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Abstr act

Value Recursion in Mon adic Compu tations
Levert Erkek

Ph.D., OGI Sdool of Science and Engineering,
OregonHealth and Sdence University
October 20

Thesis Advisor: Dr. John Launchbury

This thesis addresse the interadion between recursive declarations and computational
e ects modeled by monads. More sped cal ly, we present a framework for modeling cyclic
de nitions resulting from the values of monadic actions. We introduce the term value
recursion to capture this kind of recursion.

Our model of value recursion relieson the existence of particular xed-p oint operators
for individual monads, whose behavior is axiomatized via a number of equational prop-
erties. These properties regulate the interaction between monadic e ects and recursive
computations, giving rise to a characterization of the required recursion operation. We
present a collection of such operators for monadsthat are frequently used in functional
programming, including those that model exceptions non-determinism, input- output, and
stateful computations.

In the context of the programming language Haskell, practical applications of value
recurson give rise to the neal for a new language construct, providing support for re-
cursive monadic bindings. We discuss the design and implementation of an extension to
Haskell's do-notation which allows variablesto be bound recursively, eliminati ng the need
for programming with explicit xed -point operators.
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Chapter 1

Introduction

This thesis addresses the interaction betweentwo fundamental notions in programming
languages: Recursion and e ects. Recursion is the essenceof cyclic de nitions, both for
recursve functions and circular data structures. E ects are the essenceof computational
feaures, including I/0, exceptions, and stateful computations. Although both notions
have been studied extensively on their own, their interaction has recaved relativ ely littl e
attention.

1.1 Recursion and ee cts

In the traditional domain theoretic setting, the denotational semantics of recursive def-
initi ons are understood in terms of xed-p oints of continuous functions. That is, the
semartics of a de nition of the form x = f x is taken to be the least xed-p oint of the
map corresponding to f [82, 83]. The same principle works for both recursive functions
and circular data structures, a rather pleasing situati on.

Handling of e ects in the denotational framework, howewer, proved to be much more
problemati c, often summed up by the phrase\denotational semanticsis not modular* [53,
64]. Briey, addition of new eect s require substantial changesto the existing semantic
description. For instance exceptionscan be modeled by adding a special failure elemert to
each domain, representing theresult of a failed computation. But then, evensuch a simple
thing asthe meaningof an arithm etic operation requires a messydenotational description;
one nedals to check for failure at eady argumert, and propagate acoordingly. The story is
similar for other cases, including I1/O and assignmeits, two of the most \ popular" e ects
found in many programming languages|[76, 77].

It was Mogg's in uertial work on monadsthat revolutionized the semantic treatment
of e ects, which he referred to as notions of computation. Mogg showed how monads can
be used to model programming language featuresin a uniform way, providing an abstract
view of programming languages [62, 63]. In the monadic framework, valuesof a giventype



are distinguished from computations that yield values of that type. Since the monadic
structur e hides the details of how computations are internally represeried and composed,
programmers and language designers work in a much more exible environment. This
exibilit y isa hugewin over the tradit ional approach, where everything hasto be explicit.

Perhaps what Mogg did not quite envision was the response from the functional pro-
gramming community, who took the idea to heart. Wadler wrote a seriesof articles
showing how monadscan be usedin structuring functional programs themselves, not just
the underlying semartics [89, 91]. Very quickly, the Haskell commit tee adopted monadic
I/O asthe standard meansof performing input and output in Haskell, making monads an
integrd part of a modern programming language [68, 69). The use of monadsin Haskell
is further encouraged by special syrntactic support, known asthe do-notation [47].

As the monadic programming style became more and more popular in Haskell, pro-
grammers started realizing certain shortcomings. For instance, function application be-
comestedious in the presenceof e ects. Or, the if-then-dse construct becomesunsightly
when the test expressio is monadic. Howewer, these are mainly syntactic issuesthat
can easily be worked around. More seriausly, the monadic sublanguage lacks support for
recurson over the values of monadic actions. The issue is not merely syntactic; it is sim-
ply not clear what a recursive de nition meanswhen the de ning expression can perform
monadic e ects.

This problem brings us to the subject matter of the presert work: Semarics of recur-
sive dedarationsin monadic computations Moresped cally, our aim is to study recursion
resuting from the cydic useof valuesin monadic actions. We usethe term value recursion
to describe this notion.

1.2 A motivating exampl e: M odeling circuits using monads

To illustrate value recursion, we will consider the example that motivated our work in
the rst place modeling circuits using monads. Microarchitectur al design languageshave
bee the targe of programming language research in recent yeas, aiming at providing
better language support for managing the complexity of such designs [12, 58]. Lava [8]
and Hawk [49, |59 are two recert systams designedto addressthis neal. In this section,
we will considera stripped down version of such a language, enbedded in Haskell.

To familiarize ourselveswith the typesof circuits we can de ne, let us rst consider
a simple non-monadic implementation. We represent signals by lists, successie elements
representing the values at ead clock tick. Haskell is already expressive enoughto de ne
the basic building blocks without much di cult vy:



type Sig =[]

and; xor :: Sig Bool ! Sig Bool ! Sig Bool
and xs ys = zipWith (&&) xs ys
Xor xsys = zipWith (8) xsys

inv . Sig Bool ! Sig Bool
inv Xs = map not Xxs

delay . String ! ! Sig ! Sig
delay _ v xs = v : xs

The delay elemen forms a signal that behaves asits secand argumert during the rst
clock cycle, behaving as its third argument afterwards. (The rst argumert to delay is
intended to be a name for v. We will useit later.) Of course a more realistic example
would come equipped with multiplexers, registers, etc., but the elements above will be
suc ient for our purposes. For instance we can model a half-adder simply by:

halfAdd .- Sig Bool ! Sig Bool ! (Sig Bool; Sig Bool)
halfAdd xs ys = (sum; carry)
where sum = Xor XS Vys
carry and xs ys

Here is a samplerun:

Man> half Add [Tr ue, True] [False, True]
([ True,Fal se],[Fa Ise, True)])

As another example, we can create a circuit that togglesits output at each clock tick,
starting from the value False

inp DELAY False out toggle :: Sig Bool
toggle = out

where inp = inv out

7<— out = delay \False " False inp

Variables inp and out are de ned mutually recursively, corresponding to the feedbadk
loop in the circuit diagram. The recursive de niti on capability of Haskell's where clause
plays a crucial role in expressng the required cyclic dependency. We have:

Man> toggle
[False ,Tru e,False ,Tru e,False ,Tru e,False ,Tru e,. ..

Note that the result is an in nite signal.



What can we do with circuit descriptions? Since we model circuits by functions, we
can passthem around and combine them to build bigger circuits. But, evertually, all we
can do with a circuit is to simulate it, that is, run it on a particular input. As pointed
out by Launchbury et al. [49], and Claessa [12], this model does not allow for multiple
interpretations. Ideally, we would like to be able to analyze our circuits, translating
them to other hardware description languagessuch as VHD L. Alternatively, we may want
to render the circuit graphically, obtaining a schematic diagram, or recast the circuit
description in the languageof a theorem prover to let us reason about it. We would like
our language to be exible enough to support all of theseviews.

The standard way of attacking this problem is to abgract away from any particular
signal or circuit model, hiding the control o w behind a monad, and basic circuit elements
behind a type class. Each alternati ve semanti cs will be represented as an instance of this
class, providing new views of circuits. Then, by simply switching to a di e rent monad,
we will be able to obtain an alternativ e interpretation without changing existing circuit
descriptions. Here is one way of capturing the required structure:

class Monad m ) Circuit m where
and; xor :: Sig Bool ! Sig Bool ! m (Sig Bool)
inv . Sig Bool ' m (Sig Bool)
delay :: String ! I Sig ! m(Sig )

For instance, the description of the half-adder becanes:

halfAdd ;> Circuit m) Sig Bool ! Sig Bool ! m (Sig Bool; Sig Bool)
halfAdd i1 i2 = do sum xor i1 i2
carry and il i2
return (sum; carry)
Note that the new model of halfAdd is not committed to any parti cular circuit model,
or signal data type. It is a generic description of half-adders. To simulate, all we need is
the identit y monad for expressingthe control structure, and the list model for signals:

type Sig =11
data Simulate Sim deriv ing Show

instance Monad Simulate where
return x = Sim X
Simx = f =1fx
Unsurprisingly, the Circuit instance for the Simulate monad will simply mimic our
non-monadic implementation:

1A better alternativ e would be parameterizing the Circuit class over the Sig type as well, using a
multipara meter type class We refrain from doing so, however, for the sake of simplici ty.



instance Circuit Simulate where
and xsys = return (zipWith (&&) Xxs ys)
Xor xs'ys = return (zipWith (6) xs ys)
inv xs return (map not xs)
delay _ v xs = return (v:xs)

Using this model, we have:

Man> half Add [Tr ue, True] [False, True] :: Simulate ([Bool], [Bool])
Sim ([ True,False] ,[Fa Ise ,Tru €])

More interestingly, we can consider an alternati ve semantics which will create a wire-
by-wire description of a given circuit. In this model, signalswill beidenti ed by symbolic
names. Our monad will have to generate new namesfor intermediate wires, accumulating
a textual \dr awing" of the circuit asit is built. Hence, we employ a combination of state
and output monads:

type Sig = String
data Draw D (Int !' (; [String]; Int))

instance Show ) Show (Draw ) where
show (D f) =let (I;s; ) =10
in concatMap (+\ nn") s + \Result : " + show |

instance Monad Draw where

return x =D (0. (X;[L1)
Df = g=D (i let(a;0;i9 =fi
D h = ga

(b; 0% i% = hi®
in (b; o + 0% i%)

We will need the following auxiliary functions:

newwire :: Draw String
newwWire = D ( i. ('w:show i; []; 1+1))

output :: String ! Draw ()
output s = D ( i. ((); [s]; 1))

item ;o String ! String ! String ! Draw String

item abc = don newWire
output (n + \ =" +H a+ \ "+ b+ \ " + )
return n

The function newWire simply returns a new name. (The variablei keegs track of the
number of wires.) The function output lets us emit intermediate descriptions. Finally,



item is a generic function for creaing a new wire together with a description of how it is
obtained. Using theseauxiliaries, the Circuit instance for the Draw monad becomesE

instance Circuit Draw where
and a b = jtem \and" a b

xor ab = item \xor" a b
delay s v a = item \delay " s a
inv a = don newWire
output (n + \ = inv " + a)
return n
We have:
Man> prin t (half Add "a" "b" :: Draw (Sig Bool, Sig Bwml) )

wO=xor ab
wl=and a b
Result : (" w0","wl")

It is worth emphasizing that the description of halfAdd did not change we simply used
a di erent monad. This is the strength of the monadic approach.
Unfortun ately, a similar translation for the toggle circuit does not work. Consider:

toggle :: Circuit m ) m (Sig Bool)

toggle = do inp inv out
out delay \False" False inp
return out

Alt hough the description perfedly tsthe circuit diagram we had before, we have lost the
feadbadk loop. The variablesinp and out are no longer recursively de ned! (In fact, the
de nition above is not even valid Haskell; the variable out is not in scqpein the rst line.)
Our non-monadic implementation did not have this problem, asit relied on the recursive
de nition capabhilities of Haskell. But now, we are on our own: Haskell doesnot let us
write recursive speci cations in the presence of monadic e ects.

Unfortun ately, the problem is not merely syntactic. It isnot clear how to perform this
kind of recursion at all: we want the values (i.e., the signals) to be de n ed recursively, but
we certainly do not want the eect sto be repeated or lost (i.e., we do not want to create
circuit elemertsrepeatedly, or not to creae them at all). We refer to this kind of recursion
asvalue recursion. In short, to be able to expressthe required recursive structur e, we need
the underlying monad to support recursive monadic bindings [18]. Just asthe usual xed-
point operator handles \ normal" recurson, we exped to n d value recursion operators,

2 The delay elemert did not useits rst argument in the simulation model, and here it does not use
the second. The name is irrelevant for simulation, while it is all we need in a textu al represertatio n.



generically called m x, mediating the interaction between the underlying eect and the
recurson operation.

Getting badk to circuit modeling, we will require circuits to be modeled by monadsfor
which such xed-p oint operators are available, captured by the MonadFix class:

class Monad m ) MonadFix m where
mx (! m ) m

class MonadFix m ) Circuit m where
-- and; xor; inv; delay as before
Now, we can tie the recursive knot over inp and out, expressingtoggle as follows:
togde :: Circuit m ) m (Sig Bool)
togde = mx ( ~(inp; out). do inp inv out
out delay \False " False inp

return (inp; out))
= (inp; out). return out

The n al missing pieceis the MonadFix instances for Simulate and Draw monads. At
this point, we ask the readerto simply accept the following de nitions:

instance MonadFix Simulate where
mx f = Sim (let Sima = f ain a)

instance MonadFix Draw where

mx f=D(i.let Dg =fa
(a;s; 19 = gi
in (a;s;i9)

Note that the Simulate instance is esserti ally the same asthe usual xed-point opera-
tor. The Draw instanceis a bit more complicated, but the reader can seethat we perform
the xed-point computation over the variable a, (i.e., the value), passing around i and s
untouched. Now, to simulate togde, we just useour Simulate monad:

Man> toggle :: Smulate (Sig Bool)
Sim [False ,Tr ue,False ,Tr ue,False ,Tr ue,False ,..

and, to get a simple textual drawing, we simply switch to the Draw monad:

Man> toggle :: Draw (Sig Bool)

wO =inv wl
wl = delay Fase w0
Result : "wl"

The handling of recursion via m x is somavhat mysterious at this point. The whole
point of this thesis is to expose the mystery, and to explore the interaction between
recurson and e ects, heading toward an equati onal theory of value recursion.



1.3 Recursive monadic bindings

Theuseof m x totietherecurdveknot in amonadiccomputationis similar to the handling
of recursive bindings in usual let-expressims. For clarity, we will usethe keyword letrec
here when a binding can be recursve, and let otherwise. In the pure world, we have:

letrec x = e in e°
let x = x ( x.e)in e°

( x. €9 (x ( x €)

What happensin a monadic computation? Similar to letrec, let us usethe keyword
mdog for monadic bindings that can be recursive, and do otherwise. We have:

mdo f x e eg
dofx mx (xe)eg

mx ( x.e) = x &°

In Chapter [7, we will describe an extension to the do-notation of Haskell allowing
bindings to be recursive, using an enhanced version of this translation. Then, we will be
able to writ e the toggle example of the previous sedion as follows, the compiler taking
care of the insertion of appropriate calls tom x :

togde = mdo inp inv out
out delay \False " False inp
return out

There is an opportunity here to clarify a potertially confusing issue about value re-
cursion. Consider a recursive de nition of the form:

countDown n = if n == 0
then print \ Done!"
else do print n
countDown (n 1)

The intention is clear: Each time countDown is called, we want the e ect of printing to
take place In this thesis, we will not be dealing with such de niti ons, asthey are already
explained in terms of the usual xed-point construction:

countbown = x (f. n.if n== 0
then print \ Dane!"
else do print n
f (n 1))

%Thecloses wecan getto do using ASCII. (Wewould have used dor ec, but that isjust too long.) Note
that the use of Haskell-like syntax is just for convenience. We could have used Moggi's lett x ( ein €°
notati on and the keyword letr ect as well [63].



Note that e ects are part of countDown's exeaution, rather than its de nition. That
is, the e ect of printing is not performed to determine the meaning of countDown itself.
In the toggle example, however, we seethat eects are part of the de nition: They are
performed in order to determine the values of inp and out, and the cycdic dependence
gives rise to the needfor value recursion. In a sense,the use of recursion and e ects in
countDown are orthogonal, with no interference in between. As shown above, this kind of
recurson is already explained in terms of x, the usual x ed-point operator.

1.4 A generic mx ?

In Section we saw two partic ular examples of m x, one for the Simulation monad,
and another onefor the Draw monad. Are these functions actually instancesof a generic
schema? That is, can we nd ade nition of mx that will work for all monads, regardless
of which kind of e ect we ded with? Let us pausebriey and consider how one might go
about de ning such a generic operator.

Recall that the least xed-p oint operator on domains sdis es the property:

X w0 ! ) !

x f=1f(x f)
which also serwes as a de nition for x in a lazy language such as Haskell. One might
think that a similar de ning equation can be found for m x aswell. Inded, it is not hard
to generalize to the monadic case:

m X “Monadm) (! m )! m
mx f=mx f = f

Note that this de nition makessensefor all monads(i.e., it is polymorphic in m). But
isit a\good" de nition? That is, can we useit sersibly to implemern value recursion?

The short answer to this question is, unfortu nately, no. To seewhy not, simply note
that this de nition is equivalent to:

G
f) = f;?2 =f;?2 =f =1;:.0

mxf=x(mm

which will divergewheneer the operator is strict inits r st argument.p Furthermore,
even when = isnot strict, this de nition will attempt to compute the xed-point over

“Note that the call to m x f will diverge regardlessof what f is. In general, monads based on sum
typeswill suer from this problem, asthe = operator needsto inspect its rst argument to see how to
proceed. Haskell's maybe and list monads are two popular examplesthat are based on sum types. Other
important examples where the = operator is strict in its rst argument include the frequently used 10
and strict state monads.
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both values and e ects, which is simply not what we are trying to achieve. In value
recurson, we want the xed -point to be computed only over the values, wit hout repeating
or losing the e ect s. We will codify what we mean by value recursion in Chapter [2/ using
a number of equational properties, exploring the interaction between recursion and e ects
in depth. Then, we will be able to seemore clearly why this default de nition is not
appropriat e for implementing value recursion.

1.5 The basic frame work and notat ion

For most of this thesiswe investigate value recurson in the usual domain theoretic seman-
ti csof programming languages, wheretypesare modeled by domains[77, 82]. We write ?
for the least element of the domain represerting the type , dropping the subscript when-
ever unambiguous Functions are modeled by continuous (and hence monotonic) maps
between domains, not necessariy strict. Recursion is modeled via least- xed points. We
use monadsto model e ect s, following Moggi [63]. Alt hough by no means comprehensiwe,
the reader may nd it useful to skim over Appendix (A, which contains a brief review of
X ed-point operators.

We expect readersto be familiar with functional programming [35, 87], parti cularly
Haskell [7,/68]. For the most part, we use Haskell simply asa syntactically beded up ver-
sion of -calculus [30], sofamiliarity with any functional language should be suci ent. A
basicunderstanding of domain theoretic semantics of programming languagesis necessary
to follow the technical developmert [76, 83]. Except for Chapter [6, we will be mainly inter-
ested in the \fun ctional programming view" of monads [4, 91], rather than the categorical
one|[2, 55]. Finally, we will have occasion to usethe parametricity principle, allowing us
to derive theorems from the typesof polymorphic functions [50, 75, [88].

Natur ally, the theory of value recursion is independert of any parti cular programming
language. However, our work is closely tied to Haskell, and we will be careful in pointing
out the caseswhen the domain theoretic semantics and the semanti cs of Haskell do not
quite match up. The main di erercesshow up in the treatment of products. Sincetuples
are lifted in Haskell, it is not the casethat (? ;? )= ? . Therefae, the equality
x=( 1X; 2x)fails. Similarly, (x:: ):? 6 ? , ,ie., thefunctiontypeisliftedtoo.
Similar commertsapply to sum typesaswell. Finally, theunit data type hastwo members,
? and () itself, that is, it is not realy a terminal object. Luckily, thesedi e rencesdo
not causemuch trouble in practice, aslong as one is aware of them. We point out the
caseswhere the di ererce becanessigni ca nt.

In our exposition, we will stick to Haskell notation as much as possble, deviating
from it only for typographical purposes.The di e rence mainly shows up in compositions
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and -bindings. For instance we will write Haskell's: nf -> ng -> nx -> (f . g) xas
f. g0 x.(f 0 x

1.6 Outl ine of the thesis

Our aim isto get through the basicsof value recursion rather quickly, before we actually
investigate individ ual instances. To this end, we usethe next two chapters to introduce
a number of equational propertiesthat govern the behavior of value recurdon operators.
Among these,we will identi fy thr ee fundamental properties (namely strictness,purity, and
left shrinking), and in the remainder of the thesks we will condder only those operators
that satisfy this minimal core.

Chapters(4land[5 are dedicated to the study of individu al instances. In Chapter |4, we
investigate a wide range of monadsthat are frequertly usedin functional programming,
presenting value recurson operators for them. In Chapter [5, we argue that it is highly
unlikely that the conti nuation monad has an asociated value recursion operator that will
satisfy our requirements.

Chapter/6 takesa stepbadk and looksat a possible categorical theory of value recursion,
basedon the notion of premonoidal categoriesand traces. Even though the theory of traces
does not provide a perfed t, it isillumin ating to seehow recent work in this areacan be
generalized to capture value recursion for a certain class of monads.

Chapters/7/and [8 deal with the Haskell language in particular. In Chapter|[7, we will
turn our attention to syntactic support for value recursion, preseriing a recursive version
of Haskell's do-notation. In Chapter [8, we will study Haskell's IO monad. Since the IO
monad is hardwired into Haskell, it is not possibleto investigate value recursion for it
directly. Hence we presert a model language(complete with I/O operationsand mutable
variables), and shov how one can model value recursion in this world.

Chapter (9 presents a number of examples,which, in addition to the circuit modeling
example of this chapter, provides a tour of potertial applications of value recursion.

Chapter[10 concludesthe thesis with a discus$on of related work and future research
directions. A brief review of xed-points, along with seweral proofs that are omitt ed from
the main body of the thesis are given in the appendices.

Each chapter in the remainder of this thesis starts with a brief description of its
contents. Although we intend the chaptersto be read in order, readers may n d it useful
to quickly skim over these segnents to determine a particular reading plan according to
their own interests.



Chapter 2

Prop erties of value recursion operators

What kinds of propertiesdo we exped value recursion operators to satisfy? So far, we have
been using phraseslike \ recursion without repeating or losing e ects,” or \r ecursion only
over the values" to characterize value recursion. The aim of this chapter is to formalize
our intuit ions by means of equational properties.

Synopsis. Wediscussa number of equivalenceghat we expect value recursion operators
to satisfy. These propertiesrange from those that imit ate properties of the usual xed-
point operator over domains, to thosethat govern the interaction between recurson and
e ects. Wealso provide a number of derived properties,including thosethat are granted by
virtue of parametricity. Seeral propertiesthat might be naively expeded, yet unsatis able
for a wide range of monads, are discus®d as well.

2.1 Stri ctness (Not hing from nothing)

The domain theoretic treatment of recursion in programming languages relies on least
X ed-points [76,/83]. That is, givena sped cation of theform x = f x, wheref :: | |
we expect x to bethe least satisfying this equation. In this sdti ng, one can show that a
function is strict if and only if its least xed -point is ?. Since? represerts no infor mation
in the domain thearetic ordering, our slogan in this caseis simply nothing from nothing.
Generalizing to value recursion, we expect the following property to hold:

Property 2.1.1 (Strictness) Letf :: | m
f?2 =?m , mx f=7?m (2.2)

Remark 2.1.2 In Sedion we will be able to derive the right to left implication
from other properties, i.e., we will show that if mx f is ?, then f must be strict. We
prefer expressing the strictnesslaw as it is, however, as it uniquely characterizes strict
functionsof type ! m

12
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2.2 Purit y (Just like x )

Purity formalizesthe intuition that m x should behave exactly like x, in casethere are
no eects:

Property 2.2.1 (Purity.) Leth:: ! |
mx (return h) = return (x h) (2.2)

Diagrammatically, we capture purity as follows:

s =

— h

return

Remark 2.2.2 We usewiring diagrams to capture properties pictorially. Note that we
do not formalize these diagrams, nor use them for any purpose other than illustrat ion.
Dashed boxesrepresert where value recursion is performed Thin lines show data ow.
The thick line, called the e ect line, refers to the details of the monadic computation.
Alt hough it is not correct to consider the eect line as carrying data, it usually helpsto
think of it assuch. (The eect line analogy holds very well for the state monad, but it is
not very intuitiv e for, say, the excetion monad.) We indicate pure computations by not
letti ng them use the eect line, asillustrated by the h box in the above diagram. The
solid loop on the right hand side indicates the useof x. (Note that there are no dashed
boxeson the right hand side asthere are no applications of mx.)

2.3 Left shrinking (No recursion { No x )

Reaall our naive translation schema for the recursive do-notation from Section Nat-
urally, we would like mdo to behave exactly like do, provided there are no recursive
bindings. That is, the following two code fragments should have the samemeaning:

mdo X A do x A
B mdo B

provided A does not make useof x, or any variable de nedin the block B. If B doesnot
have any recursive bindingseither, we can push mdo further down, evertually eliminating
it altogether. We capture this correspondenceby the left shrinkin g property:
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Property 2.3.1 (Left shrinking.) Let f :: ! I'm ,a:m ,
mx (x.a = yfxy)=a = ymx (xfxy) (2.3
where x doesnot occur freein a.

The name\left shrinking" is suggested by the corresponding diagram:

Remark 2.3.2 The reader might exped an analogousright shrinking property as well.
But, as we will seein Chapter [3, arbitrary lifting of computations from the right hand
sideof a = is not posside in general. We can, howewer, lift pure computations out. We
will provide a derived law to deal with this casein Sedion [2.6.3

2.4 Sliding (Pure mobili ty)

Letf ;i | andh: ! . Asreviewedin Appendx /A, the equation
x (h f)y=nh(x (f h)) (2.9

expressesthe dinaturality conditi on for x, an extremely important law for manipulating
X ed-points. We expect value recursion operators to satisfy a similar law as well.

Two problems arise in translating Equation 2.4 to the world of value recursion. The
order of f and h is swapped, and h is duplicated on the right hand side. Obvioudy, if f
and h can both perform e ects, swapping and duplication are both out of question. When
h is pure, however, we exped to be able to slide it over f:

Property 2.4.1 (Sliding.) Letf :: ' m ,h: |
f(h?)y=f?2 ) mx (maph f)=maph(mx (f h) (2.5)

wheremap :: (a! b)! ma! mb isthe usual lifting function.m The consequent
can be equivalently expressedas:

mx (x.fx = retum h)=mx (f h) = return h (2.6)

1T he function map is de ned by the equation map f m = m = return f. Note that, in Haskell
notati on map is called fmap, and the name map is reserved to be used with the list monad only [68].
Deviating from Haskell, we use the name map consigently for all monads.
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Diagrammatically:

The side condition, i.e.,f h and f should agreeon ?, is essential. When we think of
recurdon as an iterative processthat starts with ?, we seethat f r st recaeves ? on the
left hand side in the recursive loop, but recavesh ? on theright. If h? 6 ?,f will have
more information to start with on the right hand side. The side condition guaranteesthat
this extra knowledge is irrelevant: f must not distinguish between? and h ?. It isworth
noting that dinaturality of x (Equation [2.4) does not require any sudch conditions As
we will seein Chapter [3] however, wit hout the side conditi on, sliding is unsatis able for
many practical monads of interest.

Observ ation 2.4.2 The side conditi on is trivia lly sdis ed if h is strict. It turns out
that this particular caseis derivable from parametricity (seeCorollary 2.6.12).

Note Thealert readerwill note that the order of e e cts doesnot matter for commutativ e
monads, and hence one might expect a swapping property where both computations are
e ectful. Thisisinded the case,seeSection 3.3 for details.

2.5 Nesting (Two for the price of one)

Bekic's property for usual xed -points statesthat simultaneousrecursion over multiple
variables is equivalent to recursion over one variable at a time (seeAppendix |A.) In the
value recursion world, one way to expressthis relation is to assat the equivalence of the
following two expressims:

mdo X mdo y f (x;y)

mdo X f (x; x)
return y

return x return x
The nesting propertyE stipulates this equivalence
Property 2.5.1 (Nesting.) Letf = (; )! m
mx (x.mx (y.f(x;y))=mx (xf (X;Xx)) 2.7)

2This property was rst suggested to us by Ross Paterson (personal communication).
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The following proposition states an equivalent form of nesting, which is quite useul in
symbolic manipulations:

Proposition 2.5.2 Letf ::(; )! m¢(; ). Assuming true products, the equation
mx ((x;). mx ((5y).f(Xy))=mxf (2.8)

is sdis ed exactly when nesting holds, provided m x satis es the diding property.
Proof  See Appendix/B.1.
Using Equation 2.8, it is easy to descibe nesting diagrammatically:

Just like the Bekic property for x, nesting generalizes to any number of variables. For
instance, one can derive:

mx (X 5 ). mx ((5y;)-mx ((552).f(xy;2))
=mx ( (x;y;2).f (x;y; 2)

Note that the order of nesting is also immaterial, we could have recursed over any permu-
tation of the variables; for instance, rst over z, then x and nally vy, etc.

(2.9)

Remark 2.5.3 We will take a close look at Equation (2.8 in the caseof lifted products
(asin Haskell). Assuming m x sais es strictness,the left hand side will always be ?, due
to strict matching against pairs. Using irrefutable patterns, one might attempt:

mx (~(x; ). mx (~(5y);f (xy)=mx f

However, a problem still remains. If f is strict, then the right hand side will be ?, but
the left hand side might produce an answer, because? 6 (?;?).2> The proper way of
expressing Equation[2.8 wit h lifted products is:

mx (~0 ). mx(~Gy);f xy)=mx (~xy).fxy) (2.10)
Similar to Proposition[2.5.2, one can establish:

Proposition 2.5.4 In the caseof lifted products, Equation [2.7/is equivalent to Equa-
tion(2.10, provided m x satis es sliding.

3Peter Thiemannwas rst to notice this problem (personal communication).
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2.6 Deriv ed prop erti es

One can derive new equaltie s using the properties we have described so far, and proper-
ties of the underlying domain-theoretic framework. This sedion presents a collection of
such laws|those that we have found to be the most useful when reasoning about value
recurson.

2.6.1 Constant functions

Left shrinking and purity properties imply an expected property of xed-point operators:
If the xed-p oint variable is not usead, recursion is irr elevant:

Proposition 2.6.1 Leta: m beaconstant (i.e., X does not occur freein a). Then,
mx ( x.a) = a (2.11)

provided m x satis es purity and left shrinking laws.

Pr oof
mx (x.ay=mx(x.a = Yy.returny)
= a = y.mx ( X retun y) fleft shrinking g
=a = y.return (x ( X.Yy)) f purity g
= a = y.retuny
= a

Note that x (X: y) = (X y) (X (X y))=y.

The diagram in this caseis trivia l:

Similarly, we canlift a conditional expresson from insidean m x , if thetest expression
is not involved in the recursion computation:

Pr oposition 2.6.2 Let a be a boolean expressian where x does not occur freein a. Let
f;g:x I m . Wehave:

m x ( x.if athen f x else g x) = if athen mx f else mx ¢ (2.12)

Proof Caseanalysis on the value of a. The True and False cases are obvious. When
a= ?, theleft hand side yields ? by Proposition guaranteeing the equivalence
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2.6.2 App roximation prop erty
Monotonicity implies that f ? always provides an approximation to m xf:

Proposition 2.6.3 Letf :: ! m . Then,
f?2vmxf

provided m x satis es purity and left shrinking.

Proof Since(x: f ?)v (x: f x), wehavemx (x: f ?)v mx f by the monotonic-
ity of mx . But the left hand sideis f ? by Proposition [2.6.1, completing the proof.

Remark 2.6.4 Proposition|2.6.3 states more than a rudimentary fact: f ? yields valu-
able informati on on the structure of the xed-p oint. Consgder the list monad, for instance
If f ;al! [a],andif f ? is acons<el, then soismx f. In particular, if f ? isa nite
list of length k, then the length of the xed-p oint is k aswell. In general for any monad
basedon a sum type, f ? determinesthe top leve structure of m x f.

We can now establish the strictnessproperty in one direction (seeRemark [2.1.2):

Corollary 265 Letf :: I m ,andmx f = ?. Then f is strict, provided m x
satis es purity and left shrinking laws.
Proof By Proposition(2.6.3 f ? v ?, implyingthat f ? = ?.

2.6.3 Pure right shrinki ng

The diding property allows lifting of pure computationsfrom theright hand sideof a =:

Corollary 26.6 Letf: ! m ,andh: ! ,
m X X;y). fx =z return (z; h z
((x:y) (z h 2)) 213
= mx f =z return (z; h 2)

provided m x satises sliding. (On the left hand side, the value-recursion loop is over
( ; ), while the one on theright hand sideit isover only.)
Proof We have
mx ( (x;y).f x =z retun (z; h 2))
=mx (map ( z (z; hz)) f 1) f slideg
=map (z(z;hz) mx f 1 (z(z5hz2z)))
=mx f =z return (z; h 2)

Sliding applies,since(f 1)?=(f 1 z:iz;h2)?=172.
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The diagram in this caselooks like:

which suggests the name pure right shrinking.

Warning 2.6.7 In case we have lifted products, as in Haskell, the pattern matches
against pairs should be done lazily. That is, every formula of the form: (x; y): f xvy
should be replaced with t: f ( 1 t) ( 2t), or the Haskell equivalent ~(x; y). f x v.
(And similarly for triples, quadruples, etc.) For instance Equation 2.13 should be ex-
pressed as:

mx (t.f(1t) = zreturn(z;hz) =mx f =z return (z; h 2)
or,

mx ( ~(x;y).fx = zretun (z; hz) = mx f =z retun (z; h 2)
avoiding the strict match against the tuple.

It is possibleto generalize Equation 2.13, sothat h can usex and y as well. We call
this variant the sape change law:

Proposition 2.6.8 Letf:: ! m ,haz I (;)!
mx ( (x;y). fx =z return (z; h z (X;y))) (2.14)
=mx f = zretun ( x ( (X;y). (z; h z (x;V¥)))

provided m x satis es purity, left shrinking, nesting, and sliding laws.
Proof  See Appendix

Remark 2.6.9 Simple manipulation of the right hand side of Equation [2.14 yields the
following equation:

mx ( (x;y).fx = zreturn (z; h z (x;y)))
=mx f = zreturn (z; x (y. hz(zy))

(2.15)

This form of the smpe changing property is quite useful in derivations, although somewhat
less symmetric than Equation 2.14.
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2.6.4 Parametricit y: The \free" theorem

Theleast xed-point operator on domains sdis es the following uniformity law [60, [82]:

Letf: ! ,g: ! ,ands: ! ,wheresisstrict. Then,
s f=g s=) s(x f)= xg (2.16)
This extremely useful law is exactly the free theorem for the type (! ) ! , and

hence granted by virtue of parametricity in our sdti ng [75]. For m x , parametricity gives
us the following theorem for free:

Theorem 2.6.10 Letf: ! m ,g: ! m ,s: !
maps f=9g s=) maps(mx f)=mx g (2.17)
provided s is strict.

Remark 2.6.11 It is worth emphasizing that we use Theorem|2.6.10/freely in our tr eat-
ment of value recursion@ If one takesa more abstract view, of course we exped Equa-
tion2.17to be postulated as a property to be checked, rather than taken for granted. Of
course, this begs the question exactly what strict would mean in this new sdti ng. See
Simpson and Plotkin's recent work for a modern account of such questions [79]. (We will
return to the treatment of value recursion in more abstract setiings in Chapter 6])

As we pointed out before, sliding strict computations is a direct consequenceof para-
metricity:

Corollary 2.6.12 Letf: ! m ,h: ! . Then,
mx (maph f)=maph (mx (f h)) (2.18)

provided h is strict.

Proof  Direct consequence of the free theorem with F 7! f h;G 7! map h f and
S 7! h, where we use capital letters to identify variables in Equation [2.17,

4A word of caution is in order regarding Haskell and parametricity. It is well known that the seq
primiti ve weakensthe parametri city properties of Haskell [50, 68, 88]. We do not make use of this primitiv e
in our work.
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Parametricity allows us to take mirror images of our properties. For instance, the
following equation is esseti ally the same as Equation [2.13

mx ((x;y).fy = zretun(hz z))= mx f =z return (h z; 2)

Obviously, we can consider the same equation over arbitrary length tuples and arbitrary
permutations as well. We capture the esence of this processin the following cordlary:

Corollary 2.6.13 Letf;g:(; )! m(; ). Theequaton mx f= mx g holds
exactly when its mirror image, that is:

mx (map swap f swg) = m x (mapswap g sSw)

holds, where swap (x; y) = (y; X).
Proof Simple application of Corollary [2.6.12/on both sides. Note that swap is strict.

As a n al corollary to the freetheaem, we consider the following injection law:

Corollary 2.6.14 Letf =z !' m |, i ! N , Where p is strict and
p i=id . We have:

mx f=mapp(mx (mapi f p)) (2.19
Proof LetF7!'mapi f p; G7!f,andS 7! pinthefreetheorem. Again, capital
letters denote the variables in Equation[2.17.

Note that Corollary [2.6.14 also follows from the diding property. Theintended reading
of Equation[2.19 is as follows. The function i injects 's to 's, while p projects back.
Hence, we can intr oduce spurious variables into the recursive loop, as long as they are not
used anywhere.

2.7 Stronger properties

In this section we presen two laws, strong sliding and right shrinking, which might be
naively expeded to be sais ed by value recurson operators. As we will prove in Chap-
ter 13, howewer, they are both unsatis able for a wide variety of monadsof practical inter-
est The most important monad satisfying both these propertiesis the lazy state monad
(Sedion 4.4).



22

2.7.1 Strong sliding

If Equation [2.5/holds unconditionally, (i.e., without requiringf (h?)=f ?), we say that
the given value recursion operator satises the strong sliding property. As we will see in
Chapter 3, strong sliding is not satis able for a variety of practical monads. Howewer,
when available, it allows us to deduce several interesting equaliti es:

Proposition 2.7.1 Letf :: ! m ,andq: . Then,
mx((x;).fx = y.retun (q;y) =fq = vy.return (q;y) (2.20)

provided m x satis esthe purity, left shrinking and strong diding properties.
Proof  See Appendix/B.3.

Proposition 2.7.2 Letf:: ! m ,g: ! m . Then,
mx ((x;y).fx = y%gy = x%retun (x%y9 2.2
=mx ((x;).fx = y2gy® = xO return (x% y9) '

provided m x satis es the purity, left shrinking, nesting and strong sliding properties.
Diagrammatically:

Proof  Straightforward applications of nesting, left shrinking, and the mirror image of
the previous propostion on the left hand side.

2.7.2 Right shrinkin g

Pure right shrinking (Corollary [2.6.6) tells us how to pull pure computationsfrom the right
hand sideofa =. Although it is not possibleto pull out e ectful computationsin general,
there are certain monads for which it is possibde to do so, the most important examples
being the output monad (or, in general monads basedon monoids|see Secion 4.5), and
the lazy state monad (Section [4.4). The following property capturesthe situation:

Property 2.7.3 (Right strinking.) Letf :: ! m ,g: ! m

mx ((x;y).fx = zgz = wretun (z; w)) (2.22)
=mx f = z.gz = w.return (z; w) '
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Diagrammatically:

Fact 2.7.4 Obviously, Equation[2.22 generalzes2.13. That is, if a given value recursion
operator satises right shrinking, it will automatically satisfy the pure version as well.

The combinati on of right shrinkin g and strong sliding allow us to generalze the scqe
change law (Proposition[2.6.8) as well:

Proposition 2.75 Letf: ! m ,g: ! (; )! m ,
mx ((x;y).fx = zgz((x;y) = wreturn (z; w)) (2.23
=mx f = zmx (b.gz(z;b)) = wretun (z; w) '

provided m x satis es purity, left shrinking, nesting, strong sliding and right shrinking.
Proof  Analogous to the proof of Proposition 2.6.8,

2.8 Classi cation and summary

Our propertiestry to capture the expected behavior of value recursion operators, formal-
izing our intuitions. It is worth reiterating the most important gods:

Recursion should be performedonly over thevalues, and the xed-p oint computation
should be similar to that of x,

E e cts should be neither repeaed nor lost,

In the case when there are no recursively bound variables, mdo should behave
exactly like a do.

How do our properties match these goas? Strict ness states that the xed-p oint is ?
exactly when the given function is strict, analogousto x . Purity statesthat, in casethere
are no e ects, m x should behave exactly like x . Thesetwo propertiesare ascloseaswe
ge to the behavior of the usual xed-point operator on domains. Left shrinking states
that mdo is exactly the same asdo, in casethere are no recursive bindings. We consider
thesethree propertiesto be the most esential, leading to the following de nition:
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De nition  2.8.1 (Value recursion operators.) A value recursion operator for a monad
(m; =;return)isafunctionmx = ( ! m )! m ; sdisfying:

Strictness f ?2 = ? , mxf=?m,
Purity: mx (return h) = return (x h);

Left shrinking: mx ( x.a = y.fxy)=a = vy.mx ( x.f xy); pro-
vided x is not freein a.

At this point, two questions arise. First, why are sliding and nesting properties left
out from De nition[2.8.1, even though we have found that they are both satis ed by many
instances of m x in practice (seeChapter [4)? And secad, are there other properties of
interestthat we have completely missed?

The answer to the r st question is a matter of choice. We would like to keep the
requirements as simple as possible, but no simpler. As we will seeseveral examples in
Chapter /4, operators that do not satisfy the basic properties mandated by De nition[2.8.1
yield resuts that are not very sensible for value recursion. Other properties are just as
important theoretically, but it is our belief that they are in a se@ndary status from a
practical point of view.

It is much harder to answer the seond question. Whether we have the \rig ht" def-
initi on should become apparent as value recursion nds its placein practical functional
programming. Our work, both in the context of this thesisand in using recursive monadic
bindings in practical Haskell programs, led us to conclude that De niti on[2.8.1 sdtisfacto-
rily captures the minimal common core.

Finally, a comment on uniquenessis in order. Given a particular monad, we do not
require a unique value recursion operator for it. Theremay be none, exactly one, or many
operators satisfying the requirements of De nition (For instance, in Chapter 4, we
will be able to show that identity, maybe and list monads of Haskell have unique value
recurson operators, while the state monad has an in n ite chain of them. On the other
extreme, the continuation monad probably hasnone|se e Chapter 5 for details.) Further-
more, di e rent operators for the same monad might satisfy di erent ses of properties in
addition to the basic set mandated by De nition2.8.1. In such a case the user hasthere-
sponsihility to pick the most appropriat e operator for the problem at hand, possibly using
our propertiesasa guide. We will see a concrete example of this situation in Section (4.4,



Chapter 3

Structure of monads and value recursion

Sofar, our study of value recursion was set in the context of arbitrary monads. We wil
now take a close look at various properti esthat monadsmay sati sfy, such asidempotency;,
commutativity, or additivity. The aim of this chapter is to investigate the implicati ons of
structur al properties of monads for value recursion.

Syngpsis. We rst consder monads whose = operator is strict in its r st argu-
mert, covering many practical monads of interest. We show that strong sliding and right
shrinkin g properties are not satis able for such monads. We then consder idempotent,
commutative and additive monads, trying to identi fy how value recursion operators should
behave in each case Finally, we brie y discussembeddings and monad transformers.

3.1 Monads wit h a strict bind operator
Consder a monad m whose = operator is strict in its rst argument. That is:
?m =f=7?n (3.2

forallf : ! m . Haskel's maybe, list, IO, and strict state monads are examples of
such monads. In this section, we will prove that neither strong sliding, nor right shrinking
properties can be satis ed for such a monad, unless it is trivia |l in the following sen:

De nition 3.1.1 (Trivial monad.) A monad (m; =; return) is trivial if, for all types
, the domain corresponding to the typem consistsonly of ?

Remark 3.1.2 The canonicd example of a trivia | monad is:

data Void -- no constructors; all we have is ?
return x = ?
m = f=2

25
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Note that all of our properties hold for a trivial monad, with the only posside de nition
mx f =72,

Lemma 3.1.3 Let(m; =; return) beamonad where = isstrict inits r stargumert.
If return is strict aswell, then m is trivial .

Proof Pick an arbitrary type , and let a be an arbitrary elemert of m . We have:

a = oonsta? fcong x y = xg
= return ? = oongt a f left unitg
= ?m = oonst a freturn is strictg
= ?m f = isstrictg

The result now follows by De nition

Note that Lemmal3.1.3 requires return to be strict at all types. The following lemma
simpli esthis requirement, reducing the proof obligation to return being strict at only one
particular type?

Lemma 3.1.4 Let(m; =; return) beamonad where = isstrict inits r stargumert.
If return is strict at one type, (i.e., there existsatype s.t. return ? = ?, ), thenit
is strict at all types.

Proof See Appendix[B.4.

After thesepreliminary results, we can now proceed with our original goal:

Proposition 3.1.5 Let (m; =; return) be a monad where = is srict in its rst
argument. If there is a value recursion operator for m that sdtis es the strong sliding
property of Sedion then m is trivial.

Proof Wewill rst establish that if such an operator exists, then return must be strict.
De ne

f 0! m( h 20! (O
f () = return () h_=(
Notethat f h = x return (). Let mx beavaluerecurdon operator for m satisfying

the strong sliding property. Then, Equation [2.6] must hold with no side conditions. The
right hand side of Equation [2.6 reads:

LFor brevity, we simply referto amonad (m; =; return) by the name of its type constructor, i.e., m.

2T his lemma and its proof has beensuggeged to us by Ross Paterson (personal communication).

3The domain corresponding to the unit type, written () following the Haskell notation, consists of
exactly two elemerts: ? and (), with the obvious ordering ? ().



27

mx (f h) = return h

and, by Proposition 2.6.1 and the left unit law, it must be equal to return (). Similarly,
the left hand side of Equation 2.6 reads:

mx ( x.f x = return h)

and, by the strictness property, it must compute to ?. (Note that f is strict because
it matches its argument against (), and = isstrict in its r st argument by hypothesks.)
Hence strongsliding impliesreturn () = ?. By monotonicity, then, return must be strict
at the type (). Hence,by Lemmas/3.1.4 and[3.13, m must be trivi al.

A similar argument shaws that right shrinking property sharesthe samefate:

Proposition 3.1.6 Let (m; =; return) be a monad where = is strict in its rst
argument. If there is a value recursion operator for m that satises the right shrinking
property of Sedion then m is trivial.

Proof De ne:

S [Int] ! m Int
f S [int] ! m [Int] g (int]
g [X] = return x
f xs = return (1 : Xs)
g. =retun 1l

It is easy to see that the left hand side of Equation [2.22 must yield ? by the strictness
property (note that g will divergeon 1: ?). By purity, we have

m x f = return (x ( xs.1:Xxs))
Hence the right hand side of Equati on[2.22 evaluates to
return (1; x ( xs.1: xs))

implying that ? = return (1; x ( xs.1:xs)). By monotonicity, then, return must be
strict at the type (Int; [Int]) . Hence by Lemmas(3.1.4 and[3.1.3, m must be trivial.

In other words, unless a given monad m is trivial , no value recursion operator for
m can satisfy strong sliding and right shrinking properties, provided m's = operator is
strict in its r st argument. Thisis an important result, asit identi esinherert limitations
on properties that can be expeded to hold for many practical monads of interest.

Corollary 3.1.7 Neither strong sliding nor right shrinking properties are satis able for
Haskell's mayte, list, strict state and IO monads, as none of these monads are trivia | (no
pun intended|s ee De nition 3.11).
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3.2 Idempotent monads
A monad m is said to be idempotent if the equaﬁo
a = x.a = y.retun (x;y) = a = X retun (x; x) (3.2

holds for all a :: m  [46]. Identity, maybe and environment monads are examples of
idempotent monads. Intuiti vely, a monad is idempotent if computations can be duplicated
whenever their results are nealed.
Note that Equation 3.2/ doesnot specify any data o w betweenrepeaed computations.
That is, the equation
x.fx = f = f (3.3

is not required to hoIdE However, if a monad is idempotent, we exped both sides of
Equation [3.3 to be indistinguishable by m x . Furthermore, once m x f is computed for
a function f, further applications of f should not change the result. We capture these
intuitions in the following property:

Property 3.2.1 (ldempotency) Letf :: ! m , wherem is an idempotent monad
with a value recursion operator m x . Then,

mx f (3.4)
mx f (3.5)

mx(x.fx = f)

mx f = f

The rst equality can be captured diagrammatically as follows:

-1 4‘\
I
|
I
I
I
I
|
I
]
I
I
I
I
I
1

[ D

R
I
|
I
I
I
I

/

We leave it to the readerto picture Equation 3.5,

Remark 3.2.2 It isimportant to note that Property does not state that Equa-
tion 3.4 or (3.5 can be used as de nitions of value recursion operators whenever the un-
derlying monad is idempotert.% For instance, Equation [3.5 will always produce ? for

*In categary theory, a monad m is called idempotent if its join = m (m )! m operator is an
isomorphism [55]. Thede nition we useis more useful from a practical point of view, however. For instance,
the maybe monad is idempotent with our de nitio n, although its join operator is not an isomarphism.

5As a counterexample, consider the identity monad where Equation(3.3 is satis ed only for idempotent
functions (i.e., f 2 = f), but not in general

SIndividual de nitio ns might coincide, of course. For instance, in Chapter [4, we will seethat Equa-
tion[3.5/doesindeed de ne value recursion operators for identit y and environments, but not for exceptions.
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m x in a monad with a = operator that is strict in its rst argument, which is clearly
undesirable.

We will discussidempotency property with respect to identity, exception, monads
basedon idempotent monoids, and environments in Chapter 4|
3.3 Commutative monads

A monad m is sad to be commutative if the order of e ects does not matt er. That is, if
the equation

x;y). fx = x%gy = yoreturn (x% y9 3.6
= (x;y).9gy = y%fx = xO%retun (x%y9 '
holdsforall f :: ! m andg: ! m . Foracommutative monad, we expect m x
to satisfy swapping of computations similarly, as depicted in the following diagram:
| X "
R ——— ] el X
G = e
y— f 9 | Y71 g f Ly
Property 3.3.1 (Commutativity.) Letf 2 I m ,g: ! m |, wheremis a
commutative monad with a value recursion operator m x. Then,
mx ((x;).fx = yogy® = xO retun (x® y9) 3.7)
=mx((y.gy = x%fx% = yOreturn (x% y9) '

In casea value recursion operator sais esnesting and strong diding laws, Equation [3.7
can be derived automatically:

Pr oposition 3.3.2 Equation [3.7 follows from nesting and strong sliding laws.

Proof  Straightforward applications of Equation(2.21, Equation (3.6, nesting, left shrink-
ing, and Equation [2.20 on the left hand side.

Examples of commutative monads include identity, environments, and monads based
on commutative monoids. We will investigate the commutativity property with resped
to thesemonadsin Chapter 4.
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3.4 Monads wit h addit ion

A monad m is said to be additive if there exists an element zer :: m , and an operation

om ! m ! m ,sud that:
zem p = p
zew = f = zew
p zero = p
p zem = zew
P @ r=p (@ )
Therelation between and = is not speci ed, although one generaly checks for the
following distributiv e laws:
P g =f =p=Ff q =1 (3.8)
p =(xxgx rx) = p =g p =r (3.9

In Haskell, additive monads are captured as instances of the MonadPlus class where
zemw is called mzem and iscaled mplus [68]. The maybe and list monadsare instancesof
this classm It is interesting to note that the list monad satis es Equation (3.8, but not 13.9;
while the maybe monad satis es Equation [3.9, but not 3.8

For an additive monad, we expect the following property to hold:

Property 3.4.1 (Distributivity. ) Let m be an additive monad with as the binary
operator. Let m x be a value recursion operator for m. Distributivity states:

mx (x: fx gx)=mxf mxg (3.10
If Equation(3.8/holds, left shrinking is suc ient to establish the distributivi ty property:

Proposition 3.4.2 Let m bean additive monad with  asthe binary operator, and let
m X be a value recursion operator for m. If  satis es Equation[3.8, then m x will satisfy
distrib utivi ty.

Proof  See Appendix/B.5.

Remark 3.4.3 It isworth noting that Equation[3.8 is a suc ient, but not a necessary
conditi on for satisfying distributivi ty. As we will seein Chapter [4, the mayke monad does
not sati sfy Equation yet it has a value recurgon operator satisfying distributivit y.

“In fact, the law p zero = zero fails for both the maybe and list monads when p = ?. This
discrepancy doesnot cause any troub le for our purposes. (Recall: m k=m = _k)
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3.5 Embeddings

Congder Haskell's maybe and list monads. Intuit ively, every value of type Maybe can
be considered as a value of type[ ], mapping Nothing to [ ] and Just x to [x]. In a certain
sensethe list monad is rich enough to capture the featuresof the maybe monad. Formally,
this relation is captured by monad homomorphisms and embeddings [53, 89):

De nition  3.5.1 (Monad homomorphisms and embkeddings.) Let m and n be two mon-

ads. A monad homomorphism, ::m! n,is afamily of functions, one for each type |,
om ! n ,such that:

return, = returny (3.11)

(k =q f) = k =q f (3.12

wherek :m andf :: | m . An embedding isa monad homomorphism where each

ismonic (i.e., injective).

Equations/3.11 and3.12 precisely describe how interads with the proper morphisms
of the involved monads. For value recursion, we also needto specify how and mx
interacts:

De nition  3.5.2 (Monad homomorphisms and embeddings for value recursion.) Let m
and n be two monads with respective value recurson operators mx ,, and mx ,. Let

»m ! n beamonad homomaphism or embedding. We say that respects value
recurgonif, forall f :: I m

(mxmf)=mxy( 1) (3.13

In Chapter/4, we will seeseweral concrete examples, including the embeddings of maybe
into list, environment and output into state, and identity into any other monad.

Proposition 3.5.3 Let :m! n bean embedding of a monad m into a monad n. Let
m X , be a value recursion operator for n. Letg:: ( ! m )! m be a function,
satisfying the strictnessproperty. If satises Equation [3.13 where g plays the role of
mX,,, then g is a value recurson operator for m, i.e., it will saisfy purity and left
shrinkin g properties as well.

Proof Simple equational reasaing. We presert the left shrinking caseto illustrat e the
idea
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g(xa = yfxy))
=mx(x (a = y.fxy) fEgn. [3.13g
=mx(x. a = vy (fxy) fEqgn. [3.12g
= a = y.mx (x (fxy)) fleft shrink g
= a = y. (g(xfxy)) fEqgn. [3.13g
= (a = y.g(xfxy) fEqgn. [3.12g

Since is injective, we obtain:

g(xa = yfxy)=a = yg(xfxy
showing that g sdtis es left shrinking.

Remark 3.5.4 It is unfortunate that strictnessis not necessarily re ected. Using the
proof technique above, onegets: (g f) = mx,, ( f); but wecannot conclude that g
satis es strictness unless isstrict. It turns out that requiring to be strict is an overkill ;
many embedding examples we will see in Chapter [4 are not strict.

Pr oposition 3.5.5 The sliding, nesting, strong sliding and right shrinking propertiesare
re ect ed through embeddings aswell. That is, if :m ! n is an embedding respecting
value recursion, and if m x,, satis es any of theseproperties, then sowill mx ,.

Proof  Similar to the previous proposition.

Observ ation 3.5.6 Composition of two embeddings is still an embedding, hence prop-
ertiesare re ected through multiple embeddings as well.

Is it possible to derive value recurson operators using embeddings? Intuiti vely, if a
monad m embeds into another monad n, and if n has a value recursion operator, one
might expect to be able to derive a value recurson operator for m. In this case,we will
needthe embedding to be a split monic, i.e., to possess left inverse in order to be able
to map results badk to m. For instance, the enbedding of the maybe monad into the list
monad, and its left inverse, are given by:

(] Hy

(x] " (x:xs)

Nothing
(Just x)

Nothing
Just x

More formally, let ::m ! n bean embeddng with the left inverse “an! m,ie.,
= idm . Notethat, in general, " isnot a monad homomorphism@ Let m x, bea

8Furth ermore, and e are not required to form a retraction pair, i.e., " 6vid [77]. In fact, s
generally incomparable to id, as demonstrated by the embedding of maybe into list.



33

value recursion operator for n. When is the function:

g (! m )y m
gf =  (mx,( f) (3.14)

a value recursion operator for m? Sincee is not a monad homomorphism, not all required
properties will follow automatically. Still, this construction gives a way of obtaining a
candidate value recursion operator, and we can test whether respects value recursion
with resped toit. In this case, we ned to verify:

() mxp( f)=mx,( f) (3.19)
forallf :: ! m . If Equation[3.15holds, Propositions[3.5.3 and3.5.5 will be su cie nt

to establish properties for g automatically.

Remark 3.5.7 It is easy to see that e will always satisfy Equation 3.11 In general,
Equation[3.12 will only be satis ed on the subsea of valuesthat arein the imageof . The
mayle into list embedding given above ill ustratesthis point. However, we suspect that the
subset of valueson which Equation[3.12 is satised might be suci ent to establish further
properties of the derived operator. We leave the exploration of this idea for futur e work.

3.6 Monad transfo rmers

Closdy related to monad homomorphisms is the idea of monad transformers It is often
the casethat one wants to add new features to an already existing monad. For instance
one can add exceptions, state or non-determinism to a monad, obtaining a monad with
new computational features. Monad transformers have been designed to solvethis problem
in a modular manner. Intuitiv ely, given a monad m, a monad transformert yields a new
monad t m, transforming return,, to returni, and =, to ={m. Furthermore, one
requires a monad homomorphism lift ::m ! tm , lifting computationsin m to the
new monad. We refrain from going into details here, the reader is referred to the rich
literature on monad transformers for details [22, 42, 53, [54].

For value recursion, we ask a similar question. Given a monad transformer t, is there
a natural way of obtaining m x ,, from mx ,,? A generic approach would be to convert a

given functionf :: I tm toafunctionoftype ! m ,apply mx,, togetthe xed-
point m , and transferit back to t m using lift. Unfortunately, to do the conversion
from ! tm to ! m ,onewould need a morphismwith typetm ! m , the

inverseof lift, which is clearly not available in general.



On the other hand, it is generally possble to lift arbitrary value recursion operators,
provided we know the exact structure of the monad tr ansformer. We will consider three
examples of monad transformersin Sedion [4.9, namely errors, environments, and state,
and show how we can lift the value recursion operators through these transformers. (T his
technique doesnot always work, however, asillustrate d by the corntinuation monad trans-
former. SeeSection 5.2 for details.)

3.7 Summary

In this chapter, we have concentrat ed on properties of value recursion operatorsthat follow
from the structural properties of underlying monads. As we have seen, if the = operator
is strict in its rst argument, then the strong sliding and right shrinking properties cannot
be satised. This is an important point: there are inherent limitations on what we can
expect from recursion in the presence of e ects. (Wewill retur n to this issuein Chapter6.)

The latter part of this chapter dealt with how value recursion operators re ect prop-
ertiessuch asidempotency, commutativi ty, and additivity, and how individual properties
are re ected through monad embeddings. In Chapter [4, we will g& a chanceto review
these properties with respect to concrete examples of value recursion operators.



Chapter 4

A catalog of value recursion operators

In this chapter, we presen value recursion operators for monadsthat are frequently used
in functional programming, providing a catalog of m x's for the working programmer.
Alt hough thereis no magic recpe, we believe that theseexamplespresent enoughpatt erns
to guide the construction of value recursion operators for new monads

Synagpsis. We establish a framework with the identity monad and then cover excep-
tions lists, state, output, environmerts, trees, and fudgets. The conti nuation monad
proves to be problematic; we consider it separately in Chapter 5. We also discussmonad
transformers, enabling us to create new m x 's from old.

4.1 Identity

The identity monad is the monad of pure values, modeling computations with no eects:
type ldentity =
return = id
x = f=1fx

with x asthe corresponding value recurson operator, i.e:

mx = ( ! lIdentity )! Identity (4.1)
mx f = x f

Proposition 4.1.1 Equation de nes the unique value recursion operator for the
identity monad.

Proof It iseasytoshowthat x satis esstrictness,purity, and left shrinking properties.
For uniquenesswe will show that any value recursion operator for the identi ty monad must
equal x. Let m x “be such an operator. We have:

mx°%f = mxO(return f) = return (x f) = x f

by using purity and the fact that return = id.

35
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Remark 4.1.2 Although we will stick to Haskell notation, we will generally avoid using
explicit tags to reduce clutt er as long as we can. For instance, for overloading purposes,
the proper way to de ne the identity monad and m x in Haskell isit

newtype ldentity = 1Id f unld :: g
instance Monad ldentity where

return X = Id x

Idx = f=1fx

mx f = x (f unld)

Properties It is easyto see that all of our properties hold for Equation 4.1, including
nesting, strong sliding and right shrinking. Furthermore, the identity monad is both
idempotent and commutative, and it is an easy exercise to show that Properties[3.2.1
and both hold.

The identity monad embeds into any other monad n, as long as return, is monic.
The homomorphism = return, easily sais es Equations [3.1143.13, assuming n has a
value recursion operator. (In other words, the identity monad is initi al in the category of
monadsand monad homomorphisms.)

4.2 Exceptions: The maybe monad

The maybe monad of Haskell can be usedto model exceptions:

data Maybe = Nothing j Just

return = Just
Nothing = f = Nothing
Just x = f =fx

with the following unique value recursion operator:

m X (! Mayke )! Mayhke
mx f = x (f unJdust) 4.2
where unJdust (Just X) = x

Pr oposition 4.2.1 Equation de nes the unique value recursion operator for the
maybe monad.

1Thenewt ype declaratio n avoids adding a separate ? elemert. If adata declaration isused, = should
match lazily (i.e.,~(Id x) = f = f x) to avoid strictness problems. (See Section (3.1 for details.)
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Pr oof Strictnessand purity are straightforward. For left shrinking, we needto show:
mx (xa = yfxy)=a = ymx (xfxy)

where a is a free variable. Case analysis on a su ces to show the equivalence When
a= ?, both sidesyield ?. When a = Nothing, we get Nothing. Finally, when a = Just z
for somez, both sidesyield mx ( x. f x z).

To show uniqueness,we do a similar caseanalysis. If f ? = ?, mx f must be
? by strictness. If f ? = Nothing, monotonicity implies that f = const Nothing; and
Proposition 2.6.1 guarantees that mx f = Nothing. Finally, if f ? = Just z for some
Z, then f must factor thr ough Just by monotonicity, i.e., there must be a function h suc
that f = Just h; or equivalertly, h = unJust f. Therefore,

mx f mx (Just h)

= mx (return h)
= return (x h) fpurityg
= return (x (unJust f))

To summarize, we have:

mx f = casef ? of
Nothing ! Nothing (4.3)
Just _ I return (x (undust f))

Note that we did not make any choices in constructi ng Equation [4.3; the behavior of
m X is completely dictated by the properties that must be sais ed by all value recursion
operators. We leave it to the reader to show that Equations/4.2 and are equivalent,
establishing unigueness.

Remark 4.2.2 By Proposition2.6.3, f ? is always an approximation to m x f, justify-
ing the caseexpressian in Equation Note that the case whenf ? = ? is implicitly
handled by pattern match failure.

Properties It iseasyto shov that Equation 4.2 also sais es sliding and nesting prop-
erties. As stated in Corollary [3.1.7, strong sliding and right shrinking propertiesfail.
How about idempotency (Proposition [3.2.1) and commutativi ty (Proposition [3.3.1)?
It turns out that the exception monad is indead idempotent (i.e., satises Equation [3.2).
Equations[3.4 and[3.5 are both séais ed . On the other hand, exceptionsare not commuta-
tive, due to the possibility of non-termination: Nothing = x. ? = Nothing; whereas
? = X Nothing = ?. Consequetly the commutativi ty property is not applicable.
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Finally, we condder the distributivity (Property 3.4.1). As mentioned in Sedion 3.4,
the maybe monad is additi ve:

Zem = Nothing
Nothing y =1y
Just X y = Just x

To establish
mx (x: fx gx)=mx f mx g

it su cesto do a caseanalysisonf ?. In casef ? = ?, both sides will yield ?. In case
f ? = Nothing, we will g& m x g on both sides. Finally, if f ? takesthe form of a Just,
both sides will reduceto m x f. We leave the details to the reader.

Remark 4.2.3 It is instructive to study failing de nitions of m x aswell. Consider:

mx%f = let Just x = f x
in return X

which is somewhatintuitive, considering how the recursive knot is tied over x. Obviously,
strict nessfails. More seriausly, left shrinking fails as well:

m x%( x. Nothing = y. return 1) = Just ?
Nothing = y. mx ?( x. return 1) = Nothing

compromising the equivalence of do and mdo expressionsn the absenceof recursion. We
alsohave m x 9 ( x. Nothing) = Just ?; which is truly bizarre.

4.3 Lists
The list monad of Haskell can be used to model computations with multiple resuts:
return X = [X]
(] =t =1
(xxxs) = f =fx+ (xs = f)
Given a functionf :: ! [ ], how do we compute mx f ::[ ]? Intuitively, we need

to sekect a pivot value to tie the recursve knot. Consider the following two candidates:

let (a:.)=f a let (_:a:.)="fa
in f a in f a
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where we pivot over the rst and the seond element of the resut, respectively. Of course
there is an in nite family of such functions, one for each particular position. As we will
seelater in this secion, none of thesealternatives give rise to a value recursion operator.
Instead, we condgder a moving pivot: Rather than xing a single pivot element for the
erntire computation, we compute each element in the result using its own position as the
pivot elemert. That is, the ith elemen of the xed-point of f can be sdected as the
x ed-point of the function head' f, suggesting:

mx f = x (head f):mx (tail f)

Thereis aslight problem wit h this approach, however: It always generatesan inn itelist,
repeding ? after reaching the actual end of the list. Luckily, there is an easy solution.
Rather than computing x (head f); we can compute x (f head); and stop when
the result is []. Putting theseideas altogether, we obtain the following operator:

mx (U [D! L[]

mx f = case x (f head) of

[t

(x:) ! x:mx (tail f)

(4.4)

As the following proposition shows, this de nition of m x is extremely well-b ehaved:

Proposition 4.3.1 The function m x given by Equation 4.4 satis es:

mx f=2? , f?2=272 (4.5

mx f=1[] , f?2=]] (4.6)

head (mx f) = x (head f) 4.7)

tail (mx f) = mx (tail f) (4.8)

mx (x.fx:gx) = xf :mx g (4.9

mx ( x.T x+ gx)
Proof See Appendix[B.6.

mx f H+ mx g (4.10

Remark 4.3.2 From the r st two equivalencesin Proposition [4.3.1, we seethat m x f
structurally followsf ?. That is, if m xf is ? or [], then soisf ?, and vice-versa
Similarly, m x fis a cons-cdl exactly when f ? is. We seethis correspondence over and
over in monads that are basel on sum-like data structures. (Seealso Remark [2.6.4))

Proposition 4.3.3 Equation /4.4 de nesthe unique value recursion operator for the list
monad.



40

Pr oof Strictnessis exadly the r st equivalence in Proposition4.3.1. Purity is easyto
establish; we leave it to the reader. Left shrinking is more interesting. We show:

mx (xa = yfxy)=a = ymx (xfxy)

by structural induction on a. The base cases,a= ? and a = [], are immediate. For the
inductive step, we assune a = (: gs, and reason as follows:

mx (x.(q:qs) = vy.fxy)

=mx (x.fxqg+gs = y.fxy)

=mx (x.fxqg+H+ mx (x.gs = y.fxy) fEqgn. [4.10g
=mx (x.fxqg+Hg = ymx (xfxy) fl.H.g
=(ymx (xfxy)g+Hags = ymx (xfxy)

=(q:q99 = y.mx ( x.fxy)

establishing the left shrinking property, and completing the proof that we have a legitimate

value recursion operator.
For uniqueness,we will apped to the approximation Iemmaﬁ Let mx refer to the

function de n ed by Equation and let m x °be another value recursion operator for the
list monad. We will show that:

8n:8f: approx n (mx f) = approx n (mx °f)

establishing uniqueness. The proof is by induction on n. The basecase(n = 0) is
immediate. The induction hypothess is:

8f : approx k (mx f) = approx k (mx °f)
for a xed natural number k. We neal to show that:
8f : approx (k+1) (mx f) = approx (k+1) (mx °f)

Pick an arbitrary function f. The proof proceads by caseanalysis on the value of f ?.
If f ?2 = ?, then both sidesyield ? by the strictness property. If f ? = [], then
f = const [] by monotonicity, and both sidesyield [] by Proposition 2.6.1. The case
when f ? is a cons-cel is a bit more involved. By monotonicity, we have

f x=(head f)x: (tal f)x = [(head f) x] + (tail f) x (4.17)

for all x, since f will always produce a conscdl given any argument. Furthermore, the
list monad satis es Equation and hencem x °must saisfy Equation by Proposi-
tion(3.4.2 where = +. Now, it is easyto see that:

2SeeAppendix[B.6 for a more detailed example use of this lemma.
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mx°%f = mx°%( x. [(head f) x]+ (tail f) x) fEqgn. 4.11g
mx % (return head f) + mx°(tail f) fEqgn.[3.109
return (x (head f)) + mx O (tail f) fpurity g
[x (head f)] + mx O (tail f)

x (head f):mx?O(tail f)

Also note that Equation(4.4 will take its second branch whenf ? is acons-cél. Thereore,
the proof obligation reducesto:

head (x (f head)) : approx k (mx (tail f))
= x (head f) : approx k (mx ° (tail f))

by the de nition of approx, and the above derivation. But this equation is immediate:
First elemerts are equivalent by the dinaturality of x, and the tails are equivalent by the
induction hypothesis.

Properties It isnot very hard to show that the sliding and nesting properties hold. By
the last equation in Proposition [4.3.1, distrib utivity holds as well (Property 3.4.1). On
the negative side, both strong sliding and right shrinking propertiesfail, as pointed out in
Corollary 3.1.7.

Remark 4.3.4 The mayle monad embeds into the list monad, as described in Sec
tion3.5. Furthermore, the value recursion operator for the maybe monad is exactly the
one predicted by Equation[3.14.

Remark 4.3.5 We closethis section by discussingfailing de nitions of m x for the list
monad. Consider the function:

f xs = [take 3 (1 : xs); take 3 (2 : xs)] (4.12

What should m x f be? Our de nition yields: [[1; 1; 1]; [2; 2; 2]]; but the reader might
wonder about [[1; 1; 1]; [2; L; 1]; or [[1; 2; 2]; [2; 2; 2]]; which are produced by the
two alternatives we have sea at the begnning of this secton, i.e., by pivoting over the
r st and secand elemerts of the result. As we have mentioned, there is an in nite family
of such operators:E

mx;f = x (f hed tail'); i 0 (4.13)

®Note that these alternativesdo not form a chain; they are all incomparable. Furt hermore, they are all
incomparable to our de nition of mx (i.e., Equation(4.4) as well.
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How about properties? It is easy to seethat strict ness holds for all mx ;, but that's
where the good news ends. Except for m x o, all members violate purity. We have:

mx ; (return f) =return (f ?); i>0

Furthermore, the left shrinking property fails for all of them. For instance

1, 1; 2; 1]
1 1 2 2]

mxo( x [12] = vy [y;x])
1, 2] = y. mxo( x [y; x])

compromising the equivalence of do and mdo expressins in the abserce of recursion.
Intuiti vely, thesede nitions causeinterferencebetween elements. Note that:

X.[1;,2] = vy.[y;x]= X [1 x; 2 X]

and there is no reasonto exped anything but ? to play the role of x in the xed-point,
asthere is no information on what it can be. Indeed,our de nition of m x yields:

mx (x[152 = vy ly;x])=1[17?;27?]
2] = ymx (x[yx])=1[L7?;2 7]

In the light of this discussian, we seethat neither the list [[1; 1; 1]; [2; 1; 1]]; nor the
list [[1; 2 2]; [2; 2; 2]] constitute a viable x ed-point for the function de ned by Equa-
tion/4.12 Each indicate interference between the elements of the xed-p oint, violating
the left shrinking property.

In Section[9.1, we will seean example useof value recursion on the list monad, providing
practical evidencefor the de nition given by Equation 4.4 being preferableover thosegiven
by Equation4.13.

4.4 State

State monads capture the notion of computations that depend on modi able stores, pro-
vidin g safe accessto imperative features [51,/52]. A typical state monad, manipulating an
internal state with type , hasthe following structure [7,[91]:

type ST = LGy )
return x = s. (X; S)
f = g= s.let (a;s) ="s

in gas®
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The corresponding value recurdon operator is given by:

m X (ST )! ST
mx, f= s.let (a;s)=fas (4.14)
in (a; s9

(The reasonfor the name will be clear in a momert.)

Remark 4.4.1 The following pictur e depicts the operation of the value recursion oper-
ator for the state monad, providing the intuition for the diagrams we have beenusing so

far (see also Remark[2.2.2):
a
value out

f
state in state out

The monads we have considered up to now (i.e., identit y, exceptions, and lists) enjoy
the property that they all have unique value recurson operators. Is this the case for
the state monad as well? Referring to the picture above, we seethat the resuting state
transformer is required to return the xed-p oint value in the value out line in order to
satisfy purity, but it isnot clear how we should determine the n al state, i.e., the value of
the state out line. Equation captures the case when state out is obtained by running
f on the xed-point value and the current state. It is possibleto consider an alternativ e
semartics, where the resuting state is determined without any regard to the value part,
i.e., without any useof the xed-point value. That is, a de niti on of the form:

mx f = s.let (a;)=Ffasin (a; 2 (f ? 9) (4.15)

with the following picture:

: value out

f
L
1
P —O
f
state in state out

We might think of this operator as being strictly sequential in the state, i.e., it does
not make use of any \future" knowledgein determining what the nal state shoud be.
There is a whole family of such operators, using approximati onsto the xed-p oint value:

mx; f= s.let (a;.) =f asin (a; pickj f s); i O (4.16)



where
pick; f s= > (f (a0 1 (f as)) ?)s) (4.17)

For instance, the picture for pick, is:

L
O
f f f
state in state out

Note that m x  is precisdy the operator de ned by Equation By construction,
each pick; is an approximation to the next, i.e., pick; v pick;,;, implying mx; v m X, .
Furthermore, it is easy to seethat:

&
mx, = m X (4.18
i=0

where the m x, on the left hand sideis the operator de ned by Equation [4.14.
Example 4.4.2 The functions mx;, for all i, and m x, will always agree on the value

part of the xed-p oint. It isthe n al state that will be approximated by ead m x ;, the
limit being deliveredby m x , . To demongrate, congder the following function:

f w[Int]? ST [Int] [Int]
f xss= (1:Xs;Xs)
We have: o
i times
z__}
o(mx; f[D= 1:1:::::1:7

As expected, > (m x, f []) yieldsthe inn itelist of 1's. Notice how approximations are
re ectedin the nal state. (In all cases 1 (mx f []), i.e.,, the value part, will always be
the in n ite list of 1's.)

Proposition 4.4.3 The functions mx;, for all i (Equation [4.16), and mx, (Equa-
tion[4.14) are value recursion operators for the state monad.

Pr oof For brevity, we will only consider m x, here. Proofs for m x; are a bit more
tedious, but equally easy. For strict ness,we note that a functionf of type ! ST is
strict exactly whenf ? s= (? ;? ) for all s. We have:

let (a;s9) = f asin (a; s9

mx, fs

leta= x (a 1(fas)in (a; 2 (f as))
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Becausethe function a: 1 (f as) is strict, its xed-point is ?. Therefae, mx, f s=
(?;?), establishing that mx, f is? 4
For purity, we have:

mx, (return f) s.let (a; s = (return f) asin (a; s9

s.let (a;s9 = (f a; ) in (a; s9

s.let a= x (afa)in (a;s)

s.(x f;9)

return (x f)

For left shrinking, we need to show that:

mx, (xxg = y.fxy)=g = y mx, (x.fxy)

Simple symbolic manipulation reducesboth sidesto:

s.let (a;s) = gs
(a® s% = f a%a s°
in (a% s%

completing the proof.

Remark 4.4.4 Abusing the terminology a bit, one might consider m x, as a lazy-in-
the-state value recursion operator, while m X, is strict. As we will see in Section (4.8
and in Chapter [8 in detail, the operation of mx o is quite similar to the operation of
value recursion operators for stream processing and 10 monads. It is hard to develop
a corresponding intuit ion for mx; wheni 6 0. We do not know any applications that
might benet from them. Furthermore, they behave strangely wit h respect to the nesting
property, as we will see shortly.

Properties Having established that m x ; for all i, and m x, are value recursion oper-
ators, we now take a look at other properties. It turns out that sliding (Property 2.4.1)
is satis ed by all of them, but nesting (Property only holds for mx o and mx, .
Strong sliding and right shrinking propertiesonly hold for mx, .

Coun terexample 4.4.5 Let us r st consider nesting. Let

4We caution the reader about the use of true products. In case of lifted products, we would get
mx f = s.(?;?) 6 s. ?; violating strictness. But thisis hardly surprisinglev en monad laws fail
in this case. It is easy to seethat ( s. ?) = return = s. (?; ?); failing the right unit law.
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f w ([Int]; [Int]) ' ST [Int] [Int]
fxs= (1: 1X 2X)

Conddering left and right hand sides of Equation for each i > 0, we have:

2(mx; (xx mx (y:f (xy)[]) 12

2 (Mmx; (x: f(x x)[]) 1:2

where 1K denotes a list of k 1's. Sincethe nal statesdi er, nesting fails. (The value part
will bethe in nite list of 1's in both cases.) For the single call to m x; in the second line,
we simply get a snapdot of the value after i iterations, that is, exactly i 1's. The nested
calls to mx;, and hence to pick;, result in the extra 1 in the r st line. This behavior is
truly bizarre from the viewpoint of value recursion. In caseof mx o, the nal states will
both be ?, sincethe inner call to pick will be ignored by the outer one. In caseof mx
the nal state will bethe inn itelist of 1's, as expected.
For strong sliding (Sedion [2.7.1), consicer:

f w[Int] !t ST [Int] [Int] h o [int] P [Int]

f Xxs s = (Xs; XS) hxs=1:xs
Notethat f (h?)= s:(1:?;1:?)6 si(?;?)=1 ?, hencesliding (Property 2.4.1)
does not apply. Considering Equation we have:

?

2(mxo (map h f)[])
2(map h (mx, (f h)) [])

showing that strong sliding fails. For right shrinking (Property 2.7.3), let

1:7?

f 2 [Int] ! ST [Int] [Int] g w[Int]? ST [Int] [Int]
f xs s = (1xs; xs) gxs(-:k:) = (xs;[K])
We leaveit to thereader to shaw that right shrinking fails for m x 5 with this instanti ation.
It is possibleto generalize these examplesfor all other m x;, whenewr i is nite.

Remark 4.4.6 We do not know whether there are other value recurson operators for
the state monad.

4.5 Output monad and monads based on monoids

Every monoid gives rise to a monad, referred to asits representaion monad [2]. In pro-
gramming, the best known example is the output monad, as we will see shortly. Let
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(M; ;unit) be a monoid, where M is the underlyin g type. The corresponding represen-
tation monad is given by:

type RepM = (; M)

return x = (X; unit)

ma = f =let (a;m) = ma
(b;jn)y =1 a

in (b; m n)
For instance substituting String for M, \" for unit, and + for , one obtains the usual
output monad [7, 91]. The obvious value recursion operator is given by:
m X © (! RepM ) ! RepM
mx, f = let (a;m)="f ain (a; m) (4.19

As with the state monad, the choice of the name m x, is not arbitrary. We have a
family of recursion operators:

mx; f=1let (a;_) =1f ain (a; pickj f); i O (4.20)
where
pick f = 2(f (( 1 ) ?)) (4.21)
A straightforward calculation (analogous to Equation shaws that:
&
mx, =  mx; (4.22)

i=0
The coarespondencewith the state monad is not accidental. Any such representation
monad embedsinto the state monad via the embedding:

(&am)y= n.(a;n m) (4.23

with the left inverse: =~ f = f unit. Furthermore, works uniformly over all value
recursgon operators, including m x, . That is, for any monoid M :

mxREPMey = m ST (1) (4.24)

wherei is either a natural number or ! . It is an easy exaciseto show that the embedding
requirements (i.e., Equations[3.11/13.13) hold for .
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Properties By Proposition [3.5.3, whenewer an m x for the state monad satis es pu-
rity or left shrinking, the corresponding operator for the represenation monad of a given
monoid will satisfy it too. Note that is not strict, hence strictness is not automati-
cally guararteed (see Remark [3.5.4). Howewer, it is easy to seethat all m x; and mx,
satisfy strictness Therefore, we have an in n ite family of value recursion operators for
representation monads, similar to the casefor the state monad.

By Proposition sliding, nesting, strong sliding, and right shrinking properties
hold whenewer the corresponding operator for the state monad satises them. On the
negdiv e side, all of the counterexamples we gave for the state monad can be converted
to counterexamples for represenation monads with no di ¢ ulty, invalidating nesting for
m X ; when i > 0, and strong sliding and right shrinking for all but mx, .

If the underlying monoid is idempotent, the representation monad will be idempo-
tent as well. Similarly, commutativity of the monoid implies the commutativity of the
monad. In both cases, mx, will preseve idempotency and commutativity (Proper-
ties3.2.1 and [3.3.1). Unfortu nately, this result does not extend to m x; automatically.®

Remark 4.5.1 Similar to the casefor the state monad, it is an open question whether
there are other value recursion operators for monads basedon monoids.

4.6 Environmen ts

The environment monad, also known as the reader monad, captures computations that
use a store to read valueswithout modifying them. Using an environment of type , the
environment monad has the following structure:

type Env = !
return x = e. X
f = g= e.g(fee

The corresponding value recursion operator is given by:

m X 2 ( ! Env ) ! Env
mx f= eleta=fae (4.25)
in a

SFor instance, Equation [3.4 will hold for mx , only when , (f ?) 2 (1 (F?2))= 2(f ?),
which is not guaranteed just by the fact that  is idempotent. Similar arguments apply to Equati ons|3.5|
and (3.7 as well.
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Remark 4.6.1 It is an easyexerciseto show that Equation [4.25 is equivalent to the
generic m x given in Section [1.4. To the best of our knowledge identity and ernviron-
ment monadsare the only examples where the generic version acs asthe value recursion

operator.

Unsurprisingly, the environment monad embedsinto the state monad. The embeddng@
is given by f = s.(f s;s); with the left inverse f = 4, f. It is easy to see
that strictness holds for Equation [4.25. Therefore, Proposition [3.5.3 guaranteesthat
Equation [4.25 de nesa value recursion operator for the ervironment monad.

Properties By Proposition 3.55 and the obsenations made above, Equation [4.25/ sat-
is es all the properties satis ed by mx, of the state monad. That is, sliding, nesting,
strong sliding, and right shrinking properties, along wit h the basic requirements of strict -
ness,purity and left shrinkin g are all sdtis ed .

Finally, the ervironment monad is both idempotent and commutative, and Proper-
ties3.2.1/and(3.3.1/are both satised.

Remark 4.6.2 We do not know whether Equation [4.25 de nesthe unique value recur-
sion operator for the ervironment monad.

4.7 Tree monad

In this sedion, we will briey cover the tree monad [42):

data Tree = Leaf | Fork (Tree ) (Tree )

return x = Leaf X
Leaf x = f=1fx
Fork I r = f=Fok (I = f)(r = f)
The eect of = is to splice new subtreeson every Leaf of the r st argument. The

corresponding value recursion operator is given by:

m X (! Tree ) ! Tree

mx f = case x (f unL) of (4.26)
Leaf x ! Leaf x
Fork __! Fork (mx (lc f)) (mx (rc f))

The functionsunL, Ic, and rc are de ned as follows:

b1t doesnot matter which m x is chosenfor the state monad (i.e., m x , of Equation [4.14, or any m x|
given by Equation [4.16).
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Ic; rc o Tree | Tree
lc (Fork 1 r) =1
rc (Fork 1 r)y=rr

unL o Tree |
unL (Leaf x) = X

Compared to the value recurdon operator for the list monad (Equation 4.4), we se2
that unL plays the role of head, while tail is replaced by Ic and rc, projecting out the
children at each node. Otherwise, the de niti ons are structurally the same.

Remark 4.7.1 Despite all the similarities, the list monad does not embed into the tree
monad. There is no suitable element to map [] to, since our treesare always non-empty.
(An alternative formulation of trees, where data is stored in the nodes and leaves are
empty, doesnot give rise to a monad structure.)

Proposition 4.7.2 The function m x given by Equation [4.26 satis es:

mx f=2 , f?2=272 (4.27)

unL (mx f) = x (unL f) (4.28)

lc((mx f) = mx (lc f) (4.29)

rc (imx f) = mx (rc f) (4.30)

mx ( x. Fork (f x) (g x)) = Fork (mx f) (mx @) (4.31)

Proof Similar to the proof of Proposition [4.3.1.

Proposition 4.7.3 Equation [4.26 de n es the unique value recursion operator for the
tree monad.

Pr oof Analogous to the proof for the list monad (Proposition 4.3.3). Note that we
needto usea di erent version of approx that works on trees[38] (seeAppendix [B.6). For
uniqueness,we cannot refer to distrib utivity, as the tree monad is not additive. (Thereis
no appropriate unit elemert.) Howewer, we still have the operator: x y = Fork x vy;

which satis es:

hence a similar argument appliesasin the casefor the list monad. We leave the details
to the reader.
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Properties Sliding and nesting properties can be shown to hold for the tree monad,
while strong sliding and right shrinkin g fails by Propositions[3.15 and

4.8 Fudgets

In this section, we will take a look at fudgets,E a monad that has been designed to model
stream based computations. In its simplest form, the fudgetsmonad looks like:

data Fudget = Val
j Put Char (Fudge )
j Get (Char ! Fudget )

return = Val

Val a = f=1fa

Puucm = f=Puc(m = f)
Get h = f=Get (c.hc = f)

We will model functional I/ O using a simple interpreter over this data type:E

run > Fudget ! String ! (String; ; String)

run (Val a) inp = (\"; a;inp)

run (Put ¢ m) inp let (0;a,r)=run minpin (" :c:o0;a;r)
run (Get f) [] error \tr ying to Gé fro man enpty strea m"
run (Get f) (cics) = let (o;a;r)=run (f c)csin (? :c:0;a;r)

The function run accepts a fudget and an input stream, runs the computation and
deliversthe list of /O operations that took place, together with the nal value and the
remainder of the input. The list of operations consists of all characters that are printed
via Put (pre xed by !), and all characters that are read from the input via Get (pre xed
by ?). Notethat the orderisimportant, asit indicates the temporal relationship between
I/O actions. For instance, we have:

run (Put 'a’ (Get ( c. Put ¢ (Vval ¢)))) \123" = (\la?1!1";'1";\23")
For value recursion, we are interested in the meanings of fudgets of the form:

mx ( xs. Put 'a’ (Val (1 : xs))) (4.32

"It would me more appropriate to call these\ fudget-style stream processa@ monads," asthe presertation
here is only loosely basedon the original work on fudgets by Carlssan and Hallgren [28, 29]. For brevity,
however, we will contin ue using the word fudget.

8We will investigate Haskell's internal 10 monad in detail in Chapter [8.
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which intuit ively models a computation that will print the character a and then deliver
aninnitelist of 1's. Or, more interestingly:

mx ( cs. Get ( c. Val (c : cs))) (4.33)

which will rst read a character from the input stream (if available), and then return an
in nite list containing copiesof that character.
One possible value recursion operator for the fudgetsmonad is given by:

mx f = casef ? of

vVa . ! x (f wunval) (4.34)
Put c _! Put c (mx (unPut f))
Get . | Get( c. mx (unGetc f))
where
unVal (Val a) = a
unPut (Put _m) = m
unGet c (Get h) = hc

With this de nition, Expressioni4.32 yields:
run (mx ( xs.Put 'a’ (Val (1:xs))) \z" = (\ta"; 1; \z")

where 1 denotesthein nite list of 1's. The result indicates that there wasonel/O action,
which was printing the character 'a’; and no input was consumned. Expressia [4.33yields:

run (m x ( cs.Get ( c. Val (c:cs))) \z" = (\?2z"; 'z;\")

indicating that the character 'z' is read from the input, the in nite list of z's are retur ned,
and all of the input was consuned. If the input streamwas empty to start wit h, we would
end up with the error caseg i.e., the result would be unde ned.

Sofar, the behavior of m x seemsto be consistent wit h the way we perceive I/ O. Here
is a slightly more challenging expression:

mx ( c. Put c (Val 'a)) (4.35)

What should the result be? Two possibilities arise. If we consider Put asan action causing
I/0, weseethat it will not haveits characer ready for printing until after the computation
proceeds. That is, we should have:

run (mx ( c. Put c (Val 'a)))\" = (1?";'a;\")
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leaving the printed character unde n edH Another option isto make the xed-p oint value
available thr oughout the whole computation, yielding@

run (mx ( c. Put c (Val 'a))) \" = (\la"; 'a’; \' ")
However, this alternative behavior is quite questionable. Consider the expressia:

mx ( c. Put c (Get ( d. Val d)))

In this case, we have to look past Get to determine what Put should print. However,
this character is simply not available until we run this fudget with a particular input
stream. Such an operator would violate the temporal relationship between Put and Get.
(Furthermore, to achiewve this eect, one would need to combine the operation of run and
m x , making the input stream available when the xed-p oint is computed.)

Proposition 4.8.1 Equationi4.34 de nesa value recursion operator for fudgets.

Pr oof Strictness and purity are immediate. Left shrinking can be established by
induction. (As discus®d brie y above, uniquenessis not guararteed as we can speculate
on the character to be printed whenewr we have a Put constructor.)

Properties Strong sliding and right shrinkin g both fail by Propositions(3.1.5/and(3.1.6.
Alt hough we have not constructed the proofs, we believethat sliding and nesting properti es
should hold.

4.9 Monad transfo rmers

As pointed out in Section [3.6, monad transformers allow congruction of new monads

from old ones. Although there is no magic redpe that will automatically lift a given m x

thr ough atransformer, it is possble to do soin many practical cases.In thissecion, wewill

study thr ee of the most common instances, namely error, ervironment, and state monad

transformers. (For a discusson of the continuation monad transformer, seeSecion [5.2))
Liang de nesthe error monad transformer as follows [53]:

®Them x we havegiven in Equation [4.34 producesthis answer. As we will seein Chapter (8, the function
x 10, the value recursion operator for Haskell's IO monad, behaves similarly. (See Example[8.2.2.)

1% gnoring the Get constructor, the fudgets monad is very similar to the output monad of Secion [4.5.
The secad alternativ e corresponds to the function mx, (Egn. [4.19), while the rst one corresponds to
mx o (Eqn.[4.20). It is possble to think of operators that correspond to mx; wheni 6 0 too.



data Err = Ok j Err String
type ErT m = m (Err )
return a = return (Ok a)
m = k=m = a. casea of
Ok x I kx

Err s! return (Err s)

lit m=m = a return (Ok a)

Note that the return and = on the left hand side are the de nitions for the new
monad Err m, while those on the right belong to the monad m. If m hasa value recursion
operator m xM , we can lift it up to Err m asfollows:

m x ErrM (! ErTm )! ErT m

mxErrfM f = mxM (f unErr) (4.36)

where unkrr (Ok a) = a
The similarities between Equations 4.36 and 4.2 are not acddental. The function
unErr plays the same role as unJust, it providing accessto the value part of the compu-
tation. While the value recursion operator for the maybe monad uses x (i.e., the value
recurson operator for the identity monad) to tie the recursive knot, m xErr M usesthe

value recursion operator for the underlying monad to do so.

Proposition 4.9.1 Let mxM be a value recursion operator for a given monad m. The
function m xErr M, de ned by Equation [4.36, is a value recursion operator for the monad
ErrT m.

Proof  See Appendix

Let us now consider the environment monad transformer, which adds an immutable
storeto arbitrary monads. Thede niti onsfor the environment monad transformer are [53):

type EnvT m = | m

return a = e. return a

m = k= eme = akae
it m= e.m

If the underlying monad has a value recursion operator m xM , we can lift it to the
transformed monad as follows:

m XEnvM (! EnvT m )! EnvT m
mxeEnvM f = e mxM ( a.f ae)

(4.37)
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The de nition of m XEnvM exactly mimics the value recursion operator for the envi-
ronment monad (Equation [4.25), just like the casefor the error monad transformer and
the maybe monad. Analogaus to Propisition4.9.1, we have:

Proposition 4.9.2 Let mxM be a value recursion operator for a given monad m. The
function m xEnvM , de ned by Equation/4.37, is a value recursion operator for the monad
EnvT m.

Finally, we consider the state monad transfarmer [53):

typeStateT m = | m{(; )
return a = s. return (a; s)

m = k= sms = (as) kas®
lift m= s m = X retun (X;s)

Applying the pattern we have sea with the previous two examples,a givenm xM can
be lifted through the state monad transformer as follows:

mxStateM (! StateT m )! StateT m

(4.38)
mxStateM f = s.mxM (r.f (17r1)59)

Proposition 4.9.3 Let mxM be a value recursion operator for a given monad m. The
function m x StateM, de n ed by Equation[4.38] is a value recursion operator for the monad
StateT m.

Remark 4.9.4 Thelifti ng given by Equation [4.38 behavesanalogously to m x , asgiven
by Equation/4.14. It does not seen possilde to lift arbitrary value recursion operators so
that they will behave similarly to any of the m x; wherei is n ite (Equation 4.16).

4,10 Summary

In this chapter we have considereda wide range of monadsand value recursion operators
for them. Although thereis no magic recipeto automate the process,the examplesprovide
suc ient detail to guide the construction of value recursion operators for new monads.
There is one notable exception, however. The continuation monad does not seem to
posses a value recursion operator. Chapter 5/ contains the detalils.
We summarize the properties of value recurson operators we have studied in this
chapter in the following table, along with the IO monad (studied in Chapter [8). The last
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cdumn indicates whether the corresponding value recursion operator is unique. A cel

marked with indicates a conjecture.

H Str. ‘ Pure ‘ Left H SIide‘ Nest H S. Slide ‘ Right H Unigue

Identity X X X X X X X X
Exceptions X X X X X 7 7 X
Lists X X X X X 7 7 X
mxg || X X X X X 7 7
State mXx; X X X X 7 7 7 7
mXx, X X X X X X X
mxXgq || X X X X X 7 7
Monoids | m X X X X X 7 7 7 7
mX, X X X X X X X
Environment X X X X X X X X
Tree X X X X X 7 7 X
Fudgets X X X X X 7 7 7
10 X X X X X 7 7 X

Let us conclude this chapter by making seweral obsenations about value recursion

operators:

We might hope that m x constructs a xed point value in the processof compu-
tation. Unfortunately, in general, we cannot expect to nd a value z; such that
mx f = f z;. Consider the function f xs = [1: xs; 2 : xs]. There is no inte-
gervalue zz suchthat f z¢ = [1:1:..;2:2:..]; which is the required resut
in this case. Similarly, in the caseof the state monad, the closestwe can ge is:
s.T (x (a 1 (f as)) s; which shavs that the state in which the recursive
computation gets performed is essential in determining the n al resut. Similar

commerts apply to the expressimmx f = my = f aswell
Similarly, one might hope for a morphism suppess:: m ! m ; such that
mx f = suppress(m x f) = f

The aim of suppressisto strip out e ects. There are some monads for which suc a
morphism is available, but not in general. For instance for the state monad:

suppessf = s.let (a; ) =f sin (a;s)
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Intuit ively, suppresscan only exist when there is a clear structural separaion be-
tween values and eects. For instance suc a separation seens impossitle for the
mayle or list monads

The equality mx f g=f 7?2 g does not hold in general Since the value
produced by m x f is discaded, one might think that the recursive computation
may be skipped aswell. However, g might depend on the e ect s performed by the
r st computation, which might very well bedierent formx f and f ?.

It is worth reemphasizing sane di erences between x and mx. Reall that x
sais es the equaity x (f f) = x f; for all f. However, it is not the casethat:
mx f=mx(x.fx = f); unlessf ispure. In general, this equation only
holds when the underlying monad is idempotent (seeSecion [3.2). Similarly, the
equation x (f h) =f (x (h f)) translatesinto

mx (map h f)=maph (mx (f h))

and requiresf ? = f (h ?) (see Sedion [2.4). Most importantly, the de ning
equation for x, x f = f (x f); simply does not have any counterpart in the
value recursion world. The unfolding view of recursion is not suitable for explaining
value recursion except for very mild eects (such asidentity and environments), as
it doesnot distinguish between valuesand e ects at all.



Chapter 5

Contin uations and value recursion

Is there a value recursion operator for the conti nuation monad? Originally desighed to
model jumps, continuations come closeto being the \universa" monad [24], and their
interaction with recursion provesto be quite intricate. In this chapter, we will take a
closerlook at the structur e of continuations from the viewpoint of value recurson.

Synagpsis. We start with a review of the continuation monad, and continue by showing
that a value recursion operator for continuations is highly unlikely to exist. After a brief
discussion of the continuation monad transformer, we turn to rst-class continuations,
as found in Standard-ML and Sceme languages. We explore the interaction between
recursve binding constructs and rst-class continuations, showing that the left shrinking
property is unattainable in such a sdti ng.

5.1 A monad for conti nuations

Traditi onally, conti nuation-passingstyle (CPS) has been usedto model jumps in pro-
gramming languages [90]. Continuations provide an extremely powerful e ect, espedally
r st-class continuations as supported by SML of New Jersey and Scheme [31] [44], hence
e ective use of continuations require grea care As demonstrated by Thielecke, many
seaningly obvious equivalencedfail to hold in the presenceof a cal- by-current-contin uation
construct [84]. We will seea particular examplerelated to recurson in Section

Computations basedon CPS can be desaibed using monads. Wadler discus®s monads
for continuations in a typed setti ng [90], while Espinosa’s thesis contains a discussionin
the untyped world [22]. A typical continuation monad has the following structure:

type Cont = (! ) !
return x = k. k x
m = h= km(wv.hvk)

58
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Thetypevariable encodesthe result type. For any type , continuatio n-basedcomputa-
tionswith aresut value of type of are modeled by the monad Cont . Other operations
on continuationsinclude run, which provides an initi al conti nuation; abort, which ignores
its conti nuation and immediately returns a result; and callcc, which enablessaving the
current conti nuation for later use

run ;. Cont ! alort 1 Cont
runm= mid alort e = k. e
callcc @ (( ! Cont ) ! Cont ) ! Cont

callcc h= k. h (v.( c. kv) k

It is worth noting that run takes continuations of typeCont  , i.e,, the argument and
the result types are the same. (Similarly, the result of alort is also restricted.) In callcc,
the function h is given a handle to the current cortinuation k. If h usesits r st argumert,
the cortrol will be transferred to the point where callcc h was originally invoked. Note
that the inner argument, c¢: k v, ignoresits own continuation c, transferring the control
bad to k. Otherwise h might ignore its rst argument, proceeding normally.

Let us now turn to the question of value recursion for the cortinuation monad. Recall
that a value recursion operator hastype( ! m )! m , where m is the underlying
monad. Expanding this type for continuations we get

mx = (VP (! )Yyr yr v oyl (5.2

where is the type of answers. Following the general pattern for value recursion, we
needto perform the xed-point computation over . However, it is simply not possibde
to obtain a plausible value of type by only using the argumerts to m x. Indedal, we
were not able to produce a plausible de nition of m x of ewven the correct type for the
continuation monad, let alone a de niti on that would satisfy the required properties.

Let us explore the situati on a bit more closel. Being explicit about the quanti cation,
we can rewrite Type/5.1 as:

8:8:( ! (! ) ) (1! ) (5.2)

What are the inhabitants of thistype? Fixing an answer type , we seethat the Type5.2
is isomorphic to:

8:(( ! ) Uy (1o (5.3)

and it is not hard to seethat this type is (in nitely) inhabited if we have a xed-p oint
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operator. Each one of the following cases forms a class of inhabitants:

8
Zfli(congtv)? ; i O v2

mx°%f k= _flk? ; i 0 (5.4)
(x f)?

By v2 ,wemean that v is an element of the domain that modelsthe type . Each m x 0
givesriseto an mx viathe equatonmx = mx ° ip, and viceversaﬁ)

We conjecture that the Equation set 5.4 completely covers all the inhabitants of
Type 5.3 The proof attempt for such a claim would require an in-depth analysis of
the type, and is beyond the scope of the current work.

Conjecture 5.1.1 Let bean arbitrary type. Every inhabitant of Type (5.3 falls into
one of the categories given by Equation set(5.4.

Proposition 5.1.2 Noneof the candidate de nitions for m x givesriseto an mx that
would satisfy the purity law.

Proof We will only prove the case
mx% k=f'k? ; i 0

Other casesare similar, if not smpler. Let beatypeand h beafunction of type !
By purity, we must have:

mx (return h) k = return (x h) k = k (x h)
Fix a natural numberi. By the chosende nition of m x 0 we ned:
(ip(return h)' k? =k(x h) (5.5

It is easy to seethat:
(ip (return h) k= k h (5.6)

Substituting (5.6 in 5.5, we get:
k(h? )=k (x h) (5.7)

Obviously, Equation 5.7/ does not hold for all k and h, given that i is a xed natural
number.

1The function ip isdened by theequation ipf xy = f y x.



61

Remark 5.1.3 By the previous proposition, we conclude that the continuation monad
(as de nedin Sedion doesnot possessa value recursion operator, provided Conjec-
turef5.1.1 holds.

The reader might wonder what happensif we restrict to be the sameas in the
Typel5.1, providing positive occurrences of  to work on. It is possibleto shaw that there
is an in nite family of candidate m x'sin this caseas well, but none of them satisfy our
requirements. We leave the details to the interested reader.

5.2 The contin uation monad tra nsformer

The continuation monad transformer [53] is de ned by:

typeContT m =( ! m )! m
return a = k. k a
m = f= km(af ak)

it m= km = Kk

Let mxM be a value recursion operator for a monad m. Can we lift it through
the conti nuation monad transformer, obtaining a value recursion operator for the monad
ContT m? Following the recipe set forth by the examplesof Secion [4.9] we are led to
the following ill-typed de nition:

m xCont M (! ContT m )! ContT m

5.8
mxContM f = k. mxM ( a. f ak) --ill typed! 8

Since the argument tomx M hastype ! m , the applicationisill-typed. This failure
is hardly surprising, assdti ng m to be the identity monad would have resulted in a value
recurson operator for the conti nuation monad.

Remark 5.2.1 Magnus Carlsson has suggested that such a lifting might be posside
when restricted to monadsthat support the notion of mutable variables (personal com-
munication). In codlaboration with Carlsson, we investigated a number of possble liftings,
but none of our atte mpts were satisfactory. In each case, it was fairly easyto show that
the required propertieswere violated. We conjecture that a viable lift ing is not possibde
even in this restricted sdti ng, leaving the exploration of this idea for future work.
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5.3 First -class contin uations and value recursion

What sort of properties can we expect from value recursion operators in a setting with
r st-class continuations? First-class continuations allow programs to seize the control
state of their own evaluators [31]. This facility is de nitely more powerful than what
the continuation monad of Section (5.1 provides, where programs can only manipulate
continuations that are explicitl y creaed and passedaround by the programmer.

Many seemingly obvious equivalences fail to hold in the presence of r st-classcontinu-
ations. For instance, as shown by Thielede, the equivalence( x: False) (k True) = False
fails in the context callecc (k : []). (We refer the interestal reader to Thielecke's work for
many other interesting examples [84].) When we consider the equivalencesdictated by our
properties, we seethat they are simply too strong to hold in a language with rst-class
continuations as well. For instance, condder the left shrinking property (Section [2.3),
which states the following equivalence

mx (xa = yfxy)=a = ymx (xfxy)

Reaall that the computation represeried by a doesnot usethe recurson variable x (i.e.,
X is not free in a). Howewer, in the presence of rst classcorntinuations a can capture its
continuation via a cal to callcc, thereby getting a handle on f which uses x. That is, a
can indirectly accessx through f, breaking the left shrinking property.

The following example in Scheme provides further insight into the problem. The
example demonstratesthat a simple equality betweenrecursive and non-recursive bindings
(even simpler than our left shrinkin g law) fails to hold in the Schemecase. (This example
was brought to our att ention by Amr Sabry, who tracesit badk to a messag sert to the
comp.l ang. schemenewsgroupin 1983 by A. Bawden, titl ed\letr ec and callcc implement
referenes."”) Considerthe following two Stheme expressons

(defin e (t estl)
(let rec ((x (call-w ith -cur rent -contin uati on
(la mbda(c) (I ist #T c))) ))
(if (car x) ((cadr x) (I ist #F (lambda () x)))

(eq? x ((cadr x)))) ))

(defin e (t est2)
(let ((x (call-w ith -cur rent -contin uati on
(la mbda(c) (I ist #T c))) ))
(i f (car x) ((cadr x) (I ist #F (lambda () x)))

(eq? x ((cadr x)))) ))

Note that these two expressias are the samecharacter for character, except the rst
one uses the recursive binding construct (letr ec) of Scheme, while the second one uses
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the non-recursive version (let ). Intuiti vely, theseexpressionsshould evaluate to the same
resut, since the bound variable, X, is not even mertioned in the right hand sidesof the
bindings. Alas, thesetwo expressionsare not equivalent! When run, te stl evaluates to
#T, i.e., True, while te st2 yields#F, i.e., False Regarding this example, Bawden wondered
if there wereany \ ... real compilers that makethis mistaken optimization," regarding that
we might view test 2 as an optimized version of te st1. Of course our concern is quite
the opposite. We rather ask if there are any language constructs that might render the
implied equivalenceinvalid.

Understanding why these expressionsyield di erent values requires an understanding
of how Scheme is interpreted. We will try to convey the idea here as it is essetial in
underganding why the left shrinkin g property is likely to be too strong a requiremert in
the presenceof rst-class continuations. To keep the notation simple, let us rewrit e these
expressionsin a more Haslell-like syntax:ﬁ

testl test2
letrec x = callec ( c. (True; c)) let x = callcc ( c. (True; c))
in if fst x in if fst x
then snd x (False; const x) then snd x (False; const x)
else eg? x (snd x ()) else eg? x (snd x ()

Intuiti vely, letrec x = A in B in Schemeis implemented by allocating a cell called x
with a bogus error value, computing the value of the expresson A (with x in scge), and
then overwriting the cel x with the result [44]. This allocate-compute-overwrite paradigm
practically achievesthe knot-tying implementation of recursion. The evaluati on then goes
on with the expressian B, agan with x in scqpe. A simplelet binding, on the other hand,
does not create a cdl to start with: let x = A in B isinterpreted by evaluating A, storing
the resut into a newly creaed cdl x, and evaluating B with x in scope. With this model
in mind, considerthe letrec expresgon in the de nition of testl:

letrec x = callcc(c: (True; €)) in:::

To interpret this expressio, oneallocates a cell named x, and initializes it with ?. Then,
the right hand side is interpreted. The crucial point is realizing what continuation is
captured by the call to callcc. Recdling our description above, the following contin uation
will be captured:

1. Let a bethe argumert passed to the continuation. Overwrite the cell x with a,

2T he function eg? chedks for pointer equality in Scheme, rather than structu ral equality.



2. Evaluate the expressim part of letrec , i.e., evaluate:

if fst x then snd x (False; const x)
else eg? x (snd x ())

Let us cal the continuation described above . Now, the right hand side of the letrec
binding is computed, which returnsthe tuple (True; ). Sincethe de niti onis not actually
recursve, the initial (unde ned) value of x is not used. Then, the cdl pointed to by x
is overwritten by this tuple and the interpreter continues on with the evaluation of the
body. Since fst x is True, the conditional takes its r st branch. And it is exactly at
this point that we invoke the continuation thr ough the expresson snd x, which is passed
the argumert (False, const x). Recdling the description of above, thistuple overwrites
the cel x. It is crucial to note the cyclic structure thus creaed: When called with an
argument, the function storedin the second elemert of x will return a pointer badk to the
tuple itself. As dictated by step 2 of , we now evaluate the body with this new value
stored in the cdl pointedto by x. But thistime fst x is False, hencewe end up evaluating
the expressioneq? x (snd x ()). Since, snd x () retur ns a pointer bad to x, the call to
eq? checks for the pointer equality of x and x, which simply results in the value True.

What happens with test2? Since we have a non-recursive let expression, the cel for
X is not created before the right hand side is computed. Let us cal this continuation
Here is our description of it:

1. Let a bethe argumernt passead to the continuation. Store a in a new cell called x,

2. Evaluate the expressim part of let, which is exactly the same as before.

To evaluate test2, we proceal by computing the right hand side of the let binding.
As before, we immediately get back the tuple (True; ). Now a new cel named x is
creaed, which storesthis tuple. The conditional again takesits r st branch, and the
continuation is called with (False, const x). Unlike the previous case, however, the call to
the continuation createsa new cell named x, shadowing the earlier value of x: The cyclic
structur e is no longer available! It is not hard to seewhat happensnow. The body is
evaluated asbeforeand the conditional takes its second branch. But this time we compare
two di erert tuplesin the call to eg?. Hence the resut is simply False

The relevance of this example to the left shrinking property is obvious. Basially, the
right hand side of the letrec binding, which is not recursive, corresponds to the constant
computation in the left shrinking property. If left shrinking were to hold, we would be
allowed to pull it out of the mx loop, i.e., replace the recursive binding with a non-
recurgve one. As we have seen, at least in the Scheme case, such a transformati on is not
valid in the presenceof r st-classcontinuations.



65

5.4 Summary

As we have sea, the continuation monad in Haskel (as de ned in Section does
not seem to have a suitable value recursion operator. A similar comment applies to the
continuation monad transformer. Furth ermore, in the caseof r st-classcontinuations the
properties we exped to hold for value recursion operators are simply too strong.

Regarding the handling of recursive de niti ons arbitrarily mixed with computational
e ectsin Scheme, Andrzej Fili nski states (persanal communication):

...asfar as| know, the only popular functional language that allows such de -
nitionsis Scheme and | believe that allowing them was a mistake. T he extra
generality is virtuall y never used, but it disallows some usdul optimizations
by unnecessarily constraining the implementation. It is well known that in the
presenceof cal/ cc, one can exposethe imperativ e nature of letrec and use it
to de ne a general mutable cell; any RnRS-canforming system must support
this behavior no matter how it implemerts recursion...

We share the same point of view.



Chapter 6

Traces and value recursion

Trace operators were introduced into category theory by Joyal et al., as a means for model-
ing feedbadk operations arising in physics and mathemati cs[43]. Later work by Hasegava
bridged the gap betweenrecursion and traces, establishing a one-to-one correspondence
between xed-p oint operators and tracesover cartesian categories[9, /10, 32, 33,/79]. Can
we explain value recurson in this framework aswell? The aim of this chapter is to review
the recert reseach in this area, trying to gain a better understanding of value recursion.

Synopsis. First, we will intro duce parameterized value recursion operators, making the
dependence on the environment explicit. After reviewing traced monoidal categories, we
will show that value recursion operators give riseto traces for a restricted classof monads.
Alt hough the set of monads for which this is posside is quite small, the correspondenceis
strong enough for us to explore. The restriction arisesas a consequenceof trace axioms,
which are simply too strong for value recursion in general. Motivated by this discussion,
we will briey review recent work by Paterson [66], and Benton and Hyland [5], which
aims to generalize tracesto premonoidal categories.

6.1 Parameteri zed value recursion

Reall that a value recurdon operator for a monad m hastype( ! m )! m .Ina
categorical setting, one needs explicitly to account for terms that contain free variables,
i.e., variables that are de ned in the enclosing ervironment. To do so, we parameterize
our typeto:

(& )! m )t (el m )

where e represerts the environment. In the concrete case, e is generally a product, using
the cartesian structure of the underlying language. Parameterizedand non-parameterized
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value recursion operators are interde nable:

pm X ¢ (g ) m )Y (el m)

pmx, f = e mx (a f (ea) (6.1
m X (P m)!'m

m X fo= pmx. (f 2)() (6.2

where istheterminal object whoseonly element is writ ten (). The choicefor theterminal
object is the natural one for e in Equation 6.2, as it represens the empty environmert.
In fact, any type would do, sincethe environment is simply ignored.

Remark 6.1.1 Beforeproceedingfurther, aword onnotationisin order. In thischapter,
we will be using a more categaical notation whereappropriate. For instance, typeswill be
writte n with capital letters (as objectsin a certain category), products will be written with

, etc. This shift is unfortunate, but necessay. We do not want to impose a Haskell-like
notation when talking about categaical congructs: Such a coercion seemsto complicate
matters even more. As an example, the type for pm x in [6.1 will be writt en:

pmxax DA X; TX)! D(A; T X)

where D is the category of domains and T is the underlying functor for the monad we are
considering. (The notation D(A; B) denotes the set of arrows from A to B in D.) We
will stick to Latin lett ersfor objects, following the general practice. The useof particular
letters (i.e., X for the recursion variable, and A for the parameter) is inherited from
Hasegawa's work [33]. Also, we will use categaical products and function spaces, rather
than Haskell's lifted versions.

The second generalization we want to make is more technical than the rst. Rather
than considering the morphisms in the base category, we move to the Kleisli category of
the given monad. Thereisonedi culty, however. The Kleisli category is not necesarily
cartesian. More speci cally, the binary operator inherited from the cartesian product of
the basecategory is not necessarily bifunctorial. We will seethe details and implications
of this problem in Secion [6.4.2. For the time being, let us just assume that we have
a product-like operation in the Kleisli category, named . Let Dt denote the Kleidi
category of a given stron monad T over D. It is easy to seethat pm x can be considered

A monad over a category with a monoidal operation is called strong if there exists a natural
transformationtas :A TB! T (A B), calledthe strength, subject to certain conditi ons[63]. It turns
out that all Haskell monads are strong, with the strength de ned ast (a; tb) = tb = b. return (a; b).
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as a family of functions with the type:
pmXax :DT(A  X;X)! Dt(A;X) (6.3)

If Dt is cartesian, Type 6.3 is precisely the same as that of a Conway operator (see
Appendx |A). This view of value recursion will prove essehial in the following discussim.

6.2 Prelimi naries

In this section, we review the certral notionsin Joyal et al., and Hasegawa's work [33,(43],
covering symmetric monoidal categories, traces, and the correspondence between traces
over cartesiancategaiesand Conway operators.

6.2.1 Symm etric monoid al categories

In computer science, we often deal with binary operators that are asciative only up to
isomorphism. Monoidal operators and monoidal categories provide a setting where suc
operators can be modeled formally [2, 55]:

De nition 6.2.1 (Symmetric Monoidal Category.) A symmetric monoidal category,
SMCforshort, M = (M ; ;l;a;l;r;s)isacategay M withabifunctor :M M | M,
an object | 2 M, and natural isomorphisms:

aaec : A (B C)! (A B) C la I A! A
SA:B A B! B A rAn~. . A |1 A
such that the following diagrams commute:
Assceiativity Pentagon:
A (B (C D)—=2JA B) (C D)—2J(A B)oC) D
A a

A (B C) D)
Unit triangles and symmetry:

a D

(A (B C)) D

a
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Bilinearity:

A B c—2/A B) c—=Jc (A B)
A s a
A (C B)—/(A C) BW/(C A) B
Example 6.2.2 All cartesian categories are symmetric monoidal. Let C= (C, ; ) be

a cartesian cateqgory where  is the direct product with projections ;:A B! A and
2:A B! B. In this case,the natural isomorphisms of De nition[6.2.1 are given by:

a=hhqy; 1 20 2 20 1= 2 r= 1 s=hy il
al=hy gho 1 LP=Ha Al = s t=hy i
where 15 1 Al denotes the unique map to the terminal object. In Haskell notation

these morphisms correspond to the following functions (with more suggestive names):

asse (X; (y; 2)) = ((x;y); 2) ass@ * ((x;y); 2) = (x;(y; 2)
left  (0;y) =y left * 'y = Oy
right  (x; () = X right * x = (x;0)
swap  (X;Y) = (y; x) swap 1 (y; x) = (x;y)

6.2.2 Traced symmetric monoidal categories

Trace operators provide a categorical framework for studying cyclic structuresﬁ

De nition  6.2.3 (Traced SMC.) A tracedsymmetric monoidal category is a symmetric
monoidal category M = (M ; ;1;a;l;r;s) with a family of functions:

Trig :M(A X;B X)! M(AB)
subject to the following conditio ns:

Naturality in A (left tightening):

X

[
A M(A X3B X) A M (#;,B)
g M (g X;B X) M (g;B)
AO M (A° X:B X) : /M (A®B)
[N

Forall f : A9 X! B X;g:A! A2 Tr(f (g X)) =Trf g.

2The original work on traces was preserted in the slightly more generd setting of braided monoidal
categories [43]. Following Hasegawva [33], we only consider symmetric monoidal categories here.
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Naturality in B (right tig htening):

Trig
B M(A X:;B X) : M (A; B)
g M (A X;g X) M (A9)
BO M(A X:;BY° X) . M (A; B9
lap 0

Forallf:A X! B X;g:B! BY Tr((g X) f)=g Trf.

Dinaturality in X (diding):

X MA X°8B X)—® 90 jy;a X:B X)

g M (A X%B g Tras

X0 M(A X%B X9 = M (A; B)
I’.A;B

Foral f :A X% B X;g:X! X% Tr(f (A @)=Tr(B g f).
Vanishing:
{ Forall f 1Al B, Trjyg(r * f r)=f.
{ Forallf :A (X Y)! B (X Y),
Trag (Tri xs x (@ f al)=Trgg" f:
Superposing: Forallf :A X! B X,
Tre acg(@ (C f) al)y=C Trag f:
Yanking: For all X, Tr¥.x (sx:x)= X.

The graphical versions of these axioms are given in Figure [6.1 [33, 43]. It is worth
comparing these diagrams to those that we have given in Chapter [2 for m x. The thick
linesin the guresfor mx represent monadic actions, i.e., side-eects, changes in the
state, etc., while the corresponding lines in Figure [6.1 represent data ow. The xed-
point argument (i.e., X) is not directly available to the outside world in the formulation
of trace (alt houghthis limita tion can be easily circumverted). In m x , howewer, the resut
is the xed-point value togeher with monadic actions.

6.2.3 Traces and Conway operators

The following theaem of Hasegawa (alsoindependently established by Hyland) states the
connedion between traces and Conway operators (See Appendx /Al for a brief review of
Conway operators):
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-~ - — —

Left Tightening Right Tightening

Yanking

Superposing

Figure 6.1: Trace Axioms

Theorem 6.2.4 (Hase@wa, Hyland) A cartesian category is traced exactly when it
possases a Conway operator.

Proof See Theorem 7.1.1 of Hasegwa's thesis [32].

The correspondencecan be summarized as follows. Assuming we have a trace operator
Tr, we can de ne a Conway operator ()Y : C(A X;X)! CA; X) as follows:

fY=Trax ( x f) : Al X (6.4)
Similarly, given a Conway operator ( )Y, we can de ne the following trace operator:
Tragf= 1 f MA(2f)i : Al B (6.5)

Since Conway operators provide a generalzation of xed-point operators on domains,
traceson symmetric monoidal categories providea r m categorical framework for studying
X ed-point operators.

Example 6.2.5 In the sdting of domains and cortinuous functions, the unique least
x ed-point operator for a function f : A! A is given by:

which gives riseto the following Conway operator: Givenf : A X ! X,

fYa= x (xf (ajx)):A! X
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And, by Equation/6.5, we obtain the following (unique) trace operator: Givenf : A X !
B X,
Trag f= 1 f Mya x(x 20 (@x))i @ Al B

In Haskell-like notation, this de nition simply reads

trace M (G I N G ) !
trace f a = let (b; x) = f (a; x) (6.6)
in b
which clearly shows the intert: The recursive knot is tied over x, leaving a function of
type A! B astheresidue.

6.3 Traces and value recursion

As we have see in the preceading section, traces provide a natural framework for studying
x ed-point operators, and by virtue of Theaem the usual notion of recurson can
be explained by tracesover cartesian categories. Doesthe correspondence hold up when
we consider value recursion? It turns out that a close relationship can be established
for commutative monads whose Kleisli categories are traced, but the trace axioms are
simply too strong for the general case. Still, we will explore this limited correspondence
closel, asit will help usidentify the problemsthat arisein the general case. We start by
examining two particular classs of monads: commutative monadsand monadsbasedon
commutative monoids.

6.3.1 Com mutativ e monads and tr aces

Let T be a strong commutative monad over an SMC M = (M ; ;l;a;l;r;s) with the
given strength t. We write  for the unit, and for the multiplier of T. The monoidal
structure over M carries over to the Kleisli category of T, denoted M 7, as follows:

Mr=M+7; %1; a I} 1 s

The monoidal operator is lifted to M 1 as follows. On objects, Cis de nedto be the
sameas . On arrows, f Cgis de nedto be the arrow (f g)inM, where

TA TB! T(A B)
= Tt t°

Recall that t%is the dual of t, givenby T s t s. Since T is conmutative, the other
candidate for , i.e., TtOt, yields exactly the samearrow.
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In the caseof CCC's, atrace operator on the Kleisli category of a commutative monad
gives riseto a parameterized value recursion operator on the underlying category. To see
this, let Cbe a CCC, and T be a commutative monad over C. If Gr is traced, we have a
family of functions:

Trag :Gr(A °X;B °X)! Gr(A B)

which implies the existence of the following family of functionsin C.
Trag :CA X;T(B X)) ! CATB)

Hence a candidate parameerized value recursion operator can be de ned by setting:

pmxgaf =TrEA (T4a f) (6.7)
where a= (a; a).
Example 6.3.1 The environment monad provides a nice example of obtaining a value
recurson operator from atrace. For a xed object E in aCCC, the functorTA=E) A,
i.e., the exponerti ation functor with the r st argument xed, givesrise to the environment

monad. For convenience,we will stick to the Haskell notation. The monad structure and
the strength are given by:

return a = e. a
joinf = efee
t(a;f) = e (a;f e
It is eassy to seethat T is commutative. The Kleisl category is traced, and the
corresponding family of functions in the basecategory is given by:

trace S )Y EY (oM ' (E! )
tracef a= e. let (b;x)="f (a;x)e (6.8)
in b

Using Equations|6.7 and /6.2 we get:

m X ! (E!Y NI E!
mx f = e let (b;x) = (map ( z.(z; z)) f 2) (O; x) e
in b

Realling mapf g=f g for the ervironment monad, we can simplify this de niti on to:

mx f= eletx=fxe
in X
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which is predsely the value recursion operator that we have given in Secion 4.6 for the
ervironment monad.

Example 6.3.2 This example demonstrates that having a commutative monad is not
suc ient to guaranteethe construction of a value recursion operator: The corresponding
Kleidi category should be tracedaswell. As an example, consider modeling exceptionsin
Set by disjoint sums, using the endofunctor T A = + A, where isthe terminal object.
In Haskell-like notation, the monad structure and the strength are given by:

a=inr a

(inl () = inl ()

(inr a) a

t (a; inl ()
t (a; inr b)

inl ()
inr (a; b)

It is easy seethat T givesrise to a commutati ve monad, and hence its Kleisli category
is symmetric monoidal. If Sety is traced, then we should have a family of arrows Tr X :
Setr (A X;B X)! Setr(A;B), where isthelifti ng of the cartesian product. Hence
we must have a family of arrows Set(A X; + (B X)) ! Set(A; + B). Howewer,
sincethe computation might fail, we do not have a way of getting an X totie therecursive
knot. In this case,the Kleisli categay does not seem to possess trace.

The reader might appreciate the situati on in Haskell. The exception monad is the
usual Maybe monad, except the Haslell versionis not commutative (dueto the possihlity
of non-termination). Ignoring the non-termination issue for a momert, we would need to
n d a trace operator with the type:

((: )! Maybe (; )! I Maybe

Here, s the recursion argumert, on which we needto tie the recursive knot. Howewer,
the required trace operator just does not exist, since we are not guaranteedtoget a to
form the required recursive loop. (Recall that thereis no such problem for value recursion
in our setting|see Section 4.2 for details.)

6.3.2 Monads arising from commutative monoids

In Secion /4.5, we explored monads that arise from monoids. In this section, we will
concentrate on those monads that are obtained from commutative monoids, and see how
atraceoperator in the underlying category can be usedto obtain a value recurson operator
for the corresponding representation monad.

The usual de nition of monoids on sds can be generalized to arbitrary monoidal
categories[55. Let M = (M ; ;l;a;l;r;s) beasymmetric monoidal category. A monoid
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inM isatripleM = (M;+;e) whereM 2 M,+ .M M! M,e:l ! M, with the
usual asscciativity and unit laws. (Themonoidiscommutativeif + s= +, i.e., if the order
of arguments to + doesnot matter.) For such a monoid, the endofunctor TA =M A
gives rise to the following strong monad, known as M 's represenation monad [2]:

= (e A LT (6.9)
A = (+ A) aM M GA (610)
tie = 8,5 (Suw  B) Qe (6.12)

If M is commutative, then T will be commutativ e as well.

After all this machinery, we can n ally state our goa. Let M be a traced SMC, M
be a commutative monoid in M , whoserepresentation monad is T. As we have seen, T
is commutative and henceits Kleisli category is symmetric monoidal. Furthermore, the
traceon M liftsinto M 1, i.e.,M T isalso traced. If Tri\(\;B M((A X;B X)! M(A;B)
is the trace operator on M , the trace operator on M 1 is given by:

% © Mt(A °X;B °X)! Mt(A;B)
TrRe f = Triy g (a f) (6.12)
Example 6.3.3 Condder the monoid: (N;+;0), where N is the at domain of natur al

numbers, and + is addition. The corresponding functor is: T A = N A. As outlined
above, the monad structure is given by (in Haskell):

return X = (0; x)

join (m; (n; x)) = (M+n; x)
t (x; (m;y)) = (m; (X; )
t0 ((m; x);y) = (m; (x; )

Sincemap f (m; x) = (m; f x); we have:

(join - map t° t) ((m; x); (n; y)) = (n+m; (x; ¥))

(join  mapt t9 ((m; x); (n;y)) = (M+n; (x;))
Hence, the commutativity follows from the comnutativi ty of +, aspromised. Reaall from
Example[6.25that the trace on the underlying category is given by:

tracef a=let (b;x)=f (a;x)in b

which, by Equation [6.12, can be treated as a trace operator on the Kleisli category of T
with thetype (A X! N (B X))! (A! N B). More explicitly, we have (where
we use Integer to represent N):
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tr O 2((; )Y (Integer; (; )Y (' (Integer; ))
trOf a = let (b; x) = (asoc f) (a; x) in b

By Equation we obtain the following parameterized value recursion operator:
pmx f = a let (b; x) = (ass@e map ( x. (x; x)) ) (a; x)
in b
which gives riseto the following value recursion operator by Equation [6.2;

m X w (! (Integer; )) ! (Integer; )
mx f =let (b;x) = (ass&¢ map ( x. (x; X)) f)xinb

By expandng the de nitions and simplifying, one obtains:

m X o (v (Intege; ))! (Integer; )
mx f =let (n; x) =f x (6.13)
in (n; x)

which is precisdy the value recursion operator we have givenfor monadsbasedon monoids
(Equation in Sedion

Remark 6.3.4 It is important to note that the commutativit y of the monoid does not
play any role in establishing the requirements of value recursion, although it is essential
for constructing a trace. If the monoid is not commutative, the representation monad will
not be commutative either, failing to yield a monoidal structure on the Kleisli categay. In
that case,one cannot even talk about the notion of trace asDe nition [6.2.3 only applies
to symmetric monoidal categories. We will return to this issue in Sedion [6.4.2.

6.3.3 Th e corresp ondence

We now turn to the correspondence between value recursion operators for commutativ e
monads and trace operators over Kleisli categories. Before doing so, we will need to
consider what trace axioms meanin the Kleisli category of a given monad. Let T be the
monad under consideration. In this seti ng, the trace axioms read:3

%In these equations, we use the Haskell notation and try to name variables accading to their types
i.e., a variable named a is of type A. Note the use of shadowing in -bindings, where we reuse variable
namesto stick to our convention. Compared to the original trace axioms, these versions are indeed very
ugly to look at, but they are much more intuitive from a programming perspecive. Also, to save space,
we use to abbreviate return.
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Left tightening: Forall f : A° X! T(B X),g:A! TAS
Tr ((a;x).ga = a%f(@®x)= aga = Trf (6.14)

Right tightening: For allf :A X! T(B X),g:B! TBY

Tr ((a;x).f(a;x) = (;x).gb = b2 (b®x)) 6.15
= aTrfa = g '
Sliding: Forall f :A X% T(B X),g:X! TXO°
Tr ((a;x).gx = x%f (a; x9
=Tr( (a;x9.f(@x% = (Mmx).gx = x% (b x9 (6.19
Vanishing: Forall f : A! T B,
Tr(@0.fa = b (b()=f (6.17)
and, foralf :A (X Y)! T(B (X Y)),
Tr (Tr ( ((a; x);y)- F (@ (x;y)) = (b (x;y))-  ((b; x); y)) (6.19)
= Tr f '
Superposing: Forallf :A X! T(B X),
Tr ( ((c; a); x). f (a;x) = (b;x). ((c; b); x)) (6.19)
= (c;a).Trfa = b (ch) '
Yanking:
Tr ( (X1; X2)1 (X2; X1)) = (6.20)

After thesepreliminaries, we can nally state the main result of this chapter:

Proposition 6.3.5 Let D bethe category of domains, and T be a commutative monad
over D. Let mx be a value recursion operator for T, further satisfying strong sliding,
nesting, and right shrinking laws. Then, the family of functions

tracexg @ D(A X;T(B X))! D(A; TB)
tracef = a:mxg x ( (b;x):f (a; x)) = 1 (6.21)

will satisfy Equations[6.1446.20, i.e., it will provide a trace operator for D.
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Proof SeeAppendx B.8 for the full derivation. We try to summarize the correspon-
dence at a higher level here. Unsurprisingly, left and right tightenings depend on the left
and right shrinking properties of m x respectively. Sliding requires the use of Proposi-
tion[3.3.2, which depends on the commutativity of the monad and strong sliding (of m x).
The r st vanishing rule depends on left shrinking and purity, the se@mnd one also uses
nesting. The superposing rule only needs pure right shrinking (which is guaranteed by
right shrinkin g). Finally, yanking is a direct consequenceof purity.

Remark 6.3.6 Idedly, we should also establish that a trace operator on the Kleidli
category of a commutative monad yields a value recursion operator, using a translation of
the form:

mx, : (Al TA)! TA

mxf = T, ((5a:fa =a (aa)(

But we will refrain from pursuing the correspondencein this direction for the following
reasas:

Our treatment of value recursion operators takesplace in the setiing of conti nuous
functions over domains. On the other hand, trace operators are preseried in the
abstract setting of monoidal categaies, hencethe assunptions for the underlying
structur e are signi cantly weaker. For instance, it is not clear what our strictness
axiom (i.e., f? =21t i mx f =721 ) would correspond to in this selting.p

As we explored above, the correspondence of traces and value recursion is rather
limited. Very few monadsare commutative, and even fewer have their Kleisli cate-
goriestraced. What we should seek,then, is a notion of trace in the non-monoidal
case. In short, trace axioms are just too strong for value recursion.

6.4 Dro pping the monoidal requirement

As we have seen in the preceding sedion, the trace-based categorical account of xed-
point operators falls short of explaining value recurson for all but a very restricted se
of monads. Is it possible to generalze the theory of tracesso that we can accanmodate
value recursion more satisfactorily? In this sedion, we will brie y review two recent

4Hasegava suggeds that it might be possible to study strictness via the notion of uniform trace opera-
tors. SeePropostion 7.1.4 in Hasegawa's thesis [33].
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attempts in this direction. First, we will look at Paterson's work, which lifts mx to
the world of arrows [66]. Secad, we will review Benton and Hyland's work on traced
premonoidal categories[5]. It turns out that both attempts describe essentially the same
axiomatization, although preserted in slightly die rent contexts. The generalidea is to
move to premonoidal categaies, e ectiv ely dropping the monoidal requiremert.

6.4.1 Arro ws and loop

Hughesintroduced arrows as a generalzation of monads, making the input-output ow
more explicit [36]. An arrow ) is a binary type constructor equipped with:

arr (! Yro() )
o () )Y )y ycyH)n
rst () )P ( ) )

Intuiti vely, ) represeris a computation that receives an input of type , performs
a computation with possibleside e ects, and delivers a result of type , corresponding
to what an imperative programmer might call a procedure. The morphism arr makes a
procedure out of a pure function, whileo runstwo proceduresin sequence, threading the
resut of the r st to the seond. Thefunction rst letsinformati onto be passel around for
later use, mainly usedfor storing results of intermediate computations The morphisms
arr, 0 , and r st arerequired to satisfy a number of laws, similar to monad laws.

Example 6.4.1 Arrows generalize monads in the following sense.For every monad m,
the type Kleisli m givesrise to an arrow, where:

typ e Kleisli m = I m

arr f return f
fo g= afa =g

(a;jc).fa = b (b;c)

rstf

Paterson arguesthat Power and T hieledke's Freyd categoriesare equivalent to Hughes's
arrows [73]. (We will brie y review Freyd categories in Section [6.4.2)

Is there a corresponding notion of value recursion for arrows? Paterson generalizes
m X to arrows, introducing the following loop operator [66]:

loop : ( ) yroo) (6.22)

5 We mention in passing that Je rey also used the so-cdled partial traces (ordinary tracesthat are
restricted to be applied only to certain maps) to model ow graphs and recursion in programming lan-
guages[39]. We will not review his work here, however, asit is not directly related to value recursion.
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Note the similarity between this type and the type of trace operators (De niti on [6.2.3).
As expected, value recursion operators give rise to loop operators for the corresponding
Kleidi arrows. Given a value recursion operator m x , Patersonde nes:

loopf = map 1 mx f©

6.23
where fOxy =f (x; 2V) (6.29

which can be shown to be equivalent to the function we have given for obtaining a trace
operator from m x (Equation [6.21).

Paterson generalizesthe trace axioms of Section [6.2.2 for loop, and adds a law called
extensian, similar to our purity property. As expected, he wedakens the sliding axiom
so that the function moved over is of the form arr k for somefunction k, syntactically
guaranteang purity. Unlike our diding property for m x, howewer, Paterson does not
require a further guarding equation to regulate the behavior on ? (i.e., the antecedert in
Equation 2.5). Similarly, right tightening is postulated as an axiom as well. Therefore,
the failure of strong sliding or right shrinkin g properties for the underlying m x will cause
the trace axioms to fail. Similar commerts apply to arrows that are not derived from
monads as well. Paterson makes similar obsenations, although he does not weaken his
axiomatization to accommodate accordingly [66].

6.4.2 Traced premo noidal categories

Closdy related to Paterson'swork is Benton and Hyland's recent generalizati on of traces
to premonoidal categories [5]. As we have sea throughout this chapter, the crux of
the problem liesin the monoidal requirement that comes with traces. Motivated by
this observation, Benton and Hyland generalize tracesto premonoidal categories. If the
category is indeed monoidal, their de nition simply reducesto the usualde nition of traces
over monoidal categories.

Let us review the problem with the monoidal requiremert more formally. What hap-
pens when the monad is not commutative? Let C be symmetric monoidal, with as
the monoidal operation. Let T be a strong monad over C, with strength t. We do not
assure that T is commutative. Consider the Kleisli category of T, CGr. For clarity, we
will use the symbol * to denote arrows in Gr. The symmetry in C lift s into Gy with
no problems, i.e., Gr is symmetric as well. For any xed object A, we have the functor
A {in G, mapping a given object B to A B and an arrow f : B * B9%to the
arowt (A f):A B! T (A B9 in C which correspnds to the required arrow
A B* A BCnG. It iseasyto seethat { A alsoyields a functor in Gr. However,

is not a bifunctor, unlessT is commutative. To see this, letf : A* ACandg:B * B°
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be two arrows in Gr. There are two ways of obtaining thearrowf g:A B* A? BO
as captured by the following Haslell expressims:

(a;b).fa = a%gb = bl return (a% b9
(a;b).gb b f a al return (a% b9

The r st composition is denoted by n, i.e.,f ng= A? g f B. Similarly, we de ne
fog=f B% A g Unlessthe monad is commutative, these two compositions
are generally di e rent, asthey re ect the order in which f and g are performed This
discreparcy is the main reasa why the monoidal structure in the basecategory does not
lift to a monoidal structure in the Kleisli category.

Of course, even when we only have a non-monoidal operation, there might exist a
subset of arrows for which the order does not matt er|th ink of f (or g) having the form
return h in the expressionsabove. Such arrows are called central. More formally, an arrow
f iscentral if, forall g,f ng=fog,andgnf =gof.

Generalizing from this example, Power and Robinson introduced premanoidal cate-
gories[72]. In short, a premonoidal category is just like a monoidal category, except the
binary operation is only required to be functorial in each of the variables separakly. (Note
that every monoidal category istrivially premonoidal.) As we have sketched above, Kleidli
categories of strong monads are examplesof premonoidal categories.

Given a symmetric premonoidal categay, can we come up with a notion of trace?
Reall that tracesare only meaningful in symmetric monoidal categories. Naively, one
might hope that the de nition of trace (De nition [6.23) might very well apply in this
caseas well. Unfortunately this is not the case:

Pr oposition 6.4.2 (Benton, Hyland [5]) A symmetric premonoidal category with atrace
(Denition6.2.3) is actually monoidal.

As expected, the dliding axiom causesthe trouble. Benton and Hyland show that
sliding impliesf n g = f o g for all arrows f and g, establishing that the category
is indeed monoidal. To remedy the situation, Benton and Hyland generalze traces to
centered symmetric premonoidal categories A centered symmetric premonoidal category
is a premonoidal categay K, with a distinguished monoidal center M , and an identity-
on-objects strict symmetric premonoidal functor J : M ! K [72]. For our purposes,it
suc esto condder M asa subcategory of K, whereall arrowsin M are certral.

Kleisli categories of strong monads over symmetric monoidal categories are classicd
examples of premonoidal categories. Let M be symmetric monoidal, and let T be a strong
monad over M . As we have sea above, M 1 is symmetric premonoidal. Reall that a
Kleidi categay has the same objects as the basecategory. Let the functor J:M ! M 1
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be de ned as follows. On objects, J is the identity. Given an arrow f : A ! B, let
Jf= p f:A* B,whee istheunit of T. ThenJ : M ! M 1 is a centered
symmetric premonoidal category, with the distinguished monoidal center M . (Of course
J is nothing but the usual inclusion functor.) In this case a cerntral arrow in M 1 is simply
any arrow that is lifted from the monoidal certer, i.e., any arrow that factors through
in the base category.

Theintuitive underganding of a centered symmetric premonoidal categoryJ : M ! K
is as follows: K is considered to be the category where arrows denote computations,
possibly with obseavable eects. As expeded, K doesnot possas a monoidal structure.
M , on the other hand, is a subcategory of K denoting values, i.e., where we can swap
the order of computations, duplicate valuesonly to discard later, etc. A crude analogy in
programming terms is given by any \ almost”" functional language For instance, think of
K as corresponding to the Standard-ML language, containing referencesetc., and M as
the purely functional subset of Standard-ML.

Getting badk to traces, Benton and Hyland de n e [5]:

De nition  6.4.3 (Traced centered symmetric premonddal categories.) A trace on a
centered symmetric premonoidal category J : M ! K is afamily of functions

Trag :K(A UB U)! K(A;B)

satisfying the sameconditi onsas givenin De nition[6.2.3, except (i) thesliding condition is
weakened sud that g is assuned central, and (ii) given acertral arrowf : A X! B X,
Trig f :A! B isrequired to be central.

It is easy to seethat this de nition generalizesthe notion of trace, since all arrows are
central in a symmetric monoidal category.

In order to generalze Theaem /6.2.4, Benton and Hyland also dewvelop the notion
of Conway operators on Freyd categories. Briey, a Freyd category is a symmetric pre-
monoidal category J : C! K, where Cis cartesian [73]. A parameterized xed point
operator on a Freyd category J : C! K isde ned to be a family of functions

Oax (KA X;X) ! K(A;X) (6.24)

Benton and Hyland require () to saisfy the so-called certer presenation, naturality, and
central xed-point properties, corresponding to our left shrinking and purity laws.

To be able to establish a correspondence between traces over Freyd categories and
parameterized xed point operators, Benton and Hyland de ne Conway operators, which
further sdisfy laws that correspond to our right shrinking and nesting properties. Hence
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similar to Paterson's axiomatizati on of loop, the correspondence with premonoidal traces
only holds for the set of value recursion operators that further satisfy strong sliding and
right shrinking properti es. As we have seenin Sedion [3.1, thesetwo properties are unsat-
is able for value recursion operators in general (Corollary [3.1.7).

6.5 Summary

In this chapter, we summarizedthe notion of tracesfrom category theory, and investigated
how value recursion might t into the picture. As we have sed, for a very small class of
monads, value recursion operators correspond to trace operators over Kleisli categories.
The ervironment monad is the most important example exhibiting this correspondence
(other than the obviousidentity monad). In the generalcase,however, the correspondence
fails becauseof the monoidal requiremert in the formalizati on of trace operators.

It turns out that Paterson's loop axioms and Berton and Hyland's generalization of
tracesto premonoidal categaies are essatially the same, although developed indepen-
dently and preserted in slightly di e rent contexts [5, 66]. Both these axiomatizations take
the correspondenceone step further, but not to the point where a satisfactory theay for
value recursion can emerge To summarize, both require right shrinkin g and strong slid-
ing properties, which are known to be unsatisable for many monads (see Chapter[3). In
terms of concrete monads, their work can handle the lazy state and the output monads,
but not exceptions, lists, strict state, and the I0 monad of Haskell. In this respect, we
consider both attempts to be signi cant stepsin understanding and generaizing value
recurson, but not the n al categorical account of the whole problem.



Chapter 7

A recursive do-notat ion

Haskell's do-notation simpli es monadic programming signi ca ntly, but it ladks support for
recursve bindings, a key syntactic feature for value recursion. In this chapter, we desaibe
an enhanced translation scdhema for the do-notation and its integation into Haslell.m
The new translation will allow variables to be bound recursively, provided the underlying
monad comes equipped with a value recursion operator.

Synagpsis. We start with a motivating example, showing the need for recurdve bindings
in the do-notation. The isauesrelated to let-generators and the needfor segnentation are
discussed next, followed by a detailed description of the translation algorithm. We also
provide several commerts on the integration of the new do-notation into Haskell.

7.1 Introducti on

Reaursive declarations are ubiquitous in the functional paradigm. While xed-point op-
erators provide a solid framework for reasoningabout and understanding recursion, they
are hardly suitable for practical programming tasks. For instance compare:

let sumn =if n == 0then Oelsen + sum (n 1) in sum 10
to its non-recursive equivalent:
let sum = x ( f. n.if n == 0then Oelsen + f (n 1) in sum 10

Clearly, the useof x makesthe de nition much harder to read, especially for begnning
programmers The situation gets worsewith mutually recursive bindings.

As we have brie y mentioned in Section a similar problem arises in the framework
of value recursion. Rather than using explicit calls to m x, we would like to have a
complementary binding construct, providing syntactic support for value recursion. In the

1The material in this chapter is based on a paper that appearsin the Haskell Workshop'02 [19].
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context of Haskell, an extension to the do-notation allowing recursive bindings seemsto
t the bill. To illustrate, we will revisit the circuit modeling example from Section [1.2
This time, we will model a simple counter, one that incremerts its output by 1 at each
clock tick. The count goes back to 0 whenever the resetline goeshigh:

By extending the Circuit class (seeSedion [1.2) with multiple xers and monadic lift
functions, we can model this circuit monadically as follows:

counter > Circuit m ) Sig Bool !' m (Sig Int)
counter reset= mx ( ~(next; inc; out; zem).
do next delay \zero" 0 inc

inc liftl \addl" (+1) out
out mux reset zero next
zem lift0 \zero" O

return (next; inc; out; zer))
= (next; inc; out; zem). return out

As we have argued in Sedion[1.2] the monadic implemertation has numerous advan-
tages. Syntactically, however, it carries a lot of baggage, making it hard to unders¢and and
maintain. (Note that binders can be arbitrary patt erns in general asin \Just x  f x",
making the situation even worse) As pointed out by Launchbury et al. [49], and as we
have outlined in Secion [1.3, what we need is a recursive counterpart of the do-notation,
allowing us to writ e simply [49:

counter reset = do next delay \zero" 0 inc

inc liftl \addl' (+1) out
out mux reset ze next
Zemn lift0 \zero" O

return out

eliminating the explicit call to m x . Note that this description of the circuit follows the
diagram given above almost literally. The translation we will introduce in this chapter
will handle such recursive de niti ons automatically, without bothering programmers with
the details of the necessary plumbing.
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7.2 The basic tra nslation and design guidelines

For clarity, we refer to the recursive version of the do-notation as the mdo-notation, and
write mdo-expressions using the keyword mdo @ Whenever we refer to the do-notation,
we mean the currently available notation in Haskell that does not allow variablesto be
bound recursively.

Inspired by the counter circuit example of the previous secion, one might naively
translate mdo-expressims as follows:

mx ( ~BV. do p; e;
mdo p1 e1
=) Pn €n
return BV)
= BV. e

Pn €n
e

where BV stands for the tuple consisting of all variables occurring in patterns py:::pn.
The lazy match, obtained by ~, is essential in avoiding strictnessproblems.

However, there are a number of problems raised by the schema above. First of all,
do-expressias in Haskell can use let-generabrs to introduce polymorphic bindings for
pure expressions [68]. It is not clear how such bindings can be integraed into this trans-
lation. Similarly, ordinary do-expressionscan bind identi ers repeatedly, later bindings
shadowing earlier ones. When bindings can be recursive, shadowing becanes problem-
atic. Furthermore, the use of a single m x to handle recursion over the entire body of an
mdo-expressionmay induce poor termination propertieswhenever the right-shrinking laws
fails (see Section|[7.2.2)|in tuitively, recursion should only be performed over generators
that depend on each other cydlically, leaving the rest untouched. Finally, we would like
to addresstheseisaieswithin the boundaries of the \syntactic-sugar" approach. That is,
the translation should produce only valid (well-formed and well-typed) Haskell code. T his
approadch keeps the extension simple, providing a smooth transiti on.

To summarize, the basic design guidelines for the mdo-notation are:

Syntactic agreement with the do-notation: Programmersfamiliar with the do-notation
should have no trouble using the recursive verson.

Semairtic agreemert with the do-notation: To the extent possible, valid do-expressions
should also be valid mdo-expressims, with their meanings presened.

Segnentation: Callsto m x should beisolaed to recurdve segmats only, leaving the
non-recursve parts out of the xed-point computation. As we will see segmetation

2The closes we can get to  do using ASCII.
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is esseti al becauseextending the scope of recursion can give poorer results for those
monadsthat fail to saisfy the right shrinking property.

Pure syntactic suga: The translation should only produce well-formed and well-
typed Haskell code.

In the remainder of this section, we addresstheseissues,re ning the basictranslation
scheme as we go along.

7.2.1 Let generators

The do-notati on of Haskell allows let-generators, with the following translation [68]:

do let P1 = e let P1 = €1
_ =) _

Pn = €n Pn = €n

stmts in do stmts

The variables bound in p1:::p, can be polymorphically typed. In mdo-expressions,these
variables should be visible throughout the entire body aswell, suggesting the translation:

mx ( ~BV. do stmts;

mdo stmts;
let p1 = e1
let p1 = e1
- =) Pn = €n
Pn = €n
stmts;
stmts,
. return BV)

= BV. e

where the variables bound in p1:::p, will appea in BV as well. Unfortunately, the
resuting code is not guaranteed to be well-typed. To ill ustrate, consider:

mx ( ~(z;y;f).

mdo z f2y do z f2y
y fra z _ y f'az
let f x _= return x let f x _ = return X
return (f vy z; f z y) return (z; y; f))

= (z;y;f).retun (f y z;f zy)

Since f is -bound, it becomesmonomorphically typed, making its use at two di e rent
typesillegal. In fact, the situation is even worse: Referring to the schemdic translation
above, let-bound variables in patterns p; :::pn will have monomorphic types over stmts;
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and e, while they will retain their polymorphic typings over stmts, and e;:::e,. This
situation is quite bizarre. Unfortunately, there is no easy solution to this problem. Since
the tuple BV is -bound, the variablesthat appear in it will be monomarphically typed
when we attempt to type ched the body of the do-expressionand the nal expressim e.

How should we deal with thisproblem? Clearly, it is unacceptableto ban let-generators
completely becausethey are quite usdul in practice. (Requiring let-bound variablesto
be visible only in the textually following generatas would alsobe wrong.) An alternative
is to go slightly beyond Haskell 98, using records with polymorphically typed elds [40].
Rather than using tuples, we can package the arguments into a record with polymorphic
elds, retaining the polymorphic typings of let-bound variables. However, the resulting
translation is overly complicated (as we needto perform type inference during the trans-
lation), making it hard to formalize and automate [17]. One might also argue that we
can go beyond the \syntactic-suga"” approad, i.e., let the translation produce ill-typed
code, provided we can come up wit h special typing rules for mdo-expressims. We will not
pursue this option here, however, in order to be able to ke the translation as simple as
possible (We will return to this point in Secion [7.3.3))

The solution we adopt isto require let bindingsto be monomorphic in mdo-expressions.
That is, let becomesjust a syntactic suga within mdo, translated as:

BV return (let p; = ex

let p1 e1

Pn = €n

= e
P ; in BV)

where BV is the tuple corresponding to the variables bound in p;:::py. This idea easily
extends to more complicated forms of function de nitions as well. For instance:

mdo f return (let f [] =0
mdo let f [] =0
f (xixxs) = 1+ f xs
f (xxs) =1+ fxs =) _
in f)

return (f [1;2;3]; f []) return (f [1:2:3]: f [])
Note that we do not commit to a speci c monomorphic type for f. Aslong asf is used
consistently at a single monomorphic type, the translation will be well-t yped.

We expect this restriction to be negligible in practice. Such polymorphic let-generators
are hardly ever used in practice, and experiencesuggeststhat there is almost always an
obviousway to rewrite the required polymorphic bindings using an explicit let-expression,
avoiding the whole problem. Therefore, we believe that the simplicity of this desig far
outweighsany generality that might be obtained by more complicated translation stchemas.
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Remark 7.2.1 It might help programmersif monomarphic bindings were visually dis-
tinguishable from polymorphic ones. In a recent paper, Hughes arguesthat the syntax
of let-expressionsshould be extended to allow monomorphic bindings, suggesing the use
of the symbol := to di e rentiate them from polymorphic ones[34]. If thisidea ever ges
adopted in Haskell, let-generators in mdo-expressions can be restricted to use := as well,
emphasizing the fact that they will be monomorphically typed.

7.2.2 Segmentation

Congder the following mdo-expression, which creaes two in nite lists condsting of 1's
and 2's respectively, and its translation:

mx ( ~(ones twos).

mdo putStr \all 1s" do putStr \all 1s"
ones return (1 : ones) ones return (1 : oney
putStr \all 2s" =) putStr \all 2s"
twos return (2 : twos) twos return (2 : twos)
putStr \ done" return (ones,; twos))

=  (ones; twos). putStr \ done"

The resulting code is quite unsatisfactory. The only recursion we need is in independertly
computing the lists ones and twos, suggesting a segmerted translation of the form:

do putStr \all 1s"
ones mdo ones  return (1 : oneg
return ones
putStr \all 2s"
twos mdo twos return (2 : twos)
return twos
putStr \ done"

where the inner mdo-expressians will further be translated acoordingly. This processis
analogousto the handling of ordinary let-expressionsn Haskell, wheremutually dependent
bindings are grouped together to enhance types of bound variables[68]. In our case, all
variables are -bound, i.e., monomorphic, so typing is not an issue. However, we still
needsegnentation to avoid the unwanted interferencefrom trailing computations. As an
example, let

checkSingle S [int] ! 10 ()
checkSingle [x] = putStr \singl eton™
checkSingle _ putStr \not singl eton”
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and consider the following translati on@

xIO ( xs.do xs return (1 : xs)
checkSingle xs
return xs)
=  xs.return ()

mdo xs return (1 : Xs)
checkSingle xs =)
return ()

Intuiti vely, we expect this mdo-expressio to print \ not-s ingleto n", as the value of xs
should simply be the in nite list of 1's. Alas, the translation will diverge! The reason
is simply that the pattern matching in checkSingle is too strict for the computation to
proceed, failing the match immediately. However, with segnentation, we will get the code:

do xs xXIO ( xs. return (1 : xs))
checkSingle xs
return ()

which will happily print \ not-si ngl eton”, avoiding the unintended interference Interest-
ingly, if the nal\return ()" is omitt ed, the original translation will work as well, sincethe
cal to checkSinglewill be the nal expression,automatically pushed outside of the m x
loop. Just adding \return ()" should not changethe result, pointing out the neel for seg
merntati on. Note that this problem will arise whenever right shrinking fails (Sedion [2.7.2),
which is the casefor many practical monads of interest. (See Corollary 3.1.7.)

7.2.3 Shadowing

The current syntax of do-expressims allows variable namesto be bound repeatedly, later
bindings shadaving ealier ones. One can accanmodate such bindings in the mdo-notation
aswell, by appropriately renaming them. As a design choice, however, we rejed this pos-
sibility. Although shadowing might be conveniert at times, it is alsoa constant source of
bugs. Sincebound variables are visible throughout the entire body in an mdo-expression,
allowing repetit ions is much more likely to causeconfusion.* Therefore,we disallow shad-
owing in mdo-expressians. (This design choice also implies that the sooping rules for
mdo-expressionsare the sameas those for let and where expressons, providing a consis-
tent view of scoping in Haskell's binding constructs, both pure and monadic.)

3As we will seein Chapter[8] the library function xIO = ( ! 10 )! 10 is the value recursion
operator for Haskell's IO monad [20].

4In a simil ar vein, it can be argued that repetitions should not have been allowed in the do-notation
either. List comprehensins becomeespecialy horrible: f x = [x j X [x .. x+5]; x [x .. x+10]] is
a confusing (yet legd) Haskell function.



91

7.3 Translation of mdo-expressi ons

We now present an algorithm to translate mdo-expressionsto core Haskell.

7.3.1 Prelim inarie s

In the following discussion,we assune that let-generabors are already de-sugaredinto their
return equivalents, asdescribed in Section[7.21. We use the meta-variable p to range over
patterns, v over variables, and e over expressims.

De nition 7.3.1 (De ned variables) A generator p e de nesthe variables that
appea in the pattern p. If the generata is of the form e, i.e., without any binding
patterns, then it de nes no variables. An mdo-expressicn m de nesa variable v, if v is
de nedin a generator of m.

De nition  7.3.2 (Usa variables) A de ned variable v isused in a generatorp e if
v occursfreein e. (And similarly when there is no binding patt ern p.)

Denition 7.3.3 (Recursive variables) Let m be an mdo-expresson, and v be a used
variable of m. Let g be the generator that de nesv. The variable v is recursive if it is
either usal by g itself, or by a generator of m that appearstextually before g.

Remark 7.3.4 Every de ned variable comesfrom a distinct generatar, due to the no-
repetiti on requirement. Furthermore, only de n ed variables can be used, and only used
variables can be recursive. That is, for an arbitrary mdo-expression,we have:

Reaursive Variables Used Variables De n ed Variables

Denition 7.3.5 (Dependent geneators.) A generator g is dependent on a textually
following generator @@, if

g®de nes a variable that is usedby g,

or, g°textuall y appears in between g and g% where g is dependert on g®@

Remark 7.3.6 Thesemnd condition in the abovede nitio n can be considered asinterval
closue. Note that, unlike a usual let-expression,we cannot reorder the generators: Order
does matter in performing side eects. Hence, if a generator is dependent on another, we
are forced to padckage them together with all the generators in between.
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De nition 7.3.7 (Sements) A segmert of an mdo-expresson is a minimal sequence
of generators such that no generator of the seqence depends on an outside generator. As
a special case although it is not a generabr, the nal expressia in an mdo-expressia is
consideredto form a segnent by itself.

Remark 7.3.8 Tocompute the segnents, it su ces to start with the rst generator of an
mdo-expression,and search for the last generator that it depends on. If such a generator
exists, we add all the generators up to and including it to the segnent. This processis
repeded for ead and every one of the generators in the segnent, until we cannot add any
new generators. Once a sggmert is found, the very next generata starts a new segmert.
Note that the number of segmerts is bounded above by the number of generators in the
mdo-expression,plus one for the segnent corresponding to the nal expresson.

De nition  7.3.9 (Free variables of a segment.) Let m be an mdo-expression, v be a
de ned variable, and s be a segmert of m. We say that v is freein s if (i) v appeas
free in the right hand side of a generator of s, and (ii) v is de ned in a segmert textually
precedings.

De nition  7.3.10 (Exported variables of a sggment) A variable that is de ned in a
segnent is exported if it is freein any of the textually following segments.

7.3.2 The trans lation algorithm

We descibe the algorithm step by step using the following schematic running example:

mdo fa bg fc dg So
feg ffg S1
fag fhg S2
ffg fag S3
fijg fi eg S4
fi g kg S5

wherefv; :::vhgstandsfor a pattern that bindsthe variablesvs ::: v, onthe left hand side
of a generatar, and for an expression whosefree variablesare vy :::v, on the right hand
side. Note that the actual patterns or expressians are not important for our purposes. For
instance, the generator s3 uses the variable a, and de nes f . Generator s, de nesg, but
does not use h, since h is not de ned in this expression. For our purposes, it is nothing
but a constart. Similar remarks apply to the variablesc; d, and k as well.
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Segmentation step: Starting with the rst generator, form the segnents as described
in Remark [7.3.8.

To perform this step, we will needthe dened (D;) and used variables (U;) of each
generator s;. Luckily, for our running example, these sds are obvious

Do=fajbg Di=feg D=fgg D3=ffg Ds=fi;jg Ds=;
Up = ; Up=ffg U=, Us=fag Us=fi;eg Us=fj;00

To compute the segmerts, we start with sg. Since sp does not use any variables, it
cannot depend on other generabrs, i.e., it forms a sggmert by itself. The next generator
to condder is s1, which uses the variable f. Since f is de ned by s3, we have to package
everything in between, i.e., s1; S, and sz together. Since none of them depends on s, or
S5, we stop the iteration, forming our seond segnent. It is easy to seethat s, and ss
form the next two segmets by themsdves. Hence, we obtain:

So = fso0; S1= fs1;82;530; S»= fs40; Sz = fssg

Analysis step: For each segmat S; do the following: For each variable v de ned in the
segnent, determine whether it is recursive (De nition7.3.3). Collect all recursive variables
of the segnent S; in the set R;. If R; is empty, this segmat does not neal xed-p oint
computation, leave it untouched. If R; is not empty, compute the exported variables of
the segmert, E;, and mark this segnent as recursive for future processing. Returning to
our example, we have:

Ro=; Ri=ffg  E1=fe;gqg Ro=fig  Eo=fjg Rsz=;

Since only R; and R, are non-empty, we mark S; and S, as recurdve; other segnents
are left untouched. (Note that the last segmert can never be recurdve.)

Translation step: At this point, we are left with a number of segmats, someof which
are marked recurdve by the previous step. For ead marked segmernt, crede the tuples
ET and RT corresponding to the sds E and R. (If E is empty, ET will be the empty
tuple.) Create and add a brand new variable v to the tuple RT. Then, form the generabor:

ET mx ( ~RT. do .....

\% return ET
return RT)
= RT. return v

where the dotted lines are lled with the generabrs of the segnert.
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Note that segnents that are marked recursive by the previous step are turned into
a single generator, while non-reaursive segmets are left untoudwed. Returning to our
example, we create the following generator for Sq:

(e; 9) mx ( ~(f; v). do feg ffg

fag fhg
ffg fag
Y return (e; g)

return (f; v))
= (f; v). retun v
and the following for Sy:
i mx ( ~(i; v). do fi jg fi eg
v return j
return (i; v))
= (i;v). return v
Finalization step: Now, concatenate all segnents and form a single do-expresson out
of them. For our example, we obtain:
do fa bg fc dg
(e; 9) mx ( ~(f; v). do feg ffg

fog fhg
ffg fag
\Y; return (e; g)

return (f; v))
= (f; v). return v
i mx ( ~(i; v). do fijg fi eg
v return |
return (i; v))
= (i; v). return v
fj g kg
Remark 7.3.11 If there are no recursive bindings present to start with, the algorithm
we have descibed will just leave the input untouched (except for replacing the keyword
mdo by do). That is, the left shrinking property is automatically appliedby the algorithm
to get rid of unnecessary calls to m x . (See Sedion 2.3)

SDepending on the sets E and R, sewral other improvemerts are possible in forming the required
generator. For instance, if E is a subset of R, then we do not need a new variable. We skip a detailed
discusdon of these improvemerts here, asthey are not esernti al for the translation.
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Desug aring step: Now we are left with a non-reaursive do-expression, and we can apply
the standard translation to replace the do with explicit ='s, completing the transla-
tion [68].

7.3.3 Type checkin g mdo-expressions

To accommaodate for the overloading of the name m x, we simply add the following type
classto Haskell:

class Monad m ) MonadFix m where
mx (! m )! m

Intuiti vely, an mdo-expression is well-typed if its translation produces a well-typed
Haskell expression. In order to perform type-nference, a type judgement of the form:

0~ 0~

e:m | D 0> e:m
"mdofp ege:m

suc es,with the side conditi on that m must belong to the MonadFix class. In this rule, °

is obtained by extending with the variablesde ned in the given mdo-expresson. Each
such variable is assigned a monomorphic type variable to begin with. (For simplicity, we
assurre all generators have the form p  e.) The only special care is needed in handling
let-generatas, which can be typed similarly to normal let-expressons To ensure that
let-b ound variablesare monomarphic, it su cesto leave out the generalzation step in the
type inferencealgorithm for let-bound variables[17, [41].

As we have promised in Section [7.2.1} let us reconsider the typing of let-generators,
aiming to nd a sdution that would allow polymorphic bindings. In fact, it is arguable
that we should have a more liberal scheme,where normal bindings can be polymorphic as
well. For instance there is no reason why the following expressia should be ill- typed:

poly :: Maybke ([Bool]; [Int]) - ill  typed
poly = do nil return []
return (True : nil; 1 : nil)

However, poly is not a well-typed Haskell expression, since the binding to nil is re-
quired to be monomorphic. Of course, we cannot allow polymorphic typings arbitrarily ,
asillustrat ed by the infamous ML-typing problem [93], coded here in Haskell:

do rf newSTRef ( X. X)
writeSTRef rf ( x. x + 1)
f readSTRef rf
return (f True)
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Following the previous example, we might think that rf might be assighed the type
8 . STRef s ( ! ); which leads to disaster. So, it seemsthat the maybe monad is
mild enough that generalization is acceptable, but the state monad is not. It is beyond
the scqpe of our current work to investigate exactly when one might allow generalization,
but we conjecture that it is safeto do soin the following two cases:

For any variable, provided the underlying monad is completely de n able in Haskell,
and not built on top of one of the internal state or IO monads,

Or, variablesbound by the let-generabrs, regardlessof the underlying monad.

Since cheding for the r st condtion seemsto be rather expensive, we might sdtl e
for allowing generalization in let-bound variables only, which caincides with the treatment
of let-generabrs in the current do-notation. (Such a sdution would be similar to ML's
value restriction, where only \ syntactically distinguishable" valuesare typed polymorphi-
caly [93].) Of course, a more detailed study is nealed before such an approach can be
adopted. We leave the exploration of this idea for future work.

7.4 Curren t status and related work

The mdo-notation is implemented both by the Hugs interpreter [37] and the GHC com-
piler [26]. Details on theseimplemertati ons can be found on the web [74].

Predating our work, the need for recurgve bindings in the do-notation was also dis-
cussedin the framework of Nordlander's O'Haslell language, a concurrent, object-oriented
extensionto Haslkell [65]. O'Haskell extendsthe do-notation with a variety of new features.
With regard to recursion, O'Haskell provides a special keyword x , providing a way to
spedfy a block of generators with mutual dependencies. The translation for x-blocksis a
simpler version of ours. No segmertation is performed and let-generators are not allowed.
The translation seens to permit shadaving, but that appeas to be an oversight, rather
than a conscias design dedsion. The addition of the x keyword to the do-notation in
O'Haskell arosefrom practical programming neeals; the syntax and the translation was
not designedto meet a general ned.

Paterson's arrow-notation supports recursive bindings aswell, provided the underlying
arrow comes equipped with a loop operator [66]. (See Secion for a discussion of
arrows and loop operators.) Similar to O'Haskell, mutually dependent generators are
explicitly marked, using the keyword rec. No segmatation is performed on recursive
blocks. Currently, let-generatas are not supportedin the arrow-notation, but the addition
of such bindings seemsstraightforward. We note that all variables become -bound after
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the translation in the arrow-notation, forcing monomorphic types. Hence regardlessof the
support for recursive bindings, let-generatars will sue r from the monomorphism problem
in the arrow-notation.

7.5 Summary

In this chapter, we have deseibed an alternati ve translation schema for the do-notati on of
Haskell, providing syntactic support for recursive bindings. The ability to bind variables
recurdvely in the do-notation is an essehial feature for value recursion as it elegartly
hides the use of explicit value recursion operators.

Reclling the design goas we have sé for the mdo-notation, we can conclude that
our translation ful lls its purpose. To review briey, we have aimed for syntactic and
semaric agreemen with the do-notation, segnentation for grouping minimally dependent
sequencesf statemernts togdaher, and presenation of the syntactic-suga status. Our
translation achieves all thesegods, except for syntactic agreement for a relativ ely small set
of do-expressions.Since let-generatas become monomorphic and shadaving is no longer
allowed, any do-expressionusing thesefeatures will be rejecded. However, we believe that
neither of theserestrictions will causeseious problemsin practice. Also, if desired, the
typing problem might be remediedby devising a sdution along the lines we have described
in Secion [7.3.3.

It is our belief that Haskell should have just one version of the do-notation. Just like
let-expressians, do-expressins should be capable of expressing both recursive and non-
recurdve bindings. (The type systan will insist on the MonadFix instance only when
recursve bindings are used.) However, such a change will potentially break existing pro-
grams, dueto the minor incompatibili ties mertioned above. Therefae, a separatenotation
(using the keyword mdo ) has been adopted for the time being, possibly switching to the
new translation in a future version of the Haskell standard.



Chapter 8

The IO monad and x IO

The 10 monad of Haskell comesequipped with a value recursion operator, hamely the
function xIO ﬂ Both the 10 monad and x IO are language primit ives in Haskell, i.e.,
they cannot be de ned within the languageitself. Therefore, any attempt to formally
reasa about x IO is futil e wit hout a viable semartics for computationsin the IO monad.
Recently, Peyton Jonesintroduced an operational semanti cs based on obseavable transi-
tions as a method for reasoning about I/ O in Haskell [67]. In this chapter, we build on
his framework, and shov how one can model xIO asweII

Synagpsis. We start with a brief discussion of the operation of xIO , showing how it
ts within the rest of the IO monad. We then descibe a core language basedon Haskell,
with basic monadic I/O facilities. We continue by giving a layered sematrtics for this
language. Finally, we shav that our model of xI O satis es the requirements for being a
value recursion operator with respect to our semartics.

8.1 Introducti on

Ever since Peyton Jones and Wadler showed how monads can be used to model I/ O in
a language with non-strict semartics, monadic I/ O became the standard way of deding
with input and output in Haskell [69]. The IO monad in Haskell comesequipped with a
value recursion operator, namely the function xIO . As Achten and Peyton Jonespoint
out, and aswith all value recursion operators, x 10 \... allows us to manipulate results
[of IO computations] that are not yet computed, but lazily available" [1, Sedion 4.1].
Unlike many other monads, the IO monad of Haskell is built into the languagg, as it
cannot be de ned within Haskell itself. As a consequence xIO is a language primitive

1The function xIO is not part of the standard Haskell library [68]. Implemertations, including Hugs
and GHC, provide it generaly in the IOExts library.

2This chapter is based on a paper that will appear in the Journal of Theoretical Informatics and
Applications [21]. A preliminary version of the material preserted in this chapter appeared in the Fixed
Points in Computer Scienae Wor kshap'2001 [20].

98
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as well. Given we do not have direct accessto the internals of the IO monad, how can
we understand the operation of xIO ? Or, in general how can we understand 10-based
computations? Recertly, Peyton Jonesintro duced a sananti csfor Haskell 10 [67], similar
to the monadic transiti on systems of Gordon [27]. In such a system, IO computations
are viewed as sequences of labeled transitions. Each label indicatesan eect observable
in the real world, similar to those found in processcalculi [61]. Peyton Joness work
used an embedding of a denotational semartics for the functional layer into the 10 layer.
However, it bypassedthe details of this embedding. Such an approach is n e, aslong as
oneisinterestedin the big picture. If, on the other hand, onewants to reasa about xIO |,
it becomes necessary to be explicit about the relationship between the 10 and functional
layers. One aim of this chapter is to bridge this gap.

Our semantics is structured in two layers: |0 and functional. The sanantics for the
IO layer is based on the approach taken by Peyton Jones [67]. The semartics for the
functional layer is basedon the natural semartics for lazy evaluation of Launchbury [48§].
A nal set of rules precisdy shows how these two layers interact with each other. It is
this interadion that allows us to give a sematrtics for x 10. (The material in this chapter
builds directly on Peyton Jones's and Launchbury's work mentioned above. We assume
that the reader is already familiar wit h these papers.)

8.2 Moti vating examples

Alt hough x 10 isjust like any other value recursion operator we have sea sofar, the fact
that we cannot give a Haslell de nition for it makesit rather mysterious. Also, the 10
monad provides mutable variables, a featur e that we will have to deal with explicitly. We
start by conddering sewral examplesto get familiar with the operation of xIO .

Example 8.2.1 Our rst example shows the interaction of xIO with input operations:

xIO ( cs.do c getChar
return (c : cs))

When we run this computation, a character will be read from the standard input, say
a. Then, the computation will immediately deliver an in n ite list of a's. We will be
able to pull out as many characters as we wish out of this list, following the demand-
driven evaluation policy of Haskell. There are two crucial points. (i) the action ge&Char

3 Note that, by applying the left shrinking and purity properties, we can reduce this expresson to
geChar = c. return (x ( cs. c:cs)); guaranteeing the desaib ed behavior axiomatically. Of course,
we have not yet establishedthat these two propertieshold for xIO , but we will do so in Section 8.6
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is executed only once, and (ii) the computation terminatesimmediately after the reading
is done, i.e, the in nitelist is not constructed prior to its demand. In other words, the
fact that the IO monad is strict in actions but not in values is preserned by xIO .

Here, we also gea a fed for what xIO provides: It provides a means for recursively
de ning values resulting from IO computations. That is, it allows naming results of
computations that will only be available later on. For instance,in the expresson above,
we wereable to namethe result of the computation as cs, beforewe had its value computed.
In this sensethe sematics is similar to the semantics of the pure expression:

1

let cs = 'a :csin cs

which is a convenient way of writing x ( cs.'a : cs); where x isthe usual xed-p oint

operator. Except, of course in the x IO casethe character in thelist is determined by the
cal togeChar, i.e., it dependsontheactual input available when we run the computation.

Example 8.2.2 Let us revisit the fudgets example given by Expressian 4.35. In terms
of xIO , the corresponding computation is given by:

xlIO ( c. do putChar c
return ‘a’)

When run, this computation diverges as c is not yet available when requested by putChar.
(Note that this behavior is in accadance with m x as discussedin Sedion [4.8))

Example 8.2.3 Hereis a Haskell expression showing the interadion of x 10 with mu-
table variables:
XIO ( ~(x; ). doy newlORef x
return (1:x; vy))
= (5 1. readlORef |

In this expressio, we allocate a cell in which we store the value of the variable x, before
we know what that value really is. The value of x, determined through the xed point
computation, is the in nite list of 1's. The call to xIO returns the value (which is
discarded and the addressof the cell that storesthis cyclic structure. Outside of the call
to xIO, we derefaencethe addressand get badk the lazily computed list of 1's. Alt hough
this example might look super cial, it basially captures the essenceof cyclic structures
with mutable nodes. (See Secion 9.4 for an example, where we use a similar idea to
implement doubly linked circular lists in Haskell.)

Once we desgibe our semantics, we will revisit theseexamplesto seehow our sysem
works in practice.
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8.3 The language

In this secion, we de ne a language basedon Haslkell [68], supporting monadic IO primi-
tives, mutable variables, usual recurgve de niti ons, and value recursion.

Notat ion 8.3.1 We usethe following naming conventions for variables:

c 2 oonstructors
X;y;z;w 2 heap variables
r;s;t 2 mutablevariables

To simplify the discussion,we syntactically distinguish between heg and mutable vari-
ables. They are drawn from di erent alphabets.

De nition 8.3.2 (Terms and values) Terms and values are de ned mutually recur-
sively by the following grammars, respectively:

V = C X1 X2 ... Xj
X. M
M,N = x reurn M j M = N
j Vv gaChar j putChar M
M N xIO M | update, M

let x=M in N
caseM of fg %! Nig

r
newlORef M
readlORef M
writelORef M N

j

J
J J
j j
j J
J j
J
j

The function update,, assaiated with the heap variable z, cannot appear in a valid
input program, and it is never the result of any program either. It is only usedinternally,
in giving a semaiticsto x 10. We will explain its role in detail later. All other constructs
have the samemeaning and type asthey do in Haskell [7]. Note that 10 actions are values
as far asthe purely functional world is concerned.

For the purposesof this chapter, we only work wit h well-typed terms, and ignore the
issues of type cheding and inference We assune that the usual Haskell rules apply to
determine well typed terms (Typing of Haskell programs has been discussedin detail in
the lit erature [41, 68].) Notice that return, =, xIO, etc., are polymorphic constants.
As usual, let expressims provide recursive (and possibly polymorphic) bindings.

A constructor c of arity i is treated as a function x 1:::Xj: CXy:::Xj, which becomes
a value of its own when fully applied. This caseis captured by the r st alternative in the
de nition of values, where c is assuned to have arity i. We model constants as nullary
constructors, that is, numbers, characters, etc., are treated asconstructors with zeroarity.
(A's a notational hint, we will use the letter k to refer to constants.)
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Remark 8.3.3 It is worth noting that the grammar we gave describes the syntax for
the reduced terms of our language rather than the concrete syntax that we will allow
ourselvesto use. In particular, we will freely usethe do-notation and pattern bindings in

-abstractions In each case, however, the translation to the core language will be trivial .

De nition 8.3.4 (IO and pure terms.) A well-typed term of type 1 O , for same type
, Is caled an 10 term. All other terms are called pure.

De nition 8.3.5 (Terminal values) A value is called terminal if it has one of the
following forms:

CX1 X2:::Xj, where cis a constructor of arity i,
X: M,
return M,

where M is an arbitrary term in the seond and third cases.

De nition 8.3.6 (Heaps) A heag is a nite partial function from hegp variablesto
terms extended with a special black hole value :

.. Heap Variables* Terms [ f g

A heap binding can be polymorphically typed. A bladk hole binding, such asz 7! ,
indicatesthat thevariableis known but not directly accesside. Intuitively, isadetectable
bottom.

Notat ion 8.3.7 Although heaps are functions, we will allow ourselvesto use the se
notation fredy on them: The notation x 7! M 2  simply statesthat maps x to M.
The empty heg is denoted fg. The notation ( ;x 7! M) denotes the heap extended
with a new binding x 7! M. In this case,x cannot be already bound in , but might
appea freein M.

Since our languageallows input operations, the meaningof aterm might dependon the
input stream it receiveswhile being run. To accommodate this view, we have to consider
terms and input streamstogether.

De nition  8.3.8 (Input streams.) An input stream is a list of characters, not neces-
sarily nite.
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Notat ion 8.3.9 Wewill usethe Haslkell list notation to denote input streams. [] (or ™)
denotes the empty input stream, i.e., the casewhen the input is exhauged. Otherwise, a
stream is of the form (c: 1), wherec is a character and | is an input stream.

Denition 8.3.10 (Term and program states.) A running program is identied by its
program state, which congsts of an input stream, a heapand a term state:

(Terms States) P = M Current term
] Pjhxi; Passiwe cortainer
j P Restriction
We usethe notation | : : P to denote program states.

A term state is simply the current term under consideration, togeher with a number
of passiwe containers. A passive container hxi, represents a mutable variable named r,
which holds a heap variable x. (We only store heap variables in these containers; the
actual contents are stored in the hegp.) Restrictions convey the scoping information for
mutable variables. Notice that a program state contains enoughinformation to capture a
program in execution.

Remark 8.3.11 To reduce clutter, we will generally skip the bits of the program state
that are not neededin the discussim, espedally when we write our rules. That is, we
will use : P, if the input stream is irrelevant, and similarly | : P, when the heap is
not neaded. Thereis no chance of confusion, however, becausewe only use capital Greek
letters for heaps and never skip the term state.

Denition 8.3.12 (The functions bn and fn.) The function bn takesa heapand returns
all the variablesbound in it, i.e,, bn() = fxjx 7' M 2 g. The function fn is de ned
for term states and hegps. Given a term state, fn retur ns the set of free variablesin it. A
heap variable x is free if it is not in the scope of a x binding. A mutable variable r is
free if it is not in the smwpe of a r binding. Foraheap , fn() = ffn(M)jx 7' M 2

g bn() . Wetreat fn as a variable-arity function to simplify the notation: fn(A; B)
means fn(A) [ fn(B), and similarly for more arguments.

De nition  8.3.13 (Slice of a heap.) The slice of a hegp , with resped to a term

state P, written =P, isthe subsda of that is reachable from the free namesof P. More
precisely, for a given and P, let

So

Si+1

fn(P)
S[( ffn(M)jx2S5~x7'M 2 Q)
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S
andlet S= ;, Sj. Then,

P =fx7'Mjx2S*"x7'M 2 ¢ (8.1
De nition  8.3.14 (Closal program states.) A program state S : . P is closd if
fn() =;,andfn(P) bn() . (Note that if the semnd condition is satis ed, no mutable

variable in P can be free.)

De nition  8.3.15 (Type of a program state.) Let S: : P be a closedprogram state,
and let M be the term assaiated with P. Wesay that S: : P hastype , and write
(S: :P): ,whenM hastype whentypedin the hegp

De nition  8.3.16 (Terminal program state.) A program stateS: : P isterminal if
the term assaiated with P is terminal (De nition[8.3.5).

8.4 Semantics

We describe the semantics of our language in layers. The 10 layer takes care of input-
output and manages mutable variables. The functional layer handlespure computations.
A nal set of rules regulate the interadion between thesetwo layers.

Given a term, we needto be able to extract the part that is going to be exeauted next.
We use cortexts to guide this search:

De nition 8.4.1 (Execution Contexts.) Execution contexts are described by the fol-
lowing grammar:

(Execution Contexts) =[]

An exeauti on context is a term wit h one hole, where the holeitself is lled with a term.
The notation [M] denotes the context lled with the term M. An empty context is
onewherethere are no ='s, as captured by the r st alternative. Otherwise, the context
is non-empty, i.e., it is somelO action followed by othersF If the context is empty, the
term lli ng the context might be pure.

8.4.1 10 layer

Figure[8.1 givesthe transition rulesfor thelO layer. A ruleisa (possiblylabeled) transition
from a program state to another. The label "Ic' indicatesthat the character c is printed

4Other authors use the term evaluation context for this concept [23]. We prefer the term execution,
since a non-empty context can only be lle d by an IO action which is going to be executed next.
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[putChar c] Ff  [return )]  (PUTC)

(c:1): [getCha] o [return ¢c] (GETC)

[return N = M] ! [M N] (LUNIT)
r Zfn( [newlORef M]) ~ x 2Zbn()
[newlORef M] ! ( ;x7' M) : r: [return r]jmiy) (NEWIO)
[readlORef r]j hxi, ! [return x]jhxi, (READIO)
yZbn( )
[writelORef r N]jhxiy, ! ( ;y 7' N): [return ()]] hyi, (WRITEIO )
z2bn()
[ XIOM] ' (;z7" ): [M z = update,] (FIXIO)
(;z7" ): [update; M ] ! (;z7"'M): [return z] (UPDATE)

Figure 8.1: Semartics: IO layer

on standard output, and the one labeled "X’ indicates that the next character from the
input stream (which happensto bec) is conSLmedE

To simplify the notation, we use a couple of convertions in writi ng our rules (which
are going to be formalized in Sedion [8.4.4). Rather than a verbal explanation, we will
consider several illustrative examples:

Example 8.4.2 Condder the program state
"ab" . :getCha = putChar

for someheap . The term state consists of the single term gaChar = putChar.
When we match this term to the context grammar given in De nition we seethat
there are two posgbiliti es. Either we can have the empty context, lled with the term
getCha = putChar, or the context [] = putChar, lledwith the term ge¢Char. Upon
inspection of our rules, we seethat only the second has a chance of matching a rule,
namely GETC. Since the GETC rule requires the input stream to be of the form (c: 1),

5Note that this is the same convention as we have used for the exeaution of fudgets in Section
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we have to make sure that we have a non-empty stream. Because"ab" is not empty, the
GETC rule is applicable. Hence,we end up with the transition:

"ab" : :getChar = putChar B ovpr: cretun 'a = putChar

Note that the GETC rule doesnot make use of the heap, henceit is not even mentioned.
The heap is simply carried acrossunchanged.

Example 8.4.3 Condder what happenswhen we contin ue the precedingexample. Again,
there are two possible choicesfor the context. The empty cortext, lle d with the term
return 'a’ = putChar, or the context [] = putChar, lle d with the term return ' a'.
Unlik e the preceding case, howewer, the rst choice matches the LUNIT rule, while the
seond one does not match any. Sincethe LUNIT rule doesnot constrain the input stream
or the heap in any way, it is applicable. Hence we end up with the transition:

"b" : :return 'a’ = putChar ! "b" : :putChar 'a

Since PUTC rule does not make useof the input stream or the heap, it doesnot explicitly
mertion them. They are both simply copied. It should now be obvious that the next
transiti on is:

"b" : :putChar 'a B v return 0O

and there are no more transiti ons from this state, as none of the rules match.

Example 8.4.4 Condder the program statel : :newlORef5 = readlORef, for some
| and . The only matching choice for the context is[] = readlORef, with the term
newlORef 5 Ili ng the hole. The NEWIO rule applies. To satisfy the preconditi on of this
rule, we have to pick variablesr and x such that r 2 fn(newlORef5 = readlORef) and
x 2 bn( ). We simply pick fresh variablesto satisfy theserequests. Let us call them r
and x for simplicity. We end up with the transition:

| : :newlORef 5 = readlORef
! I :( ;x7!'5): ri(return r = readlORef jIxi,)

Example 8.4.5 Wewill continue with the previous example. Clearly, we want to apply
the LUNIT rule, but it is not clear how we get over the restriction r. If we look at
the LUNIT rule, we see that only a term in context is specied (asin all rules except
READIO and WRITEIO ). The convention we adopt in this caseis the following: If arule
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only mentions a term in a context in the term state position, then we consider the term
assaiatedwith the current program state and try to match it. Any remaining restrictions,
passiwe containers, etc., are copied along. In this case,we obtain:

[:(;x7!5): ri(return r = readlORef jhxiy)
! I :( ;x7'5): ri(readlORef r j i)

Example 8.4.6 Finally we shov how to handle rules that have both a term in context
and a passiwe reference mertioned in their left hand sides, namely the WRITEIO and
READIO rules. Continuing the previous example, we seethat the READIO rule neals
to be applied, which requires a term of the form readlORef r next to a passiwe cortainer
namedr. In thiscase our corvertion is the following: If arule mentionsaterm in context
next to a passiwe container, then a program state matchesit if and only if we can show
that the term assaiated with it matches the term in context, and we are next to the
corresponding passiwe container. In our case,we get the following transition:

[ :(;x7'5): ri(readlORef r jIxiy)
! I :( ;x7!'5: ri(retun 5 j i)

Remark 8.4.7 The careful reader must have noticed that it is not necessarily the case
that we will always have the required passiwe container positioned nicely. For example, if
we start with the program state

[]:fg : newlORef 0 = r. newWlORef 1 = s. readlORef r

we will end up with:
[1:fx710; y 7! 1g: r:( s:(readlORef r jhyig)j hxiy)

Clearly, we want to apply the READIOREF rule here as well. Alas, the rule does not
match. In these cases, we will need to use structural rules, which provide means for
transforming the program state into an equivalent one suc that there is an applicable
rule. Structural rulesare coveredin Secion [8.4.4.

Some comments about the FIXIO rule are in order. The function xIO is modeled
after knot tying recursion semanti cs. We r st creae a new heapvariable, called z, whose
valueis not yet known. Thisis achieved by binding it to . Then, we call the function and
passit the argumert z, and proceed normally. If the evaluation of this function neals to
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know the value of z, the derivation will get stuck with a detected black hole. Otherwise,z
could be passal around, storedin data structures, etc.: Note that it is just a normal heap
variable. Once the function call completes, we update the hego variable z by the result,
e ectively tying the knot by an application of the UPDATE rule. In summary, z holds
the value of the entire computation, which might in turn depend lazily on its own value,
i.e., it is recursvely de ned.

Although therules of our 10 layer are quite similar to thosegiven by Peyton Jones[67],
the following di e rencesare worth mentioning:

We keeptrack of the input stream explicitly, rather than assuming that standard
input will be conaulted wheneer a geChar is exeated,

As in the natural semantics of Launchbury [48], we keep track of a separaie global
heap to store values of variables,

Unlik e Peyton Jones's semantics, our reference cells only store hegp variables, rather
than arbitrary terms. This restriction is necessaryin order to model sharing implied
by lazy evaluation.

8.4.2 Functional layer

Our rules for the functional layer, givenin Figure[8.2 follow Launchbury's natur al seman-
ticsfor lazy evaluation closdy [48]. Note that none of the rules in this layer mention the
input stream, as it is irrelevant at this layer. Also, we usethe notation +, rather than

I, for reductions. Comparedto the IO layer, where we have a small step semantics, the
rules in the functional layer encode a big step natural semartics.

'V + :V (VALUE)
M+ 1 y:MO ( ;w7!N):MAqw=y] + :V

N TV (APP)
(;x70 ):M + ( ;x7" ):V
(;x7"M):x + ( ;x7'V):V (VAR)
. | | . .
(R 7'M R 7 M) ._|\’|‘ + 1V (LET)
tlet x1= M1 Xn=Mp in N + 'V
M+ D Cx ¥k M*kw] + iV (CASE)

.caseM of f¢y! Mg+ 1V

Figure 8.2: Semantics: Functional layer
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Comparedto Launchbury's natural semartics [48], someminor di erences worth men-
tioning are:

We introduce a new blac hole binding,

The APP ruleis generalized to application of terms to terms, rather than terms to
just variables. Correspondingly, we do not need to perform the normalization pass,

We perform renaming in the LET rule, rather than the VAR rule.

In the APP rule, werequire w 2 bn() . In the LET rule, werenameall bound variables
X1:::Xp to R1::: Ry sothat there will not be any name clashes in the hegp when we do
the additions. Similarly, the term M; denotesthe term M;, where each occurrence of X;
is replaced by %;. (Similarly for K'.) The VAR rule is not applicable if the variable being
looked up is bound to in the heap. If this caseever occurs, the derivation will simply
terminate wit h failur e, corresponding to a detedable bladk hole.

We refrain from going into details of this layer, as such systems are rather well studied
in theliterature. Theinterestedreader is referred to Launchbury's original exposition [48],
and Sestoft's work on abgract machines basedon such systems [78].

8.4.3 The marriage

M+ ik

[putChar M] ! . [putChar K] (PUTCEVAL)
M+ T (READIOE VAL )
[readlORef M] ! . [readlORef r]
. M+ T (WRITEIO EVAL )
[writelORef M N] ! . [writelORef r N]
M+ Y
M1 vy W

Figure 8.3: Semantics. Marriage of layers. All these rulesare subject to the side condition
that M isnot a value.

Given separake semantics for the 10 and functional layers, we need to specify exactly
how they interact. There are two di erent kinds of interaction. First, whenever we try
to reduce a term of the form, say, putChar M, we rst need to consut the functional
layer to reduce the term M to a character. The IO layer will then perform the output.
(Note that the PUTC rule of the 10-layer only applies when the argument to putChar is
a constant.) We need similar rulesfor readlORef and writelOR ef as well. The rst three
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s2fn(P)
r:P [s=r]: s:P[s=r] (ALPRAL)
y 2fn( ;M;P)"y2bn() (ALPHA2)

(;x7"M):P (;y 7 M)[x=y]: P[x=y]
xzZbn( ) » xzZfn( ; P)

P (. X7IM):P (HEAPEXT)
PiQ  QjP (COMM )
Pj(QJjR) (PiQJjR  (ASSOQ)
r. sip s r:P (SWAP)
r 2fn(Q, :Q)
(r:P)jQ T (P]Q) (EXTRUDE)

Figure 8.4: Semantics: Structural rules, Part |

rules in Figure take care of this interadion. The second kind of interaction allows
handling of applications let and case expressions, and variable lookups. This interaction
is provided by enmbedding the functional world into the 10 world, as modeled by the FUN
rule. In all theserules,M is assunedto be a non-value: The functional layer is consulted
to reduce M to a value.

8.4.4 Structural rules

Finally, we need a set of structural rules to shape our derivations As discussedin Re-
mark [8.4.7, structural rules do not perform evaluation steps as do the other rules, but
they might be necessary in order to transform a program state to an equivalent one suc
that one of the transitio n rules can apply.

The rst sa of structural rules, preseried in Figure state that certain program
states are equivalent to others. As usual, we mertion input streams and hegps only
when they are relevant. The ALPHA rules state that heap and mutable variables can be
renamed at will, i.e., we do not distinguish program states that di e r only in the names
of variables. (Substit ution on heapsisdened as [ x=y]=fz7! M[x=y] j z7!' M 2 @)
Note that we do not neeal a side condition of the form s 62bn() in ALPHAL, since only
heap variablescan be bound in the heap.

The HEAPEXT rule statesthat we can add new bindings, as long as they do not
interfere wit h existing bindings. See Section[8.6 for an exampleuseof this rule@ Therules

5We can also add a garbage collection rule to get rid of unreachable heap variables and passive con-
tainers. We will avoid such a rule for the sake of brevity, asit is not essatial for our current purposes.
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P ' Q (HEAPIN) _PrQ (STREAMIN )
P! ' Q I:P ! 1:Q
° 2 par) —— % ()
PiR! QjR rP ! rQ
P PO (PO 1 QO : QO :Q
P 0] (EQUIV)

Figure 8.5: Semantics: Structural rules, Part Il. Thelabel rangesover empty transitions
aswell.

COMM, ASSOCand SWAP state obvious equivalences. Finally EXTR UDE shows how we
can manipulate the scqing of referencevariables. The side condition in the EXTRUDE
rule guararteesthat no dangling referenceswill be creaed. (SeeExample[8.5.4 for details.)
Thesecond se of structural rules, preseriedin Figure[8.5, formalize our converti onsin
applying the rules. The rst four rulessimply statethat we can concertrat e on the relevant
bits of the derivation and add the extra bits later on. And n ally, EQUIV states that we
only need to consider program states up to equivalencewhen performing transitions.

Example 8.4.8 We will recansider the example discussed in Remark [8.4.7. Reaall that
we had the program state:

[1:fx700; y 7! 1g: r:( s:(readlORef r jhyis)j hxiy)

By applying EXTRUDE, ASSOC, COMM, ASSOC and READIOREF rules (and by ap-
propriat e applications of the rules in Figure[8.5 to enable them), we get:

[1:fx710; y7! 1g: r:( s:(readlORef r jhyig)jhxir))
[1:fx710; y7! 1g: r:( s:(readlORef r jtxi,)jhyis))
! [1:fx70 0,y 7' 1g: r:( s:((return x jhxi,) | hyis))

There are no matching rules for the resulting program state. We can apply structural
rules again, but nonewill give us a program state where a non-structural rule can apply.

Remark 8.4.9 Onecan extend to an eguvalence relation on program states, simply
by adding rules to make it re exiv e and transitive. Howewer, the current de nition of
given in Figure[8.4is simply too crude to be usdul for this purpose. Intuitiv ely, we want to
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be able to identify program statesif their \o bsenable behavior” are the same[27,/57,71].
We leave the exploration of this idea for future work.

8.4.5 Meaning of program states

The meaning of a closedprogram state is its derivation:

De nition  8.4.10 (Derivations.) Let | : . P be a closed program state. The
derivation for 1 : : P is a sequence of labeled transitions, where at each step a rule is
applied. Structural rulescan be appliedat any time, aslongastheytrigge the application
of a non-structural rule. The derivation cortinuesuntil there are no applicable rules.

Simple inspection of our rules reveds that we have a deterministi ¢ system modulo the
structural rules. That is, given a program state there is at most one non-structural rule
that can apply to it.

De nition 8.4.11 (E ect of a derivation.) The e ect of a derivation is the concatena-
tion of its transition labels. Empty transitions do not contrib ute to the e ect.

The e ect of a program state is simply a (possibly in nite) list, where each element is
of the form "' or "Ic' for somecharacter c.

Notat ion 8.4.12 Asusual, ! isthere exivetransitiveclosureof ! . Wewill shorten
multi ple steps of derivations using the notation!| : P | [0: 0:pO

De nition  8.4.13 (Divergent and normal program states.) A closed program state
| : :P iscalled diverget if the derivation starting from | : : P either

continues inde nitely (i.e., we never run out of non-structural rulesto apply),

or, gets stuck in a non-terminal program state (De nition 8.3.16) where no non-
structur al rule applies.

Otherwise | : : P is called normal.

Example 8.4.14 It iseasyto comeup with divergert terms For instance onecan show
that the derivation for:

| : :let loop = putChar 'a loop in loop (8.2
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diverges, since we newver run out of rules to apply. However, the derivation for:
I . :let x = xin x (8.3

will divergeby getting stuck. The FUN rule will never re, becausethere are no reductions
for this term in the functional layer. (Notice that the r st application of the VAR rule
will resultinl : ( ; x 7! ) :x, but no other rule will apply sincethe VAR rule is only
applicable when the binding is not a black hole.) Similarly, a derivation can get stuck via
the useof the FIX10O rule (which introduces a bladk hole binding in the hegp). A nal
possibility is the application of the GETC rule when the input stream is empty.

Lemma 8.4.15 (Derivations for normal program states) Let | : : P be a normal
program state. The derivation starting at this state will take the form

l: P 1 19 :Q

where | %is a sux of I. Furthermore, Q can be transformed using only the structural
rules to the form (N j C), where N is a terminal value (De nition [8.3.5), and C is a
number (possildy zero) of parallel passive containers. The restrictions encaded by + cover
all passiwe containersin C.

Proof (Sketch.) By de nition our proof obligati on reducesto establishing that
Q can be transformed into the required (N j C) form. By inspedion of the structural
rules, we see that the rule EXTR UDE can be repeatedly used to move restrictions to the
top, obtaining the required form. (ALP HA rules can be usedto resole naming con ic ts,
if any.) To see the correspondence between restrictions and the passive containers, just
noticethat they areintro ducedtogether by NEWIO, they are never removed, and all rules
resped the scqping of bindings.

Observ ation 8.4.16 Note that derivations apply to both pure and IO terms. A deriva-
tion either diverges, or ends up with an abstraction or a saturated constructor application
for a pure term, or with a term of the form return M for an IO term.

Pr oposition 8.4.17 (Derivations for 10 terms in contexts) Let | : : #( [M]]jC)
be a closedprogram state, where M is an 10 term. The derivation starting at this state
will either diverge or take the form:

l: : #([M]jC) ! 19+ FO( [return N]jC9Y
! 190 . rOreturn O jCY

where | %isasux of I, and | Yisasux ofl9
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Proof By inspection of our rules, we see that if the derivation for : #( [M]j C)
terminates, then so must the derivation for : (M j C). Hence, by the previous
lemma, it must do soin the required intermediate form. The form of the nal state is
again guaranteed by the previous lemma.

To be able to talk about strictness(Equation [2.1), we need to say what ? means for
the type | O

De nition  8.4.18 (Silent derivations.) A derivation is silent if its e ect is empty.

De nition  8.4.19 (Bottoms of 10.) A closed program state (I : : M) 10 isa
bottom element (?) for thetypel O ,i the derivation for | : : M silently diverges.

Example 8.4.20 It iseasyto seethat Program State[8.2 is not a ? of 10, but Program
State8.3is. While they both diverge, the former is not silent.

De nition  8.4.21 (Strict functions.) Let be aheg and M be a term such that the
program state ([]: :M): ! 10 isclosed.M is strict, if, for all | and M,
X 2 bn() , the derivation for

l:( ;x7! ): M x

is silently divergernt.

8.5 Example s

We revisit the examplesgiven in Sedion [8.2, and show how our semarics can handle
them. In these examples, we will usethe letters a;b;::: to represen heap variables as
well. To save spae, we will apply the structural rules silently.

Example 8.5.1 Wewill revisit Example[8.21. We rst remove the do notation in favor
of explicit ='s:

x10 ( cs.getChar = c. return (c : cs))

To reduce clutt er, we will not write the input stream explicitly. We have:

fg : x1O ( cs.getChar = c. return (c : cs))
I (FIXIO - FUN)
fz7! ;a7'zg:getCha = «c.return (c:a) = update,

“h (GETC { assume input stream has ch in front)
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fz7! ;a7 zg:return ch = c.return (c:a) = update,
I (LUNIT - FUN)

fz7! ;a7 z;b7! chg:return (b:a) = update,

I (LUNIT)

fz7! ;a7! z;b7! chg: update, (b:a)

I (UPDATE)

fz7!'b:a;a7! z;b7! chg: return z

Thederivation terminateswit h aterminal program state at this point. Hencethe initial
program state is normal. The n al heap contains the cyclic structure that represeits the
in nite list of ch's: The character that was read by getCha. In case elemerts of this
list are demanded in a context, the usual demand-driven rules modeled by our semarti cs
would let us produce enough elements to satisfy the need. If the input stream is empty to
start with, the derivation will ssimply block at the point wherethe GETC rule is applied,
and wait forever, i.e., the derivation will divergeby getting stuck.

Example 8.5.2 Showing that Example(8.2.2 diverges is fairly easy. We have:

fg : x1O ( c. putChar ¢ = d. return 'a)
I (FIXIO - FUN)
fz7! ;a7! zg: putChar a d. return 'a'

And now, we needto apply the PUTCEVAL rule to reducethevariablea to acharacter.
The functional layer rst reducesa to z using the VAR rule, but ges stuck at that point,
asz is bound to in the heg and the VAR rule doesnot apply anymore.

Example 8.5.3 Wenow reconsder Example[8.2.3, which involvesreferencecells. Again,
removing do-notation and simplifying the patterns, we g«

xIO ( t. newlORef (fstt) = .
return (1 : fst t; y))
= u. readiORef (snd u)

Since there are no calls to getChar, the input stream doesnot matter. That is, we wil
simply copy the sameinput stream through all transiti onsin our derivation. Therefore,
we simply do not write it explicitly in what follows.
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We will rst consider the xIO call. To save space we will abbreviate newlORef to
new and readlORef to read:

fg : xIO (t. new (fstt) = vy.return (1 : fst t; y))
I (FIXIO - FUN)
fz7! ;a7lzg:new (fsta) = vy.return (1:fsta;y) = update,
I (NEWIO)
fz7! ;a7 z b7 fstag:
ri(returnr = vyreturn (1 :fst a;y) = update, jhii,)
I (LUNIT - FUN)
fz7! ;a7 z b7l fsta; c7!'rg:
r:(return (1: fst a; ¢) = update, jhoi;)

' (LUNIT - UPDATE)
fz7! (1:fsta;c); a7l z; b7l fsta; c7!' rg: r:return z jHoi,)

When we consider the original expressim, it is not hard to seethat we will have:

I' (LUNIT - FUN)

fz71 (1 :fsta;c);a7l z b7l fsta, c7!'r; d7! zg:
r:(read (snd d) jhai,)

I (READIOEV AL)

fz7! (e;f); a7l z; b7 fsta; c7!r; d7! (e;f); e7! 1:fsta; f 7! rg:
ri(read r jho)

I (READIOREF)

fz7! (e;f); a7 z; b7 fsta; c7! r; d7! (e;f); e7! 1:fsta; f 7' rg:
r:(return b jhoi,)

Now, if we chase the value of b in the hegp, we seethat we will end up with a cyclic
structur e e ectiv ely representing the in nite lists of 1's, asintended. The most interesting
step in this derivation is the application of the READIOEVAL rule. The function sndis
a short hand for case over the pairing constructor. The VAR rule in the functional layer
arrangesfor sharing, resulting in an abundance of variables in the resulti ng hegp. Notice
that, abusing the notation slightly, in the above derivation (1 : fst a; ¢) refersto a function
application: the pairing constructor applied to the terms 1 : fst and c. In the last two
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lines, however, (e; f) is a value, i.e., in this case, the pairing constructor applied to the
right number of arguments.

Example 8.5.4 This example demongrates the importance of the side condition of the
EXTRUDE rule. Condder:

do j new 5

k new j
I read k
read |
By removing the do-notation, we get:
new5 = new = read = read

We will try to give a derivation for this expressio, ignoring the side conditio n of the
EXTRUDE rule. Again the input stream is irrelevant, and hence ignored:

fg :new5 = new = read = read

| (NEW IOREF)

fx7059: j(retun j = new = read = read jXij)

I (LUNIT-NEWIOREF)

fx7'5 y7'jg: j:( ki(return k= read = read jhyiy)]jhxij)
I (COMM)

fx705 y7jg: ji(lxijj ki(return k = read = read jhyiy))
I (EXTR UDE { incorrect application)

fx705 y7jg: ji(lxij)j ki(return k = read = read jhyiy)

I (LUNIT - READ - LUNIT)

fx705 y7jg: ji(hxij)j ki(readyj hyik)
| (READIOEV AL)

fx705 y7jg: ji(hxij)j ki(read | hyiy)

And now we are stuck! The mutable variable j is not visible at this point. Since we

were not careful in applying the extru de rule, we have creaed a dangling reference Let
us construct the slice when the rule is applied:

So=fyg, S1=1fy;jg S2=S1=S

By Equation 8.1, the sliceis: fy 7! jg. Sincej 2 fn(fy 7! jg), EXTRUDE is not
applicable. The side conditi on prevents the creation of the dangling reference.
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8.6 Prop erti es of xIO

Equipped with the semantics we have presented so far, we are now in a position to look
at the propertiesof xIO .

Strictness. Consder Equation 2.1, and let be a heap where f is properly bound.
Assuming f is strict (De nition[8.4.21), we will have:
l: :xiO f I 1:(;z7" ):fz = update,

by a single application of the FI X1O rule. The current context speci es that the application
f z should be evaluated. By De nition 8.4.21, the derivation will silertly diverge. But
then, by De nition[8.4.19 this divergence implies that xIO fis?.

Example 8.6.1 Usingif asa shorthand for case over the boolean type, consider:

| :fg: xIO ( x. if x == 0 then return 1 else return 2)

I' (FIXIO - FUN)

| :fz7! ;a7! zg:if a = 0then return 1 else return 2 = update,
... detected black hale ...

In the last step, the FUN rule is not applicable becausethere are no reductions for the

current term in the functional layer.

Example 8.6.2 Condder the following non-strict function:
X. return X :: Char ! 10 Char

Notice that it returns a computation successfully. Of coursg, if the result of the xed-
point computation is used, it will still diverge but for a di erent reasm:

| :fg : xIO ( x. return x) = putChar
I' (FIXIO - FUN)
| :fz7! ;a7! zg:return a = wupdate, = putChar

I' (LUNIT - UPDATE - LUNIT)
| :fz7!'a; a7! zg: putChar z
... detected black hole ...

Thelast step diverges,becausethe VAR rule will get stuck tryingto reducez to a character.
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Example 8.6.3 Condder the function:

a. putChar 'q' if a == 1then return 1 else return 2

which is not strict according to our semantics. Hereis the derivation for it:

| :fg : xIO ( a. putChar 'q if a == 1then return 1 else return 2)

I (FIXIO - FUN)
| :fz7! ; a7l zg:
putChar 'q' if a == 1then return 1 else return 2 = update,
f (PUTC)
| :fz7! ;a7!'zg:if a == 1then return 1 else return 2 = update;

... detected black hole ...

Before getting stuck, we see the character g printed, which is the correct behavior.

Purit y. Consider Equation(2.2, where we will use a let expresson to capture X :
xIO (return h) = return (let a = h ain a)

Assume isaheg sucthat ([]1: :h): ! . Ontheleft hand side, we have:

| : : xIO (return h)

I (FIXIO - FUN)

l:(;z7" ;a7 z):(return h) a = update,
I (LUNIT)

I :(;z7" ;a7 z) :update, (h a)

I (UPDATE)

l:(;z7' ha;a7! z):retun z

Congdering the right-hand-side, we immediately get: | : :return (let a = h a in a).

We should now prove that thesetwo program statesare equivalent, i.e., that the rules
in our systemcannot tell them apart. Such an argumert would require a notion of program
state equivalencethat is more general than what our structural rulesprovide. Intuitiv ely,
the program statesabove will be considered equivalent if we can show that

l:(;z7ha a7l z):z l: :leta=hain a

Note that the secand program state reducesto | : ( ; z 7! h z) : z. Hence,the equiva-
lenceis clear provided we adopt a compaction rule that ges rid of the indirection via a in
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the r st heap. To formalize this argument, we neal a precisede nition of program state
equivalence and a proof systeam for showing when two program states are the same. We
leave the development of a such a systam for future work.

Left shrinking.  Consider Equation where we will refer to the computation a asq
to avoid confusion with heap variables. For the left hand side we g&:

l: :xIO(xq = y.fxy)

I (FIXIO - FUN)

l:(,z7 ;a7'z):q = y.fay = update,

On the right hand side, wehave | : :qgq = vy. xIO ( x.f xy). Now, if the

derivation for g diverges, both derivations will diverge in the exad same way, that is both
sidesare equivalent. Otherwise, by Lemmal8.4.15, we will have:

l: :gq ! 1% : g(return gqv jC)

The C on the right hand side captures the passive containers that might be introduced
in the derivation for g, along with the assaiated restrictions t. Sincethese containers
will get copied in exactly the same way, we do not shav them explicitly in the following
discussion. Using the HEAPEXT and EXTR UDE rulessilently, the left hand side yields:

l:(;z7" ;a7z):q = vy.fay = update;

' (ASSUMPTION)

10:( ;z7' ;a7lz):returnqv = vy.fay = update,
' (LUNIT, FUN)

19:( ;z7' ;a7lz; b7l qy:f ab = update,
Let us look at the right hand side:

l: g = y. xIO (x.fxy)

! (ASSUMPTION - LUNIT)

19:( ;b7 gy : xIO ( x. f x b)

I (FIXIO - FUN)

19:( :b7lqv, z7! ;a7l'z):f ab = update,

Hence the left shrinking property holds for xIO . We conclude that, with respect to our
semartics, xIO is a legitimate value recursion operator for the IO monad.
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Other properties. As pointed out in Corollary [3.1.7, neither strong sliding nor right
shrinkin g properties hold for Haskell's IO monad. Both of them fail with resped to the
semartics we have given in this chapter aswell. (Application of our rulesto functionsused
in Propositions3.1.5 and 3.1.6 su ces to show the failurein both cases.) We believe that
sliding and nesting propertiesshould hold, both for Haskell's |O monad and our semantics.
We leave the constructi on of proofs for these properties for futur e work.

8.7 Summary

In this chapter, we have descibed an operational sanantics for a non-strict functional
language extended with monadic IO, reference, and value recursion, improving on our
ealier work [20]. Our contributions are: (i) we shav how a purely functional language
and its semartics can be embedded into a language with monadic 1/0 primitiv es and
reference, (ii) we model sharing explicitly at all lewels, giving an acoount of call by need
in both the functional and the 10 layers, and (iii) we provide a semarics for xIO and
show that it is a value recursion operator.

Our work can be extended in several ways. Addition of threads and synchronized
variables seemsto be fairly easy[67]. The di culty, howewer, lies in adding support for
asyndironous exceptions [56]. Although exceptions can be modeled nicely in the 10O layer,
we currently do not see a complementary way of capturing them in the functional layer
using our method.

More work is neededin formalizing our arguments. Of the highest importanceis the
dewvelopmert of a notion of program equivalence and tools for reasoning about program
states which may contain symbolic terms. In this direction, program equivalence based
on obsenational behavior seemsto be the right framework [27, 61].

Oneimportant issue we have side-stepped in this chapter is that of parametricity. How
do we know that the constants of our language (i.e., return, =, xIO , newlORef, etc.)
are parametric? To talk about parametricity, we rst need to de ne what it means for
two program statesto be related. Our earlier attempts at stating and establishing para-
metricity failed, mainly due to the lack of an appropriate notion of program equivalence
Pitt s's work on obsenati onal equivalence and parametric polymorphism [71] can be used
as a basisfor such a work, although it is not immediately clear how to acoommodate for
reference and input/ output operations. Simil arly, Launchbury and Peyton Jonesdiscuss
parametricity of constants for manipulating referencesin the context of the state monad
of Haslell [52], but their resuts are not directly applicable in our framework due to dif-
ferences in the notion of reference variables, handling of the heap, and the additional
complexity introduced by input/ output.



Chapter 9

Examples

In this chapter, we will consider a number of practical programming examples, ill ustrating
the use of value recurson operators and the mdo-notation.?!

Synagpsis. Starting with the famousrepmin problem, we consider applicationsin sorting
networks, screen layout in GUI's, interpreters, cyclic graphs, and the implementation of
logical variables.

9.1 The repmin proble m

Therepmin problem is concerned with the replacemert of all the numbersin a binary tree
by their minimum. The challengeisto do so in a single pass|[6, 16]. In 1984, Richard Bird
deviseda beautiful solution to this problem, exploiti ng lazinessand cyclic de niti ons:

data Tree =L B (Tree ) (Tree ) deriving Show

copy w TreeInt ! Int ! (Tree Int; Int)
copy (La) m = (L m; a)
copy Bl r)ym=let (I2ml) = copy | m

(r® mr) = copy r m
in (B 19r% ml "min™ mr)

repmn :: Tree Int ! Tree Int
repmn t = let (t%m) = copy t m in t°
Here's an example run:

Man> repmin (B (L 11) (B (L 2) (L 3))
B(L 2 (B (L 2 (L 2)

1Before proceeding with the examples in this chapter, the reader may want to review our motiv ating
circuit modeling example, covered in Sections[1.2 and[7.1.

12
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The single passsolutio n isadchieved by the clever useof recursion in the let-expresson of
the function repmin. By virtue of the recursive binding, the function copy simult aneously
computes and replacesall the leaves with m, the minimum value in the tree.

Benton and Hyland take the problem one step further [5]. What if we also want
to perform an e ect, such as printing the values stored in the nodes during this single
traversd as well? It is easyto modify copy to achiewe this eect:

copyPrint mTreeInt ! Int ! 10 (Tree Int; Int)
copyPrint (L a) m = do print a

return (L m; a)
do (1® ml)  copyPrint | m

(r® mr)  copyPrint r m

return (B 19r% ml "min” mr)

copyPrint (B 1 r) m

But, it is not clear at all how to modify repmin accadingly. Obviously, the atte mpt:
copyPrint t m = (t% m). return t°

is awed, since m is no longe recursively bound! We nedl to tie the recursive knot with
an appropriate value recurson operator. In this partic ular case,the appropriate operator
is the one for the IO monad, i.e, xIO of Chapter 8

repminPrint  :: Tree Int | 10 (Tree Int)
repminPrint t = xI O ( ~(t% m). copyPrint t m)
= (t% m). return t°

Or, using the mdo-notation:

repminPrint i TreeInt ! 10 (Tree Int)
repminPrint t = mdo (t® m)  copyPrint t m
return t©

hiding the explicit call to xIO , considerably improving readability.

Note that we can accommaodate arbitrary e ects during the traversd of the original
tree, as long as the underlying monad comes equipped with a value recursion operator.
To illustrate, consider the following variation of the repmin problem, demonstrating the
use of value recursion for the list monad (Secton [4.3). Consider the data type:

data Exp = C Int ] A Exp Exp

representing simple arithmeti c expressias formed out of integer constants and additions.
The problemisto n d all possiblepair-swaps of a given expression.A swapping is de ned
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to be the exchange of any two constents, not necessarily distinct ﬁ Solving the swap-
pings problem is not a terribly hard task. Here, we presen a particularly neat solution,
illustrating the use of value recursion for the list monad:

replace sint U Exp ! [(Exp;Int)]
repace x (C y) [(C x; y)]
redace x (A1 r)=T[A1%r;y)j(%y) replace x I]
+ [(A1r%y)j(r%y) replace x r]

pairSwaps :: Exp ! [Exp]

pairSwaps e = mdo (e% m) replace n e
(e n)  replace m e°
return e®

The cal replace x e creaes copies of e, where each copy has one of its constants
replaced by x. Each replaced congant is returned along wit h the corresponding copy. (If
there are n congantsin g, the call to replace will return n copies.) For instance

replace 1 2 =) [(1; 2)]
repace 1 2 + 3) =) [(1+ 3;2); (2+ 1; 3)]

The function pairSwas makes two successiwe calls to replace, threading the input
expressionthrough. The rst cdl replacesead constant with n (yet to be computed),
determining the respedive values for m. The semnd call completes the swapping by
substituting m's, and by computing the values of n neededin the rst call. Each pairing
of m and n corresponds to a possble swapping. The cyclic dependencebetween m and n
achievesthe required swapping quite neatly.

Hereis an example run for the input (1+ 2) + 3, using appropriate functions for parsing
and printing:

Man> disp lay (pairSwaps (parse "(1 + 2) + 3"))
(1+2) +3, 2 +1) +3, (3+2 +1,
(2+1) +3, 1 +2) +3, (1 +3) +2,
(3+2) +1, 1 +3) +2, (1 +2) + 3

The value recursion operator usedimplicitly in the de niti on of pairSwaps is the one
given by Equation4.4. Recdl that we have consideredan in nite family candidate oper-
ators for the list monad in Section (4.3 (see Equation [4.13). We have argued that these

2For instance, the only possble swapping of 1 is 1, while that of 1+ 2 are 1+ 2,2+ 1,2+ 1,and 1+ 2.
The two 2+ 1's are considered di erent, corresponding to the swappings of 1{2 and 2{1. It is easy to see
that an expression with n constants will have n? swappings, one for each pair of constants.



125

candidates behave strangely, violating the mandatory left shrinking property. We take
this opportu nity to show that they yield weird results for the swapping problem as well.
For instance, the useof m x ; yields:

Man> disp lay (pairSwapsl (parse "(1 + 2) + 3"))
(1+2) +3, 2 +1) +3, (2+2) +1,
(2+2) +3, (1 +2) +3, (1+2) +2,
(3+2) +2, (1 +3) +2, (1+2) + 3

producing illegal swappings such as (2 + 2) + 1. The failure of the left-shrinking property
causes unwanted interferencewhen the constants are pairedﬁ
9.2 Sorting networks and screen layout in GUI's

A sarting network is a calection of comparators, connected in such a way that the output
of the network isalways the sarted permutation of it sinput [15]. For instance, the following
network can sort four numbers:

For each comparator, the wire to itsright carries the maximum of it s inputs, while the
lower one carriesthe minimum. In this particular example, a;b;c, and d are the inputs,
while k;I; m, and n are the outputs.

How can we implemert a sorting network so that we not only ge the valuessorted, but
also a transcript of the operations performed during sating? We want each comparator
unit to report on the operation it performed while sorting took place The output monad

3In certain cases,the operation of the value recursion operator for the list monad can be understood in
terms of the usual translation rules for list-comprehensions [89], using symbolic substitutio n for variables
that occur recursively [18, Sections 1 and 6.3]. The details, although not terribly important, might be
enjoyable for the curious reader, providing somemore insight about the behavior of m x for the list monad.
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(Sedion[4.5) springsto mind. We cantranslate the sarting network above almost literally
into the following Haskell code:

newtype Out = Out (; String)
insta nce Monad Out where
return x = Out (x;\")
Out ~(x;s) = f = let Out (y;s) = f xin Out (y; s + s9

instance Show ) Show (Out ) where
show (Out (v; s)) = show v + s

comp Zdnt I (Int; Int) ! Out (Int; Int)
comp i (a; b) = Out ((a ‘'max” b; a ‘'min" b); \nnUnt " + show i + msg)
where msg = (if a < b then \: swap: " else \: pass: ") + show (a; b)

sor4 2 (Int; Int; Int; Int) ! Out (Int; Int; Int; Int)
sort4 (a; b; c; d) = do (e; f) comp 1 (a; b) --unit 1

(g; h) comp 2 (c; d) -- unit 2

(n; i) comp 3 (e; g) -- unit 3

(j; k) comp 4 (f; h) -- unit 4

(m; 1) comp 5 (i;j) --unit 5

return (k; I; m; n)

Here is a samplerun:

Man> sort 4 (23, 12, -1, 2)

(- 1,2, 12,23)

Urit 1. pass: (23,12)
unt 2: swap: (-1,2)
Urit 3. pass: (23,2)
unt 4. pass: (12,-1)
Urit 5: swap: (2, 12)

What happensif we want to obseave the output in somedi e rent order? For instance,
we might want to seethe output of the third unit after the f th. Intuitively, it must be
suc ient to move the third line after the f th in the de nition of sort4, obtaining:

satd (a; b; c; d) = do (e; f) comp 1 (a; b) -- unit 1
(g; h) comp 2 (c; d) -- unit 2
(; k) comp 4 (f; h) -- unit 4
(m; ) comp 5 (i;j) -- unit 5
(n; 1) comp 3 (e; g) -- unit 3
return (k; I; m; n)
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Alas,this modi cationisillegal: Thevariablei isunbound whenused in thefourth line.
Luckily, value recursion ts the bill. All we needto say is that the variable i usedby the
5th unit is the onethat is de nedby the 3rd, which can be handled by an mdo-expression.
As we have seenin Segion 4.5, the corresponding m X is given by:

insta nce MonadFix Out where
mx f = let Out (a;s) =f ain Out (a; s)

With this dedaration and the use of the keyword mdo, sart4 will work as expected,
delivering the output of the third unit after that of the fth.

A similar phenomenonoccurs in GUI basedprogramming, wherethe order of monadic
actions implicitly determinesthe saeenlayout. Toill ustrate, consder the following simple
example, taken from Thiemann's work on a CGl library for Haskell [85]:

do f1 inputField ( el dSize 10)
f2 inputField (el dSize 10)
submitButton (someAction f1 f2)

The corresponding GUI will have two input elds side by side, followed by a submit
button. What happens if we want to place the submit button to the left of the input
elds? Since the ordering of the statements in the do-expressiondetermines the position
of the GUI elements, we would like to move the call to sulmitButton to the rst line,
textually preceding the calls to inputField. As Thiemann also points out, such a move
would require the useof an mdo-expression, sincethe variablesfl and f2 will no longer be
visible when usedas arguments to someAction.

9.3 Interprete rs

Supposeyou are desigiing an interpreter for a language that has let-bind ings for intro-
ducing local bindings. Operationally, the expression let v = e in b denotesthe same
expression as b, where e is substituted for all free occurrences of the variable v. The
abstract syntax of your language might include:

data Exp = ... | Let Var Exp Exp

Assuming the language s applicative, the natur al choice for implementation would be
the environment monad (Sedion [4.6). In this seting, the sedion of the interpreter that
handles the let-expressions might look like:

eval (Let v e b) = do ev eval e
inExtendedEnv (v; ev) (eval b)
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where inExtendedEnv simply extends the environment with the binding v 7! ev before
passirg it on. This approac yields a satisfactory implementation.

Note that, our evalfunction cannot deal wit h recursive bindings, i.e., in the expression
Let v e b; v isnot visible in e. What happensif we lift this restriction? All we need
is a way to extend the environment with the binding v 7! ev in the call to eval €;
before we actually know what evis. The following mdo-expression expresss the required
dependency:

evd (Let v e b) = mdo ev inExtendedEnv (v; ev) (eval e)
inExtendedEnv (v; ev) (eval b)

In contrast, consider how we might solve this problem without using value recursion.
Assuming Val denotes the data type for the values our language can process and the
following declarati on of environments:

data Env = Env ([(Var; Val)] ! )
we are forced to implement recursive let-expressias as follows:

eval (Letveb) = Env ( env.let Env f = eval e
ev f ((v; ev) :env)

Env g = eval b

in g ((v; ev) :env))

Although it will perform the required task, this solution is hardly satisfactory. First
of all, we had to reveal how ervironments are actually implemerted, defeding the whole
point of the monadic abstraction. As a result, our code will only work with that partic-
ular implementation; switching to a dierent representation will require changes in the
interpreter. The code is no longer easy to understand or maintain.

On the other hand, our r st implementation using the mdo-notation is quite simple to
undergand, concise, and not tied to any particular represertiati on of environments.

9.4 Doubly linked circu lar lists wit h mutable nodes

Congder a simple implementation of doubly linked circular lists in Haskel. For this
example, we will store a mutable boolean ag at each node, a True value indicating that
the node is already visited in a particular traversal. We usethe internal state monad to
gain accessto mutable variables[52]. The nodesin our circular lists have the following
structur e:

newtype Nodes = N (STRef s Bool; Nodes ; ; Nodes )
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consisting of the mutable ag, the pointer to the previous node, the data item, and the
pointer to the next node. Given two nodesb and f, a new node in between is created by
the following function:

newNode ;> Nodes ! ! Nodes ! ST s (Nodes )
newNode b ¢ f = do v newSTRef False
return (N (v; b; c; f))

Here is a simple example of a circular list, and its rendering in Haskell using the
function newNae. Note that the use of the mdo-expression is essehial in expresing the
cydlic structur e

[ :: ST s (Node s Int)

[l = mdo nO newNode n3 0 nl
nl newNode n0 1 n2
n2 newNode nl1 2 n3
n3 newNode n2 3 n0
return n0O

Traversing a given doubly linked list simply amounts to following the links until we
reach a node that has been visited before:

data Direction = Forward j Backwad deriv ing Eq

traverse ;» Direction ! Nodes ! ST s ]
traverse dir (N (v; b;i; f)) =
do visited readSTRef v
if visited
then return []
else do writeSTRef v True
let n = if dir == Forward then f else b
is traverse dir n
return (i:is)

Here's a sampe run:

4A more traditio nal technique would rely on creating dummy initial link values for at least one of the
nodes, and explicitly overwriting them when the rest of the structure is created. This\clunky" approach
is often seenin the formatio n of cyclic objects in imperative languages, such as Java. Perhaps an mdo-like
construct could help there also.
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Man> runST (Il >>= traverse Forward)
[0,1,2 ,3]
Man> runST (Il >>= traverse Badkwad)
[0,3,2 ,1]

Theinversefunction that takesa non-empty list and constructs a doubly linked circular
list out of its elemerts furth er illustrat esthe use of value recursion:

encircle 2[ ]! ST s(Nodes )
encircle (x:xs) = mdo ¢ newNae | x f
(f; 1) encircle® ¢ xs

return c
encircle® > Nodes ! []! ST s(Nodes ; Nodes )
encircle® p [] = return (p; p)

encircle® p (x:xs) = mdo ¢ newNode p x f
(f; 1) encircle® ¢ xs
return (c; 1)

We have:

Man> runST (encircle "hello world" >>=tra verse Backward)
"hdlro w ol le"

Man> runST (encircle "hello world" >>=tra verse Forward)
"hello world"

Similar techniques might be usefd in the functional implementation of graph algo-
rithm s as well [45]. In general programs manipulating stateful objects with cyclic de-
pendencies can bene t from value recursion. For instance Nordlander shows how to use
value recursion to express layered networking protocads in the context of his O'Haskell
language [65, Sedion 4.2).

9.5 Logical variables

In atutoria |l paper on monadsand e ects, Benton, Hughesand Moggi suggestthe following
execise on programming with monads[4, Exercise 55]:

Prolog provides so-alled logical variables, whose values can be referred to
before they are set. De ne a type LVar and a monad Logic in terms of ST,
supporting operations



newlVar :: Logic s (Lvar s )
readLVar :: Lvar s !
writeLVar :: LVar s ! I Logic s ()

where s is again a state-thread identi er. The intention isthat an LVar should
be writt en exactly once but its value maybe read beforehand, between its
creation and the write|laz y evaluation is at work here. Note that readLVar
doesnot have a monadic type, and so can be usedanywhere.
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Clearly, we will neal to usevalue recursion in implementing newlLVar, allowing us to

accessthe value of a logical variable befare it is actually sé. There is a small problem,
however. How do we determine the scope of a logical variable, i.e., how do we make it
available to therest of the computation? We sdve this problem by using the contin uation

monad transformer, a clever trick suggestad to us by John Hughes@ Using this ideg the

Logic monad looks like:

data Logics = Logic funL ::forall .( ! ST s )! STs ¢

instanc e Monad (Logic s) where
return a Logic ( k. k a)
Logicf = g = Logic ( k.f ( a unL (g a) k))

A logical variable is nothing but a value and a pointer toit. To read, we simply project

the value. To write, we update the mutable cell:

newtype LVar s = LVar (STRef s ; )

readLVar o Lvar s !
reedLVar (LVar (_; v)) = v

writeL Var o Lvar s ! I Logic s ()
writeLVar (LVar (r; ) a = Logic ( k. do writeSTRef r a
k ()

The magic that makes logical variables work is hidden in newLVar:

newlVar :. Logic s (LVar s )

newlVar = Logic ( k. mdo r newSTRef (error \unbound LVa!")
a k (Lvar (r; v))
v readSTRef r
return a)

SAn alternative would beto usethe typenewlVar :: (LVar s a! Logic s b) ! Logic s b; requiring

the userto explicitly specify the scope, asin: newlLVar ( v. :::). In that case the ST monad itself would
serve as the Logic monad, without any need for contin uations.
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Here is how newLVar works. We allocate a new mutable variable, r, and form the pair
(r; v), where v is the value that will evertually be stored in r. This pair is passedto
the continuation k, represening the remainder of the computation, i.e., the scqe of the
new logical variable. Beforereturning the resut of this call, we simply read the mutable
variable r, determining the actual value of v. (Note that the computation represerted by k
is expected to call writeLVar on the newly creaed logical variable, setting its n al value.)
The mdo-expressionimplicitly usesthe function x ST, the value recursion operator for
Haskell's internal state monad (seeSection4.4). The n al bit of machinery we nedl is a
simple run method to extract values:

runLogic :: (forall s. Logics ) !
runLogic f = runST (unL f return)

Here are a some simple examples demonstrating the useof LVar's:

t2 = do v newlLVar
let val = [0; 6 .. readLVar V]
writeLVar v 42

t1 = do v newlVar
let val = readLVar v

return val return val
t3 = do v newlVar t4 = do s newlVar
let vl = readLVar v c newLVar
writeLVar v 43 let sVal = readLVar s
let v2 = readLVar v cval = readlLVar ¢
writeLVar v 42 writeLVar s \test™
let v3 = readLVar v writeLVar ¢ 'l
return (v1; v2; v3) return (cval : sval)
We have:
Man> runLogic t1 :: Int Main> runlLogic t2
Program error : unbound LVar! [0,6, 12,18,24,30,36, 42]
Man> runlLogic t3 Main> runlLogic t4
(42,42,42) "ltes t"

In t1, we never write to v, henceits value is left unde ned. All calls to writeLVar
except the last will be ignored,@ asdemonstrated by t3. Finally, t4 shows that we can use
variables with di erent typesin the samecomputation.

Claessenand Lju nglef show how one can uselogical variablesto embed a typed func-
tional logic programming language in Haskell [13]. Similar to our implementation, they

50f course, every call to writeLVar will be performed when the computati on is run, in the given order.
However, all callsto readLVar will return the last value written, regardlessof their order. For all practical
purposes,logical variables behave as constants, whose values can be used before they are set.
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use the ST monad to get accessto typed mutable variables. However, they only allow
accessto logical variablesinside their version of the Logic monad. (In our terms, their read-
LVar function hasthe typelLVar s | Logic s .) It might beinteresting to combine
their work wit h ours, allowing logical variablesto be used anywhere, and henceproviding
a more exible embedding. We leave the exploration of this idea for future work.

9.6 Summary

In this chapter, we illustrated the use of value recursion operators and of the recursive
do-notation. We admit that some of our examplesmight seen a litt le contriv ed, with
the notable exception of the circuit modeling example of Sedion [1.2. Howevwer, it is our
hope that readerswill be able to relate theseexamplesto their own work, spotting further
applications for value recursion. Here are some common casesto watch for:

Programs dealing with data ow equations. Assuming the underlying model is
monadic, any feedbadk loop or a cyclic dependency would signal the need for a
value recursion operator to tie the recursive knot. Our circuit modeling example is
an instance of this problem.

Stateful objects with mutual dependencies. Again, if a monadic interface is used,
mutual dependencies will require the use of value recurson. Our implementation
of doubly linked circular lists, and the network programming example in O'Haskell
(see Section[10.1 for a brief discussion)are examplesof this kind.

Programsthat combine seweral phasesand userecurson to eliminate multiple traver-
sds of data structures, similar to the repmin problem of Section[9.1. If any one of
the eliminated phases require monadic e ects, value recurson becomes the tool for
expressingthe required cyclic dependence

Monadic programs where a particular ordering of e ects forcesus to use variables
that will only become available later, similar to the sarting networks or GUI design
examplesof Section(9.2.



Chapter 10
Epil ogue

In this thesis, we have studied the interadion between two fundamental notions in pro-
gramming languages: Reaursion and e ects. As we have see, cyclic de nitions in the
presence of monadic e ec ts can be understood in terms of value recursion operators, whose
behavior can be characterized by means of a number of equational properties. It is our
belief that theseproperties capture the essence of the interaction satisfactorily. Of course
the extent to which our axiomatization is successil will only be determined by practice.
Our properties could be deamed appropriate if they rule out useless de niti ons of value
recurson operators, and admit only thosethat are meaningful in practical programs. It is
still too ealy to cometo a dedsive conclusion in this regard, but we hope that our work
will be usefd for both reserchers and practit ioners, especially as monads becane more
and more pervasive in functional programming.

We conclude our exposition of value recursion by brie y reviewing the related work,
and pointing out somefuture reseach opportunities.

10.1 Related work

Theinteradion between recursion and shared computations has been extensively studied
by Hase@wa [32, 33]. Sharing is a commutative eect, i.e., the order of computations does
not matterm As we have explored in the rst part of Chapter [6, recursion in commutativ e
monadscan be understood in terms of tracesin symmetric monoidal categories. Hasegava
showsthat giving atrace over a cartesian closedcategay is the same asgiving a xed-p oint
operator for it (see Theaem [6.2.4). This resut is remarkable, as it provides an escge
from the usual domain-theoretic view, increasingthe level of abstraction considerably. As
Hasegawa himseff points out, however, when the underlying e ect is non-commutative, we
can no longer stay in the monoidal world.

1Think of a recursive let-expression in Haskell. The order of bindings is irrelevant; equations can be
swapped around without changing the result.
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Patersaon introduced loop operators for handling value recursion in arrows [36, 66].
Alt hough Patersonnotes that someof the axioms are too strong for many practical cases,
he does not weaken his axiomatization to accommodate accordingly. On the syntactic
side, Paterson's work introduced a conveniert notation for programming with arrows in
Haskell, providing support for recursive bindings aswell. However, rather than letting the
translation gure out recursive segnents as we do in the mdo-notation, Paterson prefers
using an explicit keyword, rec, askingthe programmersto mark recursive blocks explicitly .
(The rec keyword is modeled after O'Haslell' s handling of recurdgve bindings, reviewed
below.)

Building on our initial paper of monadic xed-points [18], Benton and Hyland take
Hasegawa's work one step further by gereralizing the notion of trace to premonoidal
categories [5]. (It turns out that Benton and Hyland's axiomatization and Paterson's
work on arrows are esentially the same,although developed independently and presented
in slightly dierent contexts.) Similar to Paterson's loop axioms, Berton and Hyland's
axiomatization is too strong for many monads aswell. As we have sea in the seond half
of Chapter [6, their sliding and right tightening laws are simply not satisable in many
practical cases (seealso Sedion [3.1). As a conseguence their work can explain value
recurson for the state monad (and those monadsthat embedinto it, such as output and
ervironments), but not exceptions lists, or the /O monad. In general, any monad that
is based on a sum-like data type will fail to satisfy their requirements. In any case, we
consider Patersonand Benton and Hyland's work asanimportant step toward a categorical
account of value recursion.

Friedman and Sabry [25] approach value recursion form an ertirely dierent angle
Rather than considering individual monads separately, they considerrecursion itself as a
computational e ect, following an operational de nition: Allocate a reference cel, evaluate
the body, and update the cdl with the resut. (This processis essatially how Scheme
models recursion, as we have briey coveredin Secion[5.3) Since recursion is performed
in the combined monad, it is the users' responsibility to translate original problems and
values to and from this combined world. That is, to model value recursion in a monad m,
they end up using a function:

mxM = (STM sm | STM sm )! STM sm

where STM is the state monad transformerE Furthermore, all the morphisms of the
base monad have to be lifted into this \st ate enriched" world as well, and this is where

2Note that m x M accepts a function from computati ons to computatio ns, rather than from values to
computatio ns as in the casefor mx . This change of view is necesary for implementing the allocate-
evaluate-overwri te model.
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the interaction between particular e ects and recurson hasto be addressd by the user.
Unlik e us, howewer, they do not postulate any properties, hence it is up to the userto
come up with correct liftings. As Friedman and Sabry obseve themselves, their method
is rather inconvenient to use from a programming perspective, compared to our mdo-
expressionsand direct handling of recurson in the given monad. Unfortunately, a similar
comparison is not immediately possiblefrom a theoretical point of view, asthe approaches
are fundamentally di erent.

From a practical point of view, much greater similarity to our work is found in Nord-
lander's O'Haskell language. O'Haskell is an object oriented extension of Haskell, designed
for addressingissuesin readtiv e functional programming [65]. One application of O'Haskell
is in programming layered network protocols. Each layer interacts with its predecessor
and successo by recdving and passinginformation in both directions. In order to connea
two protocols that have mutual dependencies, one needs a recursive knot-tying opera-
tion. Since O'Haskell objects are monadic, value recurdon is employed in establishing
such connections. O'Haskell adds a keyword x to the do-notation, whosetranslation is
a simpli ed version of our mdo-notation. The O'Haskell work, however, doesnot try to
axiomatize or generalize the idea any further.

Carlssonand Hallgren discuss a variety of loop operators in the context of their work
on stream based programming using fudgets [29]. Alt hough the intended semarti cs of
their loop operators is quite similar to those of value recurson operators, the typesand
the mechanics are somewtat di e rent. For instance,one of their operators hasthe type:

loopLeftF :: F (Either ) (Either )! F

which, intuitively, tiesthe recursive loop over , resuting in afudgetfrom to . Carlsson
and Hallgren useloop operators only in the framework of fudgets, without generalizing to
arbitrary monads, or studying their behavior more abstractly.

The circuit modeling example we have seenin Sedion 1.2 is discussedin detail in
Claes®n's recent dissertation [12]. Alt hough Claessenpoints out the neal for an appro-
priate looping combinator, he does not pursue the monadic approach any further. Instead,
he intro duces the notion of observadle sharing, which is a non-conser\ativ extension to
Haskell [14]. (Brie y , obsevable sharing allows programmers to determine whether a cir-
cuit component is readed via a feedback loop, solving the in nite unfolding problem.)
Claesen arguesthat \...loop combinators are unfortunate because they intr oduce extra
clutter in the code that is hard to motivate" [12]. We believe that our mdo-notation
addresse Claessen'sconcerns perfectly, relieving the programmers from error-prone and

3Since the addition of obsenational sharing violates referential transparency, the resulting languageis
no longer pure. That is, thelaw: let x = M in N N[x ( x. M)=x] no longer holds.
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cumbersomeuses of explicit looping combinators. In addition, the monadic approach has
the obviousadvant age of keging the underlying language pure, providing a nice and clean
semartic framework.

Turbak and Wells introduce the cycamore data type, which is aimed at simplifying
the use of cyclic structures in declarative languages [86]. The basic idea is to assaiate
each node in a cycamore with a global unique iderti er, similar to our doubly linked list
example of Section(9.4, They consider implementationsin both ML and Haskell, and the
Haskell version makes useof referencesn the state monad to implement unique identi ers.
As expected, Turbak and Wells employ value recursion in order to expressthe required
cyclic structure.

10.2 Future Work

Alt hough we have concertrat ed on applicationsin functional programming, valuerecursion
ceatainly makes sen® in other programming paradigmsas well. One future research direc-
tion to explore is the problem of creating cyclic structuresin imperative languages. Such
structur es arise quite frequenrtly in practice. For instance, the following example presents
an opportunity in IBM's data manipulation language for its DB2 database system [11]JZ

create type VDet t as
(nane Vachar(2 0)) mod db2sql;

VPerson_t create type VPeson_t as
VDept_t (nane Vachar(4 0)) moe db2sql;
- ~=__ mgr
Tl Tl v create type VEm_t under VPerson_t as
dept - VEmp._t (dept Re(V Dept t)) male db2sq;

alte r ty pe VDep t
add attri bute mg Rd(V Empt);

In this example, the usercreaesthreetypes: department, person, and employee Each
department hasa name and a manager. Each person isidenti ed by a name. Finally, each
employeeis a VPeaso n_t, which further hasa (referenceto a) particular department. While
the create typ e directives for VRerson_t and VEmg re ect the structure correctly, the
VIept _t typecannot be creaed with both of its required attribu tes. Clearly, the di cult y
arisesasthe VEm_t typeisnot yet visible when \Dept_t is created. The nal alter type
directive remediesthe situation in a roundabout fashion, adding the missng attrib ute.

4T his example was pointed out to us by David Maier.
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We seetwo opportunities with regard to our researt. First of all, better syntactic
support (alongthe linesof our mdo-notation) would help get rid of the nal alter type
directive, keeping the declaration of VIzpt _t sef-contained, possibly simplifying further
analyses. More importantly, if such declarations are ever given a monadic senantics, value
recursonwould bethe right tool for modeling the cyclic dependency. Similar opportu niti es
exist in other languagesas well.

On the theaetical side, we would like to seevalue recursion studied in a more abstract
setting. In this regard, the trace- xe d point correspondence as we have studied in Chap-
ter [6, seans to be the right direction to proceed. We would like to investigate the reasms
why the axiomatization via traces turns out to be too strong, hopefully augmening the
theory to capture the practical aspeds more precisely. For instance, it would be inter-
esting to pin down the role of the right shrinking property precisdy. As we have seenin
Chapter 3, right shrinking property is not satis able whenever the = operator is strict
in its rst argument, and hence a weaening of the trace-basedaxiomatizations seems
inevitable.

Seweral questions remain to be explored regarding the behavior of value recursion op-
erators. For instance, we lack a reasoning principle along the linesof xed-point induction.
Reall that the xed-p oint induction principle statesthat P ( x f) can be established by
showing that P ? ~ 8d:(P d) P (f d)) holds, provided P is an admissible predicate.
(The obvious generalzation: P ? 2 8d:(Pd) P (d =f))) P (mx f)isnot soud,
asit implicitly assumesan unfolding view of value recursion.) It is probably the casethat
one needsto formulate and prove a separat induction principle for each new m x , rather
than looking for a universd principle that would work for all cases.While our properties
provide a framework for reasoning about terms involving m x , such an induction principle
might prove esential for reasoningabout value recursion in general.

Another question is the automatic construction of value recursion operators for ar-
bitrary monads. Alt hough we have seen many \design patterns,” it is still not clear
how to de ne an appropriat e operator for a given monad that will satisfy our properties.
(The continuation monad seemsto be the problem child in this regard.) Although it is
highly unlikely that a magic recipe for automatic construction of such operators exists, it
would be niceto pin down the exact conditio ns under which their existence(and possibly
uniqueness)can be guaranteed.

The semanti cs we have preserted in Chapter [8 for modeling monadic I/O needssome
improvemerts to simplify reasoning with symbolic terms. Furthermore, we would like
to extend our language to support more featur es, such as concurency and excetions.
While concurrency seemsrelatively easy to support, it is not immediately clear how to
extend our system to include Haskell'9 8 style exceptions More importantly, it would be
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interesting to show that the addition of monadic I/ O primiti ves, mutable variables, and
support for value recurson presevesthe paramdricit y principle. Also, we would like to
designan accampanying abstract machine semartics, which might be useful asa basisfor
constructing interpreters for similar languages.

W hether the mdo-notati on should evertually replacethe current do-notation in Haskell
is a question that will have to be answered by the Haskell community. While we believe
that a single construct should handle both recursive and non-reaursive cases,sud a change
potertially breaks existing programs, and it might be a better ideato make the switch in
a future version of Haskell.



Appendix A

Fixed-p oint operators

In this appendix, we briey review xed-point operators. Our aim is to introduce the
terminology we use, providing pointers to the literature for details as necessary.

In the domain theoretic semartics of programming languages, types are modeled by
domains and functions are modeled by conti nuous maps. The meaning of a typical recur-
sive dedaration of theform let x = M in N istakento be N [x ( x.M)=x]; where

x f= f'? (A.1)

assuning M hastype . Notethat x neednot be a function only, we might de n erecursive
values this way as well. For instance we have (using Haskell-like notation):

let ones= 1: onesin ones x ( ones. 1l : oney

The least xed-p oint theorem statesthat x f is the least xed-point of f [76, (92].
That is, (i) it satises the xed-p oint property: f (x f) = x f, and (ii) it is the least
such value, i.e., for all x s.t. x = f x, wehave x f v x. We usethe name x only to
mean this particular xed-p oint operator over domains.

Thetheay of xed pointsis extensively studied [9, 10, 81]. It is neither possible, nor
necessary for usto summarize this huge body of work here; we will simply state the results
that are most relevant to our work.

Property A.1 (Dinaturality.) Letf :: ! ,g: | . The dinaturalityE property
of x states that:

x (f g=71(x (g )

1The term dinaturality refersto the fact that x can be viewed as a dinatural transformati on between
certain functors [55, 80]. We will not need this level of detail in our work, so we skip the details.
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Property A.2 (Bekic.) Let f :: I . The Bekic property of x states that:
X (X x (y.Tx;y9))= x (xf (x;x))
Or, equivalertly,
X (tx (vof (1t 2v))) = xf

where f :: ! . It iseasy to generalzeto arbitrary number of variables, rather
than just two; seeWinskel's textbook for details [92].2

In Chapter [6, we consider xed-point operatorsin more abstract settings, i.e., without
assumng that the underlying structure is domains and conti nuous maps We assune a
minimal acquaintance with category theory in the following discussion[2, 70]. The basic
structur e we work with is a category Cwith nite products. We write  for the terminal
object. The setof arrows between two objects A and B is denoted C(A; B). We will need
the following basic de nitions [33, [79:

Denition A.3 A xed-point operator isafamily of functions( ), : C(A; A) ! C( ; A),
such that forany f : A! A, f f =1 .

De nition A.4 A parameterized xed-point operator is a family of functions:
Ohx 1A X3 X) 1 QA X)
satisfying:
Parameterized xed-point property: For f : A X ! X, f hda; fYi = fV.
Naturality in A: Forf :A X! X andg:B! A, (f (g idx)Y=1Y g.

De nition A5 A Conway operator is a parameterized xed -point operator that further
satis es:
Dinaturality: Forf :A X! Yandg:A Y! X, (gh f;x;fi)y: g hda; (f
h &Y gi)i.
Diagonal property: Forf :A X X! X,f¥W=(f (ida hdy;idxi))Y.
Thereader neal not master thesede nitionsin full, only a basicfamiliarity issu cient.

For the most part we will be working with x, and using the dinaturality and Bekic
properties given before, which are much easier to read and undergand.

2Bekic's property appears in many diere nt but equivalent forms in the liter ature [3]. The versions we
have given here are the onesthat are most suitable for our purposes.



Ap pendix B

Pro ofs

In thefollowing proofs, we assume true products. In the caseof lifted products, special care
must be taken to ensure that the di e rence between(? ;?) and ? is not visible. The cases
when the distinction does matt er have been pointed out in the text. (See Warning [2.6.7

aswell.)

To save space, we will shorten returnto in our proofs. Also note that we usethe name
map to refer to Haskell's fmap, i.e.,map :: ( ! )!' m ' m forall monads m,
de ned by the equaton mapf m = m = f.

B.1 Prop ositi on
Given Equation (2.7, establishing 2.8 is easy. We have:

mx ((x; ). mx ((5y)f&xy)
=mx (tmx (uf(1t; 2u)
=mx (tmx (u (&xy).f(1x 2y)(tu)

=mx (t (xy).f(1x; 2V) (t;t) f Equation [2.79
=mx (tf(1t; 21))
=mx f

In the last step, we usedthe fact that ( 1t; 2t) = t, which only holds for tru e products.
To show the correspondence in the other direction, let  x = (x;x), and note that
is strict (again thanks to true products). We have:

mx ( x. f (x; x))

= mx (f )

=map (1 ) (mx (f ) fa = idg
=map 1 (map (mx(f ))

= map 1 (mx (map ) f slideg
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map 1 (mx (x.mx (y.(map  f) (1% 2Y))) fEquation (2.8g
map 1 (mx ( x. mx (map (y-f(C1x9)  2)

map 1 (mx (x.map (mx (y. f(1x5Y))) fslideg
map 1 (mx (map (x.mx (y. f (V) 1)
(map 1 map ) (mx ( x.mx (vy.f (x;V¥))) fslideg

mx (x.mx (y. f(x5y))

In caseof lifted products (Proposition [2.5.4), the proof proceeals similarly. The last

step in the rst proof is not applicable, but in that casewe can replace the last line with
mx ( ~(x;y). f (x;y)); which is predicted by Equation [2.10. The se@nd implication
follows similarly.

B.2 Prop ositi on 2.6.8

mx ((xy).fx =z (z;hz(x;y))

mx (t (f )t = z. (z;hzt)

mx (t ( (u;v). (f 1)u = z. (z;hzv)) (t; 1)

mx (x.mx(y.(f 1) X = z. (z;hzy)) f nestg

mx ( x. (f )X = zmx (y. (z;hzy)) fleft shrinkg
mx ( x. (f )X = z. (x (y.(z;hzy)) f purityg
mx ( x. (f 1) X = z. (z; x (y.hz(zvVy))) fnest (x)g
mx f = z (z; x (y.hz(zVy)) f pure rightg
mx f = z (x ( (X;y). (z; hz(x;¥)) fnest (x)g

B.3 Prop ositi on

mx ((x;J). fx =y (qy)

mx (map (y. (@ y) f 1)

map (y. (q;y)) (mx (f 1 (y. (a5 y)) fstrong slidingg
map (y. (q;y)) (mx (y.f q)

map (y. (q; y)) (f a) f constant functionsg

fqg = vy (aqvy)

The ned for strong sliding is obvious, since otherwise we would have to require f gq=

f ? to satisfy the preceden.
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B.4 Lemma [3.1.4

Reall that is a natural transformation, that is, it satis es the equality map h =
hforalh: ! . Assume isstrict at thetype ,ie., ? =7?, ,and =s
strict in its rst argument. Pick an arbitrary type . Wewill show that ? =7?n

?
= (const 2 ? )
= const ? ) ?
= (map (const ? ) ) ? fnaturality of g
= map (const ? ) ( ? )
= map (const ? ) ?m fassumpgion: ?2 =?m 9
= ?m = const ? fde nition of map g
= ?m fassumpgion: = is left-strictg

B.5 Prop ositi on 3.4.2

Given arbitrary f and g, de ne:

hx1l=fx
hx2=gx
We have:
mx ( x.fx gx)
=mx (x.hx1l hx2
=mx (x( 1 = y.hxy) (2 = y.hxy)
=mx (x ( 1 2) = y.hxy) fEqn. [3.89
=( 1 2) = y.mx (X hxy) fleft shrink g
=mx (xhx1 mx (x.hx2 fEqgn. [3.89

=mx f mx g

B.6 Prop ositi on

We considereach casein turn:

4.5: Right to left implication isimmediate. From left to right, x (f head) must be
? , which only happenswhenf ? = ?. (Note that this establishes th e strict nessproperty.)

[4.6: Similar to the previous case.

[4.7: Simple case analysis. If mx fis ?, f is strict by 4.5, and both sides re-
duceto ?. If mx fis[], thenf ? = [] by [4.6 reducing both sides to ? again.
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Finally, if mx f is a cons-cél, the case expressicn must take its second branch, i.e.,
head (mx f) = head (x (f head)); which is exactly the right hand side by the di-
naturality of x.

[4.8: Similar tothe previouscase if m x fequals? or[], both sidesyield ?. Otherwise,
case must take its secand branch, i.e.,tail (mx f) = mx (tail f).

[4.9: Considerthe test expresson for case. We have:

X (( x.fx:gx) hed)=(x.fx:gx)(x (head ( x.T x:gXx)))
(x.fx:gx)(x f)

f(x f):g(x f)

x f:g(x f)

Hence the case expresson takes its second branch, yielding:

x f:mx (tal ( x. f x:gXx))
= x f:mx g

mx ( x.f x:gx)

4.10: We will usethe approximation lemma [7,38], which states that:

(8n. approx n Xs = approx n ys) ) XS = ys

for arbitrary lists xs and ys. The function approx is de ned as:

approx wnteger! [ ]! [ ]
approx 0 XS =7
approx (n+1) ? =?
approx (n+1) [] = [l

approx (n+1) (X:Xs) = X : approx n xs

We will prove:
8n:8f;g:approx n (mx ( x.f x + g x)) = approx n (mx f + m x Q)

by induction on n, implying the required resut. Basecase(n = 0) istrivial . Theinduction
hypothesisis:

8f;g:approx k (mx ( x. f x + g x)) = approx K (mx f + mx Q) (B.1)

Note that the hypothess is assumed for all f and g. This generality will be essetial in
establishing the induction step. We need to shaw:

8f;g:approx (k+1) (mx ( x. f x + g x)) = approx (k+1) (mx f + mx Q)
Pick two arbitrary functionsf® g%: ! [ ]. It su cesto show that:

approx (k+1) (mx ( x. fOx + @g%x)) = approx (k+1) (m x fO9+ m x g9 (B.2)
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which we establish by caseanalysis on f °?. The cases? and [ ] are immediate. By /4.5
and 4.6, both sides reduce to ? and approx (k + 1) (mx g9, respectively. If f9? is a
cons-cel, it follows that

8x: fOx = (head fY x : (tail f9x (B.3)

Simple inspedion of the de niti on of m x reveds that m x f ®must be a cons-cel in this
caseas well. Hence we have:

m x f%= head (mx 9 : tail (mx 9 (B.4)

Therefore,

approx (k+1) (mx ( x. fox + g°x))
= approx (k+1) (mx ( x. (head {9 x : (tail 9 x) + g°x)) fEqn.B.3g
= approx (k+1) (mx ( x. (head 9 x : ((tail 9 x + g°x)))
= approx (k+1) ( x (head 9 :m x ( x. (tail 9 x + g°x)) fEqn.4.99
= x (head f9 : (approx k (mx ( x. (tail 9 x + g°x)))

= x (head {9 : (approx k (mx (tail 9 + mx g9) fl.H.g

= approx (k+1) ((x (head 9 :mx (tail f9) + m x g9

= approx (k+1) ((head (mx f9 : tail (mx f9% + mx g9 f Eqns.[4.7; [4.8g
= approx (k+1) (mx fO+ mx ¢9 fEqn.[B.4g

completing the proof.

B.7 Prop ositi on

We nedl to show that the function m xErr M sdis es strict ness, purity and left shrinking
properties. All cases follow from the corresponding properties of m xM , and simple sym-
bolic manipulation. We will only presern the left shrinkin g caseto illustrate the technique.
To avoid confusion due to overloaded operators, we will write returnM and bindM for the
morphisms of m, while returnErrM and bindErrM for thoseof Err m.

mxErrM  ( x. a ‘bindErrM ™ y. f X y)
= fEquation [4.36; ex@and bindErrM g
mxM ( x. a ‘bindErrM ™ y. f (unErr x) y)
= fexmnd bindErrM g
mxM ( x. a ‘bindM" vy. casey of
Ok q ! f (unkrr x) q
Err s! returnM (Err s))
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fleft shrinking on mxM g
a bindM™ y. mxM ( x. casey of
Ok g ! f (unErr x) q
Err s! returnM (Err s))
f Proposition 2.6.2; case is a shortcut for if g
a bindM" vy. casey of
Okg! mxM ( x.f (unErr x) Q)
Err s! mxM ( x. returnM (Err s))
ffold down mifxErrM on the rst branch; Proposition 2.6.1 on the secondg
a bindM" vy. casey of
Okqg! mxErrM ( x.f x Q)
Err s! returnM (Err s)
ffold down bindErrM g
a bindErrM © y. mxErrfM  ( x. f xy)

B.8 Prop ositi on 6.3.5

We will need the following two lemmas:

Lemma B.8.1 Let T beamonadand mx be a value recursion operator satisfying the
right shrinkinglaw. Let f : X ! T (B X)andg:B X! TBC Then,

mx ((5x).fx = zgz = w (w;, 22)
=mx ((45x).fx) = zgz = w (w 22
Proof Note that the rst mx isat instanceB® X, whilethe secodisat B X . We
reasa asfollows:

mx ((5x).fx = zgz = w (w; 22)
=mx ( (5 x).fx zgz = w. (w;z) = (p;a). (P 209)
= fslide; (p; ). (p; 2 Q) is strictg

mx (((5x).fx = zgz = w (w;2) ((p;a)(p; 20)

= (pa). (p; 209

=mx ((t).f(2t) = zgz = w (w2z) = (p;a). (P 20
= fright shrinkingg

mx ((5x).fx) = zgz = w (w, 22
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The seomnd lemma states a variant of Equation [3.7

Lemma B.8.2 Letf: ! m(; ),g: ! m ,wherem isacommutative monad.
Then,

mx (t.g(2t) = f) = 1

=mx (tf(2t) = t%g(2t9 = a (1t%a) = 1

provided m x satis es strong sliding and nesting.

Proof (Sketch) Note that the r st m x is at instance , while the second oneis
at . The proof r st extends the recursion to ( ), applies commutativity
(Proposition 3.3.2), and then getsrid of the argumen.

To establish Proposition[6.3.5, we nedal to verify that the de nition of trace as given
by [6.21 satis es Equations[6.14-[6.20. We considereach casein turn:

Left tightening (6.14):

trace ( (a; x).ga = a%f (a%x))
amx ((bx).ga = a%f (a%x))
fleft shrinking on mx g
aga = a’mx ( (b:x).f (@%x) = 1
a.ga = tracef

Right tightening (6.15):

trace ( (a; x). f (a;x) = (b;x).gb = b% (b%x)

amx ((bx).f(ax) = ((bx).gb = b (®x) = 1
amx ((bx).f(ax) = z(g 1)z b (0% ,2) = 1
= flemma B.8.1gy

mx ( (b; x). f (a; x)) z (g 1)z
a mx ( (b; x).f (a; x)) z (12
= amx ( (b;x).f (a;x)) = 1 = 9
atracefa = g

o

W. g w

Sliding (6.16):

trace ( (a; x). gx = x°f (a; x9)

amx ((bx).gx = x%f(@x9 = 1
amx (t.g(2t) curry f a) = 1
fLemma B.8.29
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amx (toceurry fa(ot) = tog(2t9
= x% (1t%x9 = 1
= amx ( (bx9. f (a;x9 = (b;x).gx
= x% (b;x9) = 1
=trace ( (a; x9.f (a; x99 = (b;x).gx = x% (b;xY
Vanishing (6.17):
trace ( (a; ()).fa = b (b ())
= amx ((bQ)fa = b (b() = 1
= foonstant functionsg
afa = b (b)) = .
= afa = bb
= f

Vanishing (6.18): Let

asc (x5 (y; 2)) = (X3 Y); 2)
iasc ((x;y); 2) = (x; (y; 2))

Then,
trace (trace ( ((a; x); ¥). f (a; (x;y)) = (b (x;y)). ((b; x); y)))
= trace (trace ( t. f (ilasct) = asc))
= trace (trace (map asc f iasc))
= trace ( (a; x). mx ( ((= -); y). (map asc f iasc) ((a; x); y)) = 1)
= trace ( (a; x). mx (map asc ( ((5 2);y)-f (& (x;y)) = 1)
= fslide; asc is strict g
trace ( (a; x). mx ( (5 (y) f(a (x;y)) = asc = 1)
= amx ((5x)mx ((5Gy)f(@&y) = 1 aso

= 1
= fslide; 1 ascis strict g
amx (((Gx)mx((GGy)f@xy)) 10 aso
= (1 1 aso
=fi1 1 asc= 9

amx ((52))mx ((Gy)f@E&xy)) = 1
= funnest tripl eg
amx ((5&y) f(aKxy) = 1

= trace f



Superposing (6.19): Let asc be de ned as above,

trace ( ((c; a); x). f (a; x) = (b x). ((c; b); x))
(c;a).mx ( (5 ;x).f(@x)y = (byx). (c;b);x) =
fslideg
(c;a). mx ( (5 (5x). f(ax) = (b;x). (c (b x)))
= 1 asc
f pure right shrinkingg

(c;a). mx ( (b;x). f (a;x)) = (b x). (c; b)
= (c;a).mx ((b;x).f(a;x) = (% x). b® = b (c:bh)
= (c;a). mx ( (b;x).f (a;x) = 1 = b. (c;b)
= (c;a).tracef a = b. (c; b
Yanking (6.20):
trace ( (a; a%. (a% a))
= amx ((hay (@%a) = 1
= fpurity g
a (x ((baY) (@%a)) = 1

a (aja) = 1
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