, we present a part icularly neat solut ion,

il lustrating the useof value recursion for the list monad:

replace :: Int ! Exp ! [(Exp;Int )]

replace x (C y) = [(C x; y)]

replace x (A l r ) = [(A l 0 r ; y) j (l 0; y)  replace x l ]

++ [(A l r 0; y) j (r 0; y)  replace x r ]

pairSwaps :: Exp ! [Exp]

pairSwaps e = mdo (e0; m)  replace n e

(e00; n)  replace m e0

return e00

The call replace x e creates copies of e, where each copy has one of its constants

replaced by x. Each replaced constant is returned along wit h the corresponding copy. (If

there are n constants in e, the call to replace will retur n n copies.) For instance:

replace 1 2 =) [(1; 2)]

replace 1 (2 + 3) =) [(1 + 3; 2); (2 + 1; 3)]

The function pairSwaps makes two successive calls to replace, thr eading the input

expression thr ough. The �rs t call replaceseach constant wit h n (yet to be computed),

determining the respectiv e values for m. The second call completes the swapping by

substit ut ing m's, and by computing the values of n neededin the �rs t call. Each pairing

of m and n corresponds to a possible swapping. The cyclic dependencebetween m and n

achieves the required swapping quit e neatly .

Here is an example run for the input (1+ 2)+ 3, using appropriate functions for parsing

and printi ng:

Main> disp lay (pa irSw aps (parse "(1 + 2) + 3") )
[( 1 + 2) + 3, (2 + 1) + 3, ( 3 + 2) + 1,
( 2 + 1) + 3, (1 + 2) + 3, ( 1 + 3) + 2,
( 3 + 2) + 1, (1 + 3) + 2, ( 1 + 2) + 3]

The value recursion operator used implicit ly in the de� niti on of pairSwaps is the one

given by Equati on 4.4. Recall that we have consideredan in� nite family candidate oper-

ators for the list monad in Section 4.3 (see Equation 4.13). We have argued that these

2For instance, the only possible swapping of 1 is 1, while that of 1 + 2 are 1 + 2, 2 + 1, 2 + 1, and 1 + 2.
The two 2 + 1's are considered di� erent, corresponding to the swappings of 1{2 and 2{ 1. It is easy to see
that an expression with n constants will have n2 swappings, one for each pair of constants.
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candidates behave strangely, violating the mandatory left shrinking property. We take

this opportu nit y to show that they yield weird results for the swapping problem as well.

For instance, the useof m�x 1 yields:

Main> disp lay (pa irSw aps1 (p arse "( 1 + 2) + 3" ))
[( 1 + 2) + 3, (2 + 1) + 3, ( 2 + 2) + 1,
( 2 + 2) + 3, (1 + 2) + 3, ( 1 + 2) + 2,
( 3 + 2) + 2, (1 + 3) + 2, ( 1 + 2) + 3]

producing ill egal swappings such as (2 + 2) + 1. The failure of the left-shrinking property

causes unwanted interferencewhen the constants are paired.3

9.2 Sort ing networks and screen layout in GU I's

A sort ing network is a collection of comparators, connected in such a way that the output

of thenetwork isalways the sortedpermutation of it s input [15]. For instance, thefollowing

network can sort four numbers:

e

f

i

h j

a 

b

c

 d

 k                        l            m     n

2

1

g

3

 4  5

For each comparator, the wire to it s right carries the maximum of it s inputs, while the

lower one carries the minimum. In this particular example, a;b;c, and d are the inputs,

while k; l ; m, and n are the outputs.

How can we implement a sorting network so that we not only get the valuessorted, but

also a transcript of the operations performed during sort ing? We want each comparator

unit to report on the operation it performed while sorting took place. The output monad

3 In certain cases,the operat ion of the value recursion operator for the li st monad can be understood in
terms of the usual translation rules for list-comprehensions [89], using symbolic substitutio n for variables
that occur recursively [18, Sections 1 and 6.3]. The details, although not terribly important, might be
enjoyable for the curious reader, providing somemore insight about the behavior of m�x for the li st monad.
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(Section 4.5) springs to mind. We can t ranslate the sort ing network above almost li terally

into the following Haskell code:

new t yp e Out � = Out (�; String)

insta nce Monad Out where
return x = Out (x; \ " )
Out ~(x; s) � = f = let Out (y; s0) = f x in Out (y; s ++ s0)

insta nce Show � ) Show (Out � ) where
show (Out (v; s)) = show v ++ s

comp :: Int ! (Int ; Int ) ! Out (Int ; Int )
comp i (a; b) = Out ((a `max` b; a `min ` b); \ nnUnit " ++ show i ++ msg)

where msg = (if a < b then \ : swap: " else \ : pass: " ) ++ show (a; b)

sort4 :: (Int ; Int ; Int ; Int ) ! Out (Int ; Int ; Int ; Int )
sort4 (a; b; c; d) = do (e; f )  comp 1 (a; b) -- unit 1

(g; h)  comp 2 (c; d) -- unit 2
(n; i )  comp 3 (e; g) -- unit 3
(j ; k)  comp 4 (f ; h) -- unit 4
(m; l )  comp 5 (i ; j ) -- unit 5
return (k; l ; m; n)

Here is a samplerun:

Main> sort 4 ( 23, 12, -1, 2)
(- 1,2, 12,2 3)
Unit 1: pass: (23 ,12)
Unit 2: swap: (-1 ,2)
Unit 3: pass: (23 ,2)
Unit 4: pass: (12 ,-1)
Unit 5: swap: (2, 12)

What happensif we want to observe the output in somedi�e rent order? For instance,

we might want to seethe output of the third unit after the �f th. Intuit ively, it must be

su�c ient to move the third line after the �f th in the de�n it ion of sort4, obtaining:

sort4 (a; b; c; d) = do (e; f )  comp 1 (a; b) -- unit 1
(g; h)  comp 2 (c; d) -- unit 2
(j ; k)  comp 4 (f ; h) -- unit 4
(m; l )  comp 5 (i ; j ) -- unit 5
(n; i )  comp 3 (e; g) -- unit 3
return (k; l ; m; n)
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Al as,this modi� cation is il legal: Thevariable i is unbound whenused in the fourth line.

Luckil y, value recursion �ts the bill. All we need to say is that the variable i usedby the

5th unit is the one that is de� ned by the 3rd, which can be handled by an mdo-expression.

As we have seenin Section 4.5, the corresponding m� x is given by:

insta nce MonadFix Out where

m�x f = let Out (a; s) = f a in Out (a; s)

Wi th this declarat ion and the use of the keyword mdo , sort4 will work as expected,

delivering the output of the third unit after that of the �fth.

A similar phenomenonoccurs in GUI basedprogramming, where the order of monadic

actions implicitly determines the screen layout. To ill ustrate, consider the following simple

example, taken from Thiemann's work on a CGI libr ary for Haskell [85]:

do f1  inputField (�el dSize 10)

f2  inputField (�el dSize 10)

submitButton (someAction f1 f2 )

The corresponding GUI wil l have two input �elds side by side, followed by a submit

butt on. What happens if we want to place the submit but ton to the left of the input

�elds? Since the ordering of the statements in the do-expressiondetermines the position

of the GUI elements, we would like to move the call to submitButton to the �rs t line,

textuall y preceding the calls to inputF ield. As Thiemann also points out, such a move

would require the useof an mdo-expression,sincethe variablesf1 and f2 wil l no longer be

visible when usedas arguments to someAction.

9.3 In t erprete rs

Supposeyou are designing an interpreter for a language that has let-bind ings for int ro-

ducing local bindings. Operationally, the expression let v = e in b denotes the same

expression as b, where e is substituted for all free occurrences of the variable v. The

abstract syntax of your language might include:

data Exp = ... j Let Var Exp Exp

Assuming the language is applicative, the natur al choice for implementation would be

the environment monad (Section 4.6). In this setting, the section of the interpreter that

handles the let-expressions might look like:

eval (Let v e b) = do ev  eval e

inExtendedEnv (v; ev) (eval b)
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where inExtendedEnv simply extends the environment with the binding v 7! ev before

passing it on. This approach yields a satisfactory implementation.

Note that, our eval function cannot deal wit h recursive bindings, i.e., in the expression

Let v e b; v is not visible in e. What happens if we li ft this restriction? All we need

is a way to extend the environment with the binding v 7! ev in the call to eval e;

before we actuall y know what ev is. The following mdo-expression expresses the required

dependency:

eval (Let v e b) = mdo ev  inExtendedEnv (v; ev) (eval e)

inExtendedEnv (v; ev) (eval b)

In contrast, consider how we might solve this problem without using value recursion.

Assuming Val denotes the data type for the values our language can process, and the

following declarati on of environments:

data Env � = Env ([(Var ; Val)] ! � )

we are forced to implement recursive let-expressions as follows:

eval (Let v e b) = Env (� env. let Env f = eval e
ev = f ((v; ev) :env)
Env g = eval b

in g ((v; ev) :env))

Al though it will perform the required task, this soluti on is hardly satisfactory. First

of all, we had to reveal how environments are actually implemented, defeati ng the whole

point of the monadic abstraction. As a result , our code will only work wit h that partic -

ular implementation; switching to a di�eren t representation will require changes in the

interpreter. The code is no longer easy to understand or maintain.

On the other hand, our �r st implementat ion using the mdo-notat ion is quite simple to

understand, concise, and not ti ed to any part icular representati on of environments.

9.4 Do ubly l ink ed circu lar li sts wit h mut able nodes

Consider a simple implementation of doubly linked circular lists in Haskell. For this

example, we will store a mutable boolean 
ag at each node, a True value indicating that

the node is already visit ed in a particular traversal. We use the internal state monad to

gain access to mutable variables [52]. The nodes in our circular li sts have the following

structur e:

newt ype Node s � = N (STRef s Bool; Node s �; �; Node s � )
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consisting of the mutable 
 ag, the pointer to the previous node, the data item, and the

pointer to the next node. Given two nodesb and f , a new node in between is created by

the following function:

newNode :: Node s � ! � ! Node s � ! ST s (Node s � )

newNode b c f = do v  newSTRef False

return (N (v; b; c; f ))

Here is a simple example of a circular list, and its rendering in Haskell using the

function newNode. Note that the useof the mdo-expression is essent ial in expressing the

cyclic structur e:4

ll

1 2 30

l l :: ST s (Node s Int )

l l = mdo n0  newNode n3 0 n1

n1  newNode n0 1 n2

n2  newNode n1 2 n3

n3  newNode n2 3 n0

return n0

Traversing a given doubly linked list simply amounts to following the links unt il we

reach a node that has been visited before:

data Direction = Forward j Backward deriv ing Eq

traverse :: Direction ! Node s � ! ST s [� ]

traverse dir (N (v; b; i ; f )) =

do visit ed  readSTRef v

if visited

t hen return [ ]

else do writeSTRef v True

let n = if dir == Forward then f else b

is  traverse dir n

return (i :is)

Here's a sample run:

4A more traditio nal technique would rely on creating dummy init ial li nk values for at least one of the
nodes, and expli citly overwri t ing them when the rest of the structure is created. This \c lunky" approach
is often seenin the formatio n of cyclic objects in imperative languages,such as Java. Perhaps an mdo-lik e
construct could help there also.
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Main> runST ( ll >>= t rav erse Forward)
[0 ,1,2 ,3]
Main> runST ( ll >>= t rav erse Backward)
[0 ,3,2 ,1]

The inversefunction that takesa non-empty list and constructs a doubly linkedcircular

li st out of it s elements furth er illustrat esthe useof value recursion:

encircle :: [� ] ! ST s (Node s � )

encircle (x:xs) = mdo c  newNode l x f

(f ; l )  encircle0 c xs

return c

encircle0 :: Node s � ! [� ] ! ST s (Node s �; Node s � )

encircle0 p [ ] = return (p; p)

encircle0 p (x:xs) = mdo c  newNode p x f

(f ; l )  encircle0 c xs

return (c; l )

We have:

Main> runST ( enci rcle "hello world" >>= tra ver se Backward)
"hdlro w ol le"
Main> runST ( enci rcle "hello world" >>= tra ver se Forward)
"hello world"

Similar techniques might be useful in the functional implementat ion of graph algo-

rithm s as well [45]. In general, programs manipulating stateful objects with cyclic de-

pendencies can bene�t from value recursion. For instance, Nordlander shows how to use

value recursion to express layered networking protocols in the context of his O'Haskell

language [65, Section 4.2].

9.5 Log ical vari ables

In a tutoria l paper on monadsand e�ects, Benton, Hughesand Moggi suggest the following

exercise on programming with monads[4, Exercise55]:

Prolog provides so-called logical variables, whose values can be referred to
before they are set. De� ne a type LVar and a monad Logic in terms of ST,
support ing operations:
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newLVar :: Logic s (LVar s � )
readLVar :: LVar s � ! �
writeLVar :: LVar s � ! � ! Logic s ()

where s is again a state-thread identi � er. The intention is that an LVar should
be writt en exactly once, but it s value maybe read beforehand, between its
creation and the write |laz y evaluat ion is at work here. Note that readLVar
doesnot have a monadic type, and so can be usedanywhere.

Clearly, we will need to usevalue recursion in implementing newLVar, allowing us to

access the value of a logical variable before it is actuall y set. There is a small problem,

however. How do we determine the scope of a logical variable, i.e., how do we make it

available to the rest of the computation? We solve this problem by using the continuation

monad transformer, a clever tric k suggested to us by John Hughes.5 Using this idea, the

Logic monad looks like:

data Logic s � = Logic f unL :: forall � . (� ! ST s � ) ! ST s � g

instanc e Monad (Logic s) where
return a = Logic (� k. k a)
Logic f � = g = Logic (� k. f (� a. unL (g a) k))

A logical variable is nothing but a value and a pointer to it. To read, we simply project

the value. To write , we update the mutable cell:

newt yp e LVar s � = LVar (STRef s � ; � )

readLVar :: LVar s � ! �
readLVar (LVar ( ; v)) = v

writeLVar :: LVar s � ! � ! Logic s ()
writeLVar (LVar (r ; )) a = Logic (� k. do writeSTRef r a

k ())

The magic that makes logical variables work is hidden in newLVar:

newLVar :: Logic s (LVar s � )
newLVar = Logic (� k. md o r  newSTRef (error \ unbound LVar !" )

a  k (LVar (r ; v))
v  readSTRef r
return a)

5An alternat ive would be to use the type newLVar :: (LVar s a ! Logic s b) ! Logic s b; requiring
the user to explicitly specify the scope, as in: newLVar (� v. : : :). In that case, the ST monad itself would
serve as the Logic monad, without any need for contin uations.
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Here is how newLVar works. We allocate a new mutable variable, r , and form the pair

(r ; v), where v is the value that wil l eventually be stored in r . This pair is passedto

the continuation k, represent ing the remainder of the computation, i.e., the scope of the

new logical variable. Before return ing the result of th is call, we simply read the mutable

variable r , determining the actual value of v. (Note that the computation represented by k

is expected to call writeLVar on the newly created logical variable, setting its �n al value.)

The mdo-expressionimplicitl y usesthe function �x ST, the value recursion operator for

Haskell's internal state monad (seeSection 4.4). The �n al bit of machinery we need is a

simple run method to extract values:

runLogic :: (forall s. Logic s � ) ! �
runLogic f = runST (unL f return)

Here are a some simple examples demonstrat ing the useof LVar's:

t1 = do v  newLVar
let val = readLVar v
return val

t2 = do v  newLVar
let val = [0; 6 .. readLVar v]
writeLVar v 42
return val

t3 = do v  newLVar
let v1 = readLVar v
writeLVar v 43
let v2 = readLVar v
writeLVar v 42
let v3 = readLVar v
return (v1; v2; v3)

t4 = do s  newLVar
c  newLVar
let sVal = readLVar s

cVal = readLVar c
writeLVar s \ tes t "
writeLVar c 'l '
return (cVal : sVal )

We have:

Main> runLogi c t1 :: Int Main> runLogic t 2
Program error : unbound LVar! [ 0,6, 12,1 8,2 4,30 ,36, 42]
Main> runLogi c t3 Main> runLogic t 4
(4 2,42 ,42 ) " ltes t"

In t1, we never write to v, hence its value is left unde� ned. All calls to writeLVar

except the last wil l be ignored,6 as demonstrated by t3. Final ly, t4 shows that we can use

variables with di�eren t typesin the samecomputation.

Claessenand Lju ngl•of show how one can use logical variablesto embed a typed func-

ti onal logic programming language in Haskell [13]. Similar to our implementation, they

6Of course, every call to writeLVar wil l be performed when the computati on is run, in the given order.
However, all calls to readLVar will return the last value written, regardlessof their order. For all practical
purposes,logical variables behave as constants, whose values can be used before they are set.
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use the ST monad to get accessto typed mutable variables. However, they only allow

accessto logical variables inside their version of theLogic monad. (In our terms, their read-

LVar function has the type LVar s � ! Logic s � .) It might be interesting to combine

their work wit h ours, allowing logical variablesto be used anywhere, and henceproviding

a more 
exible embedding. We leave the exploration of this idea for future work.

9.6 Summary

In this chapter, we illust rated the use of value recursion operators and of the recursive

do-notation. We admit that some of our examplesmight seem a litt le contriv ed, with

the notable excepti on of the circuit modeling example of Section 1.2. However, it is our

hope that readerswill be able to relate theseexamplesto their own work, spotting further

applications for value recursion. Here are some common casesto watch for:

� Programs dealing wit h data 
o w equations. Assuming the underlyi ng model is

monadic, any feedback loop or a cyclic dependency would signal the need for a

value recursion operator to t ie the recursive knot. Our circuit modeling example is

an instance of this problem.

� Stateful objects with mutual dependencies. Again, if a monadic interface is used,

mutual dependencies will require the use of value recursion. Our implementat ion

of doubly linked circular lists, and the network programming example in O'Haskell

(see Section 10.1 for a brief discussion)are examplesof this kind.

� Programs that combine several phasesand use recursion to eliminate mult iple t raver-

sals of data structures, similar to the repmin problem of Section 9.1. If any one of

the eliminated phases require monadic e�ects, value recursion becomes the tool for

expressingthe required cyclic dependence.

� Monadic programs where a particular ordering of e�ects forces us to use variables

that will only become available later, similar to the sort ing networks or GUI design

examplesof Section 9.2.



Ch apte r 10

Epil ogue

In this thesis, we have studied the interaction between two fundamental notions in pro-

gramming languages: Recursion and e�ects. As we have seen, cyclic de� niti ons in the

presence of monadic e�ec ts can be understood in terms of value recursion operators, whose

behavior can be characterized by means of a number of equational properti es. It is our

belief that thesepropert iescapture the essence of the interaction satisfactorily. Of course,

the extent to which our axiomatization is successful wil l only be determined by practice.

Our properties could be deemed appropriate if they rule out useless de� niti ons of value

recursion operators, and admit only thosethat are meaningful in practical programs. It is

stil l too early to come to a decisive conclusion in this regard, but we hope that our work

will be useful for both researchers and practit ioners, especially as monads become more

and more pervasive in functional programming.

We conclude our exposition of value recursion by brie
 y reviewing the related work,

and point ing out somefutur e research opportunities.

10.1 Rel ated work

The interaction between recursion and sharedcomputations has been extensively studied

by Hasegawa [32, 33]. Sharing is a commutat ive e�ec t, i.e., the order of computat ions does

not matt er.1 As we have explored in the � rst part of Chapter 6, recursion in commutativ e

monadscan be understood in terms of tracesin symmetric monoidal categories. Hasegawa

shows that giving a traceover a cartesian closedcategory is thesameasgiving a �xed-p oint

operator for it (see Theorem 6.2.4). This result is remarkable, as it provides an escape

from the usual domain-theoretic view, increasing the level of abstraction considerably. As

Hasegawa himself points out, however, when the underlyi ng e�ect is non-commutative, we

can no longer stay in the monoidal world.

1Think of a recursive let -expression in Haskell. The order of bindings is ir relevant; equati ons can be
swapped around without changing the result.
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Paterson int roduced loop operators for handling value recursion in arrows [36, 66].

Alt hough Patersonnotes that someof the axioms are too st rong for many practical cases,

he does not weaken his axiomatization to accommodate accordingly. On the syntactic

side, Paterson's work introduced a convenient notat ion for programming wit h arrows in

Haskell, providing support for recursive bindings aswell. However, rather than lett ing the

translat ion � gure out recursive segments as we do in the mdo-notation, Paterson prefers

using an explicit keyword, rec , askingtheprogrammers to mark recursiveblocks explicitly .

(The rec keyword is modeled after O'Haskell' s handling of recursive bindings, reviewed

below.)

Building on our init ial paper of monadic � xed-points [18], Benton and Hyland take

Hasegawa's work one step further by generalizing the notion of trace to premonoidal

categories [5]. (It turns out that Benton and Hyland's axiomatization and Paterson's

work on arrows are essentia lly the same,although developed independently and presented

in slightly di�eren t context s.) Similar to Paterson's loop axioms, Benton and Hyland's

axiomatization is too strong for many monads as well. As we have seen in the second half

of Chapter 6, their sliding and right tightening laws are simply not sati s�able in many

practical cases (see also Section 3.1). As a consequence, their work can explain value

recursion for the state monad (and those monadsthat embed into it, such as output and

environments), but not excepti ons, lists, or the I/O monad. In general, any monad that

is based on a sum-like data type will fail to satisfy their requirements. In any case, we

considerPatersonand Benton and Hyland's work asan important step toward a categorical

account of value recursion.

Friedman and Sabry [25] approach value recursion form an ent irely di�eren t angle.

Rather than considering individual monadsseparately, they consider recursion itself as a

computat ional e�ect, following an operational de�n ition: Allocate a referencecell, evaluate

the body, and update the cell wit h the result. (This process is essentia lly how Scheme

models recursion, as we have brie
y covered in Section 5.3.) Since recursion is performed

in the combined monad, it is the users' responsibilit y to translate original problems and

values to and from this combined world. That is, to model value recursion in a monad m,

they end up using a function:

m�xM :: (STM s m � ! STM s m � ) ! STM s m �

where STM is the state monad t ransformer.2 Furthermore, all the morphisms of the

basemonad have to be lifted into this \st ate enriched" world as well, and this is where

2Note that m�x M accepts a funct ion from computati ons to computatio ns, rather than from values to
computatio ns as in the case for m�x . This change of view is necessary for implementing the allocate-
evaluate-overwri te model.
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the interaction between part icular e�ects and recursion has to be addressed by the user.

Unlike us, however, they do not postulate any propert ies, hence it is up to the user to

come up with correct liftings. As Friedman and Sabry observe themselves, their method

is rather inconvenient to use from a programming perspective, compared to our mdo-

expressionsand direct handling of recursion in the given monad. Unfortunately, a similar

comparison is not immediately possiblefrom a theoretical point of view, asthe approaches

are fundamental ly di�eren t .

From a practical point of view, much greater similarity to our work is found in Nord-

lander's O'Haskell language. O'Haskell is an object oriented extension of Haskell, designed

for addressingissuesin reactiv e functional programming [65]. Oneapplication of O'Haskell

is in programming layered network protocols. Each layer interacts with it s predecessor

and successor by receiving and passinginformation in both directions. In order to connect

two protocols that have mutual dependencies, one needs a recursive knot- tying opera-

ti on. Since O'Haskell objects are monadic, value recursion is employed in establishing

such connections. O'Haskell adds a keyword �x to the do-notation, whoset ranslation is

a simpli � ed version of our mdo-notat ion. The O'Haskell work, however, does not try to

axiomatize or generalize the idea any further.

Carlssonand Hallgren discussa variety of loop operators in the context of their work

on stream based programming using fudgets [29]. Alt hough the intended semanti cs of

their loop operators is quit e similar to those of value recursion operators, the types and

the mechanics are somewhat di�e rent. For instance,one of their operators has the type:

loopLeftF :: F (Either � � ) (Either � 
 ) ! F � 


which, intuit ively, ties the recursive loop over � , resulting in a fudget from � to 
 . Carlsson

and Hallgren useloop operators only in the framework of fudgets, without generalizing to

arbitrary monads,or studying their behavior more abstractly.

The circuit modeling example we have seenin Section 1.2 is discussedin detail in

Claessen's recent dissertation [12]. Alt hough Claessenpoints out the need for an appro-

priate looping combinator, he does not pursue the monadic approach any further. Instead,

he introduces the notion of observable sharing, which is a non-conservative3 extension to

Haskell [14]. (Brie
y , observable sharing allows programmers to determine whether a cir-

cuit component is reached via a feedback loop, solving the in� nite unfolding problem.)

Claessen argues that \ ...loop combinators are unfortunate because they intr oduce extra

clutter in the code that is hard to motivate" [12]. We believe that our mdo-notat ion

addresses Claessen'sconcerns perfectly, relieving the programmers from error-prone and

3Since the addition of observationa l sharing violates referentia l transparency, the resulting language is
no longer pure. That is, the law: let x = M in N � N [�x (� x. M )=x] no longer holds.
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cumbersomeuses of explicit looping combinators. In addit ion, the monadic approach has

the obviousadvantage of keeping the underlying language pure, providing a nice and clean

semant ic framework.

Turbak and Wells int roduce the cycamore data type, which is aimed at simplifying

the use of cyclic structures in declarati ve languages [86]. The basic idea is to associate

each node in a cycamore with a global unique ident i�er, similar to our doubly linked list

example of Section 9.4. They consider implementations in both ML and Haskell, and the

Haskell version makes useof referencesin the state monad to implement unique identi�ers.

As expected, Turbak and Wells employ value recursion in order to express the required

cyclic structur e.

10.2 Future Work

Alt hough wehaveconcentrat edon applicationsin functional programming, valuerecursion

certainly makes sense in other programming paradigmsas well. One future research direc-

ti on to explore is the problem of creating cyclic structures in imperative languages. Such

structur es arisequite frequentl y in practice. For instance,the following example presents

an opportunit y in IBM 's data manipulation language for its DB2 databasesystem [11]:4

VEmp_t

VPerson_t
VDept_t

mgr

dept

crea te t ype VDept_ t as
( name Varch ar(2 0)) mode db2sql ;

crea te t ype VPerso n_t as
( name Varch ar(4 0)) mode db2sql ;

crea te t ype VEmp_t under VPerson_t as
( dept Ref(V Dept_t)) mode db2sql;

alte r ty pe VDept_t
add attri but e mgr Ref(V Emp_t);

In this example, the usercreates threetypes: department, person, and employee. Each

department hasa name and a manager. Each person is ident i� ed by a name. Finally, each

employeeis a VPerso n t , which further hasa (referenceto a) part icular department . While

the cre ate typ e directives for VPerso n t and VEmpt re
ect the structure correctly, the

VDept t type cannot be created with both of its required attribu tes. Clearly, the di�cult y

arises as the VEmp t type is not yet visible when VDept t is created. The � nal alter typ e

directive remediesthe situat ion in a roundabout fashion, adding the missing attrib ute.

4This example was pointed out to us by David Maier.
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We seetwo opportunit ies with regard to our research. First of all, better syntactic

support (along the linesof our mdo-notation) would help get rid of the � nal alter typ e

directive, keeping the declaration of VDept t self-contained, possibly simpli fying further

analyses.More important ly, if such declarations are ever given a monadic semantics, value

recursion would be the right tool for modeling thecyclic dependency. Similar opportu niti es

exist in other languagesas well.

On the theoretical side,we would like to seevalue recursion studied in a more abstract

setting. In this regard, the trace-�xe d point correspondence, as we have studied in Chap-

ter 6, seems to be the right direction to proceed. We would like to investigate the reasons

why the axiomatization via traces turns out to be too strong, hopefully augment ing the

theory to capture the practical aspects more precisely. For instance, it would be inter-

esting to pin down the role of the right shrinking property precisely. As we have seenin

Chapter 3, right shrinking property is not satis�able whenever the � = operator is strict

in it s � rst argument, and hence a weakening of the trace-basedaxiomatizations seems

inevit able.

Several questions remain to be explored regarding the behavior of value recursion op-

erators. For instance, we lack a reasoning principle along the lines of � xed-point induction.

Recall that the �xed-p oint induction principle statesthat P (�x f ) can be established by

showing that P ? ^ 8d:(P d ) P (f d)) holds, provided P is an admissible predicate.

(The obvious generalization: P ? ^ 8d:(P d ) P (d � = f )) ) P (m�x f ) is not sound,

as it implicit ly assumesan unfolding view of value recursion.) It is probably the casethat

one needsto formulate and prove a separate induction principle for each new m�x , rather

than looking for a universal principle that would work for all cases.While our properti es

provide a framework for reasoning about terms involving m�x , such an induction principle

might prove essentia l for reasoningabout value recursion in general.

Another quest ion is the automatic construction of value recursion operators for ar-

bitrary monads. Alt hough we have seen many \design patterns," it is still not clear

how to de�n e an appropriat e operator for a given monad that wil l satisfy our properties.

(The conti nuation monad seems to be the problem child in this regard.) Although it is

highly unlikely that a magic recipe for automatic construction of such operators exists, it

would be nice to pin down the exact conditio ns under which their existence(and possibly

uniqueness)can be guaranteed.

The semanti cs we have presented in Chapter 8 for modeling monadic I/O needssome

improvements to simplify reasoning wit h symbolic terms. Furthermore, we would like

to extend our language to support more featur es, such as concurrency and except ions.

While concurrency seemsrelativ ely easy to support, it is not immediately clear how to

extend our system to include Haskell'98 style excepti ons. More important ly, it would be
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interesting to show that the addit ion of monadic I/ O primiti ves, mutable variables, and

support for value recursion preserves the parametricit y principle. Al so, we would like to

designan accompanying abstract machine semant ics, which might be useful as a basisfor

constructing interpreters for similar languages.

Whether the mdo-notati on shouldeventually replacethe current do-notation in Haskell

is a question that will have to be answered by the Haskell communit y. While we believe

that a singleconstruct should handle both recursiveand non-recursivecases,such a change

potent ially breaks existing programs, and it might be a better idea to make the swit ch in

a future version of Haskell.



A ppendix A

Fixed-p oint operators

In this appendix, we brie
y review � xed-point operators. Our aim is to intro duce the

terminology we use,providing pointers to the li terature for details as necessary.

In the domain theoretic semant ics of programming languages, types are modeled by

domains and functions are modeled by conti nuous maps. The meaning of a typical recur-

sive declaration of the form let x = M in N is taken to be N [�x (� x.M )=x]; where

�x f =
G

i

f i ? � (A.1)

assuming M hastype � . Note that x neednot bea function only, wemight de�n e recursive

values this way as well. For instance, we have (using Haskell-like notat ion):

let ones = 1 : ones in ones � � x (� ones. 1 : ones)

The least �xed-p oint theorem states that �x f is the least � xed-point of f [76, 92].

That is, (i) it sati s�es the �xed-p oint property: f (�x f ) = �x f , and (i i) it is the least

such value, i.e., for all x s.t. x = f x, we have �x f v x. We use the name �x only to

mean this part icular �xed-p oint operator over domains.

The theory of � xed points is extensively studied [9, 10, 81]. It is neither possible, nor

necessary for us to summarize this huge body of work here;we will simply state the results

that are most relevant to our work.

Pr opert y A.1 (Dinaturality. ) Let f :: � ! � , g :: � ! � . The dinaturality 1 property

of �x states that:

�x (f � g) = f (�x (g � f ))

1The term dinaturality refers to the fact that �x can be viewed as a dinatural transformati on between
certain functors [55, 80]. We will not need this level of detail in our work, so we skip the details.
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Pr opert y A.2 (Beki�c.) Let f :: � � � ! � . The Beki�c property of �x states that :

�x (� x. �x (� y. f (x; y)) ) = �x (� x. f (x; x))

Or, equivalentl y,

�x (� t. �x (� v. f (� 1 t ; � 2 v))) = �x f

where f :: � � � ! � � � . It is easy to generalize to arbitrary number of variables,rather

than just two; seeWi nskel's textbook for details [92].2

In Chapter 6, we consider� xed-point operators in more abstract settings, i.e., without

assuming that the underlying structur e is domains and conti nuous maps. We assume a

minimal acquaintance wit h category theory in the following discussion[2, 70]. The basic

structur e we work wit h is a category C wit h �n it e products. We write
�

for the terminal

object. The set of arrows between two objects A and B is denoted C(A; B ). We will need

the following basic de�n it ions [33, 79]:

De�nition A.3 A � xed-point operator is a family of functions(�) �
A : C(A; A) ! C(

�

; A),

such that for any f : A ! A, f � f � = f � .

De�nition A.4 A parameterized �xed-point operator is a family of functions:

(�)y
A;X : C(A � X ; X ) ! C(A; X )

satisfying:

� Parameterized � xed-point property: For f : A � X ! X , f � hidA ; f yi = f y.

� Natur alit y in A: For f : A � X ! X and g : B ! A, (f � (g � idX ))y = f y � g.

De�nition A.5 A Conway operator is a parameterized �xed -point operator that further

satis� es:

� Dinatur alit y: For f : A � X ! Y and g : A � Y ! X , (g� h� A;X
1 ; f i )y = g� hidA ; (f �

h� A;Y
1 ; gi )yi .

� Diagonal property: For f : A � X � X ! X , f yy = (f � (idA � hidX ; idX i )) y.

The readerneed not master thesede�n itions in full , only a basic familiarit y is su� cient .

For the most part we will be working with �x , and using the dinaturalit y and Beki�c

properties given before, which are much easier to read and understand.

2Beki�c's property appears in many di�ere nt but equivalent forms in the liter ature [3]. The versions we
have given here are the onesthat are most suitable for our purposes.



Ap pendix B

Pro ofs

In the following proofs,weassumetrue products. In the caseof lifted products, special care

must be taken to ensure that the di�e rence between(? ; ? ) and ? is not visible. The cases

when the dist inction does matt er have been pointed out in the text. (See Warning 2.6.7

as well.)

To savespace, wewill shorten return to � in our proofs. Also note that weusethe name

map to refer to Haskell's fmap, i.e., map :: (� ! � ) ! m � ! m � for all monads m,

de� ned by the equation map f m = m � = � � f.

B.1 Prop ositi on 2.5.2

Given Equation 2.7, establishing 2.8 is easy. We have:

m�x (� (x; ). m�x (� ( ; y). f (x; y)))

= m�x (� t. m�x (� u. f (� 1 t ; � 2 u)))

= m�x (� t. m�x (� u. (� (x; y). f (� 1 x; � 2 y)) (t ; u)))

= m�x (� t. (� (x; y). f (� 1 x; � 2 y)) (t ; t )) f Equation 2.7g

= m�x (� t. f (� 1 t ; � 2 t ))

= m�x f

In the last step, we usedthe fact that (� 1 t; � 2 t) = t, which only holds for tru e products.

To show the correspondence in the other direction, let � x = (x; x), and note that �

is strict (again thanks to t rue products). We have:

m�x (� x. f (x; x))

= m�x (f � � )

= map (� 1 � �) (m�x (f � � )) f � 1 � � = id g

= map � 1 (map � (m� x (f � �)))

= map � 1 (m�x (map � � f )) f slideg

142
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= map � 1 (m�x (� x. m�x (� y. (map � � f ) (� 1 x; � 2 y))) ) f Equation 2.8g

= map � 1 (m�x (� x. m�x (map � � (� y. f (� 1 x; y)) � � 2)))

= map � 1 (m�x (� x. map � (m�x (� y. f (� 1 x; y)))) ) f slideg

= map � 1 (m�x (map � � (� x. m�x (� y. f (x; y))) � � 1))

= (map � 1 � map �) (m�x (� x. m�x (� y. f (x; y))) ) f slideg

= m�x (� x. m� x (� y. f (x; y)))

In caseof lifted products (Proposition 2.5.4), the proof proceeds similarly. The last

step in the � rst proof is not applicable, but in that casewe can replace the last line with

m�x (� ~(x; y). f (x; y)); which is predicted by Equation 2.10. The second implication

follows similarly.

B.2 Prop ositi on 2.6.8

m�x (� (x; y). f x � = � z. � (z; h z (x; y)) )

= m�x (� t. (f � � 1) t � = � z. � (z; h z t ))

= m�x (� t. (� (u; v). (f � � 1) u � = � z. � (z; h z v)) (t ; t ))

= m�x (� x. m� x (� y. (f � � 1) x � = � z. � (z; h z y))) f nestg

= m�x (� x. (f � � 1) x � = � z. m�x (� y. � (z; h z y))) f left shrinkg

= m�x (� x. (f � � 1) x � = � z. � (�x (� y. (z; h z y))) ) f purityg

= m�x (� x. (f � � 1) x � = � z. � (z; �x (� y. h z (z; y)))) f nest (�x )g

= m�x f � = � z. � (z; �x (� y. h z (z; y)) ) f pure r ightg

= m�x f � = � z. � (�x (� (x; y). (z; h z (x; y))) ) f nest (�x )g

B.3 Prop ositi on 2.7.1

m�x (� (x; ). f x � = � y. � (q; y))

= m�x (map (� y. (q; y)) � f � � 1)

= map (� y. (q; y)) (m�x (f � � 1 � (� y. (q; y)))) f strong slidingg

= map (� y. (q; y)) (m�x (� y. f q))

= map (� y. (q; y)) (f q) f constant functionsg

= f q � = � y. � (q; y)

The need for strong sliding is obvious, since otherwise we would have to require f q =

f ? to satisfy the precedent .
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B.4 Lemma 3.1.4

Recall that � is a natural transformation, that is, it satis� es the equality map h � � � =

� � � h for all h :: � ! � . Assume � is strict at the type � , i.e., � � ? � = ? m � , and � = is

strict in it s � rst argument. Pick an arbitra ry type � . We wil l show that � � ? � = ? m � :

� � ? �

= � � (const ? � ? � )

= (� � � const ? � ) ? �

= (map (const ? � ) � � � ) ? � f naturality of � g

= map (const ? � ) (� � ? � )

= map (const ? � ) ? m � f assumption: � � ? � = ? m � g

= ? m � � = � � const ? � f de�nition of map g

= ? m � f assumption: � = is left-strict g

B.5 Prop ositi on 3.4.2

Given arbitrary f and g, de� ne:

h x 1 = f x

h x 2 = g x

We have:

m�x (� x. f x � g x)

= m�x (� x. h x 1 � h x 2)

= m�x (� x. (� 1 � = � y. h x y) � (� 2 � = � y. h x y))

= m�x (� x. (� 1 � � 2) � = � y. h x y)

= (� 1 � � 2) � = � y. m�x (� x. h x y)

= m�x (� x. h x 1) � m�x (� x. h x 2)

= m�x f � m�x g

f Eqn. 3.8g

f left shrink g

f Eqn. 3.8g

B.6 Prop ositi on 4.3.1

We considereach casein tur n:

4.5: Right to left implication is immediate. From left to right, �x (f � head) must be

? , which only happens when f ? = ? . (Note that this establishes the strict nessproperty.)

4.6: Similar to the previous case.

4.7: Simple case analysis. If m�x f is ? , f is strict by 4.5, and both sides re-

duce to ? . If m�x f is [ ], then f ? = [ ] by 4.6, reducing both sides to ? again.
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Finally, if m�x f is a cons-cell, the case expression must take its second branch, i.e.,

head (m�x f ) = head (�x (f � head)); which is exactly the right hand side by the di-

naturalit y of �x .

4.8: Similar to the previouscase, if m�x f equals? or [ ], both sidesyield ? . Otherwise,

case must take it s second branch, i.e., tail (m�x f ) = m�x (tail � f ).

4.9: Consider the test expression for case. We have:

�x (( � x. f x : g x) � head) = (� x. f x : g x) (�x (head � (� x. f x : g x)))

= (� x. f x : g x) (�x f )

= f (�x f ) : g (�x f )

= �x f : g (�x f )

Hence, the case expression takes its second branch, yielding:

m�x (� x. f x : g x) = �x f : m�x (tail � (� x. f x : g x))

= �x f : m�x g

4.10: We will use the approximati on lemma [7, 38], which states that:

(8n. approx n xs = approx n ys) ) xs = ys

for arbitrary lists xs and ys. The function approx is de� ned as:

approx :: Integer ! [� ] ! [� ]
approx 0 xs = ?
approx (n+1) ? = ?
approx (n+1) [ ] = [ ]
approx (n+1) (x:xs) = x : approx n xs

We will prove:

8n:8f ; g: approx n (m�x (� x. f x ++ g x)) = approx n (m�x f ++ m� x g)

by induction on n, implying the required result. Basecase(n = 0) is trivial . The induction

hypothesis is:

8f ; g: approx k (m�x (� x. f x ++ g x)) = approx k (m�x f ++ m�x g) (B.1)

Note that the hypothesis is assumed for all f and g. This generality will be essenti al in

establishing the induction step. We need to show:

8f ; g: approx (k+ 1) (m�x (� x. f x ++ g x)) = approx (k+ 1) (m�x f ++ m�x g)

Pick two arbitrary functions f 0; g0 :: � ! [� ]. It su� cesto show that:

approx (k+1 ) (m�x (� x. f 0 x ++ g0 x)) = approx (k+1) (m� x f 0 ++ m� x g0) (B.2)
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which we establish by caseanalysis on f 0 ? . The cases? and [ ] are immediate. By 4.5

and 4.6, both sides reduce to ? and approx (k + 1) (m�x g0), respectively. If f 0 ? is a

cons-cell, it follows that

8x: f 0 x = (head � f 0) x : (tai l � f 0) x (B.3)

Simple inspection of the de� niti on of m�x reveals that m�x f 0 must be a cons-cell in this

caseas well. Hence, we have:

m� x f 0 = head (m�x f 0) : tail (m�x f 0) (B.4)

Therefore,

approx (k+1) (m�x (� x. f 0 x ++ g0 x))

= approx (k+1 ) (m�x (� x. ((head � f 0) x : (tail � f 0) x) ++ g0 x))

= approx (k+1 ) (m�x (� x. (head � f 0) x : ((tail � f 0) x ++ g0 x)) )

= approx (k+1 ) (� x (head � f 0) : m� x (� x. (tail � f 0) x ++ g0 x))

= �x (head � f 0) : (approx k (m�x (� x. (tail � f 0) x ++ g0 x)))

= �x (head � f 0) : (approx k (m�x (tail � f 0) ++ m�x g0))

= approx (k+1 ) (( �x (head � f 0) : m�x (tail � f 0)) ++ m� x g0)

= approx (k+1 ) ((head (m�x f 0) : tail (m�x f 0)) ++ m�x g0)

= approx (k+1 ) (m�x f 0 ++ m�x g0)

f Eqn. B.3g

f Eqn. 4.9g

f I.H.g

f Eqns. 4.7; 4.8g

f Eqn. B.4g

completing the proof.

B.7 Prop ositi on 4.9.1

We need to show that the function m�xErr M satis�es strict ness, purit y and left shrinking

properties. All cases follow from the corresponding properties of m�xM , and simple sym-

bolic manipulation. We will only present the left shrinkin g caseto il lustrate the technique.

To avoid confusion due to overloaded operators, we will write returnM and bindM for the

morphisms of m, while returnErrM and bindErrM for thoseof Err m.

m�xErrM (� x. a `bindErrM ` � y. f x y)

= f Equation 4.36; expand bindErrM g

m�xM (� x. a `bindErrM ` � y. f (unErr x) y)

= f expand bindErrM g

m�xM (� x. a `bindM ` � y. case y of

Ok q ! f (unErr x) q

Err s ! returnM (Err s))
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= f left shrinking on m�xM g

a `bindM ` � y. m�x M (� x. case y of

Ok q ! f (unErr x) q

Err s ! returnM (Err s))

= f Proposition 2.6.2; case is a shortcut for if g

a `bindM ` � y. case y of

Ok q ! m�xM (� x. f (unErr x) q)

Err s ! m�xM (� x. returnM (Err s))

= f fold down mifxErrM on the �rst branch; Proposition 2.6.1 on the secondg

a `bindM ` � y. case y of

Ok q ! m�xErrM (� x. f x q)

Err s ! returnM (Err s)

= f fold down bindErrM g

a `bindErrM ` � y. m�xErrM (� x. f x y)

B.8 Prop ositi on 6.3.5

We wil l need the following two lemmas:

Lemma B.8.1 Let T be a monad and m�x be a value recursion operator satisfying the

right shrinkin g law. Let f : X ! T (B � X ) and g : B � X ! T B 0. Then,

m�x (� ( ; x). f x � = � z. g z � = � w. � (w; � 2 z))

= m�x (� ( ; x). f x) � = � z. g z � = � w. � (w; � 2 z)

Pr oof Note that the � rst m�x is at instanceB 0� X , while the second is at B � X . We

reason as follows:

m�x (� ( ; x). f x � = � z. g z � = � w. � (w; � 2 z))

= m�x (� ( ; x). f x � = � z. g z � = � w. � (w; z) � = � (p; q). � (p; � 2 q))

= f slide; � (p; q). (p; � 2 q) is strict g

m�x (( � ( ; x). f x � = � z. g z � = � w. � (w; z)) � (� (p; q). (p; � 2 q)))

� = � (p; q). � (p; � 2 q)

= m�x (� ( ; t ). f (� 2 t ) � = � z. g z � = � w. � (w; z)) � = � (p; q). � (p; � 2 q)

= f r ight shrinkingg

m�x (� ( ; x). f x) � = � z. g z � = � w. � (w; � 2 z)

�
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The second lemma states a variant of Equation 3.7:

Lemma B.8.2 Let f :: � ! m (� ; � ), g :: � ! m � , where m is a commutat ive monad.

Then,

m�x (� t. g (� 2 t ) � = f ) � = � � � 1

= m�x (� t. f (� 2 t ) � = � t 0. g (� 2 t 0) � = � a. � (� 1 t 0; a)) � = � � � 1

provided m�x satis� es strong sliding and nesting.

Pr oof (Sketch) Note that the �r st m� x is at instance � � � , while the second one is

at � � � . The proof �r st extends the recursion to � � (� � � ), applies commutat ivit y

(Proposition 3.3.2), and then gets rid of the � argument. �

To establish Proposition 6.3.5, we need to verify that the de� nitio n of trace as given

by 6.21 satis� es Equations 6.14- 6.20. We considereach casein tur n:

� Left ti ghtening (6.14):

trace (� (a; x). g a � = � a0. f (a0; x))

= � a. m�x (� (b; x). g a � = � a0. f (a0; x)) � = � � � 1

= f left shrinking on m�x g

� a. g a � = � a0. m�x (� (b; x). f (a0; x)) � = � � � 1

= � a. g a � = trace f

� Right tightening (6.15):

trace (� (a; x). f (a; x) � = � (b; x). g b � = � b0. � (b0; x))

= � a. m�x (� (b; x). f (a; x) � = � (b; x). g b � = � b0. � (b0; x)) � = � � � 1

= � a. m�x (� (b; x). f (a; x) � = � z.(g � � 1) z � = � b0. � (b0; � 2 z)) � = � � � 1

= f lemma B.8.1g

� a. m�x (� (b; x). f (a; x)) � = � z. (g � � 1) z

= � a. m�x (� (b; x). f (a; x)) � = � z. � (� 1 z) � = � w. g w

= � a. m�x (� (b; x). f (a; x)) � = � � � 1 � = g

= � a. trace f a � = g

� Sliding (6.16):

trace (� (a; x). g x � = � x0. f (a; x0))

= � a. m�x (� (b; x). g x � = � x0. f (a; x0)) � = � � � 1

= � a. m�x (� t. g (� 2 t ) � = curry f a) � = � � � 1

= f Lemma B.8.2g
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� a. m�x (� t. curry f a (� 2 t ) � = � t 0. g (� 2 t 0)

� = � x0. � (� 1 t 0; x0)) � = � � � 1

= � a. m�x (� (b; x0). f (a; x0) � = � (b; x). g x

� = � x0. � (b; x0)) � = � � � 1

= trace (� (a; x0). f (a; x0) � = � (b; x). g x � = � x0. � (b; x0))

� Vanishing (6.17):

trace (� (a; ()) . f a � = � b. � (b; ()) )

= � a. m�x (� (b; () ). f a � = � b. � (b; ())) � = � � � 1

= f constant functionsg

� a. f a � = � b. � (b; ()) � = � � � 1

= � a. f a � = � b. b

= f

� Vanishing (6.18): Let

asc (x; (y; z)) = ((x; y); z)

iasc ((x; y); z) = (x; (y; z))

Then,

trace (trace (� ((a; x); y). f (a; (x; y)) � = � (b; (x; y)). � ((b; x); y)))

= trace (trace (� t. f (iasc t ) � = � � asc))

= trace (trace (map asc � f � iasc))

= trace (� (a; x). m�x (� (( ; ); y). (map asc � f � iasc) ((a; x); y)) � = � � � 1)

= trace (� (a; x). m�x (map asc � (� (( ; ); y). f (a; (x; y)) )) � = � � � 1)

= f slide; asc is strict g

trace (� (a; x). m�x (� ( ; ( ; y)). f (a; (x; y))) � = � � asc � = � � � 1)

= � a. m�x (� ( ; x). m�x (� ( ; ( ; y)). f (a; (x; y)) ) � = � � � 1 � asc)

� = � � � 1

= f slide; � 1 � asc is strict g

� a. m�x ((� ( ; x). m� x (� ( ; ( ; y)) . f (a; (x; y))) ) � � 1 � asc)

� = � � (� 1 � � 1 � asc)

= f � 1 � � 1 � asc = � 1g

� a. m�x (� ( ; (x; )). m�x (� ( ; ( ; y)) . f (a; (x; y))) ) � = � � � 1

= f unnest tripl eg

� a. m�x (� ( ; (x; y)) . f (a; (x; y))) � = � � � 1

= trace f
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� Superposing (6.19): Let asc be de�n ed as above,

trace (� ((c; a); x). f (a; x) � = � (b; x). � ((c; b); x))

= � (c; a). m�x (� (( ; ); x). f (a; x) � = � (b; x). � ((c; b); x)) � = � � � 1

= f slideg

� (c; a). m�x (� ( ; ( ; x)). f (a; x) � = � (b; x). � (c; (b; x)) )

� = � � � 1 � asc

= f pure right shrinkingg

� (c; a). m�x (� (b; x). f (a; x)) � = � (b; x). � (c; b)

= � (c; a). m�x (� (b; x). f (a; x)) � = � (b0; x). � b0 � = � b. � (c; b)

= � (c; a). m�x (� (b; x). f (a; x)) � = � � � 1 � = � b. � (c; b)

= � (c; a). trace f a � = � b. � (c; b)

� Yanking (6.20):

trace (� (a; a0). � (a0; a))

= � a. m�x (� (b; a0). � (a0; a)) � = � � � 1

= f purity g

� a. � (�x (� (b; a0). (a0; a)) ) � = � � � 1

= � a. � (a; a) � = � � � 1

= �
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