
Value Recursion in Monadic

Computations

Levent Erkök

M.S. Computer Science, 1998, The University of Texas at Austin

B.S. Computer Engineering, 1994, Middle East Technical University

A dissertation presented to the faculty of the

OGI School of Science and Engineering

at Oregon Health and Science University

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

October 2002



c© Copyright 2002 by Levent Erkök

All Rights Reserved

ii



The dissertation “Value Recursion in Monadic Computations” by Levent Erkök has

been examined and approved by the following Examination Committee:

Dr. John Launchbury
Professor
Thesis Research Advisor

Dr. Mark P. Jones
Associate Professor

Dr. Richard Kieburtz
Professor

Dr. David Maier
Professor

Dr. Ross Paterson
Lecturer, City University, London

iii



Acknowledgements

I would like to thank my advisor, John Launchbury, for his guidance, help, and friendship

over the last four years. I would have never completed this thesis without him leading the

way. John knew exactly when to intervene and when to set me free, providing just the

right balance. I always felt privileged to be working with him. Thank you John.

Many people contributed to this work. Ross Paterson, Mark Jones, Dick Kieburtz,

and Dave Maier have all done an excellent job of providing me with invaluable feedback

and guidance. In particular, Ross took an early interest in our work, helping out with

the technical development over the years. Sava Krstić was a constant source of help,

answering my endless questions with great enthusiasm. Nick Benton, Andrzej Filinski,

and Amr Sabry answered many e-mail questions. I am grateful to Amr for constructively

challenging our work, making us understand it better. Andy Moran collaborated with

us in developing the semantics of value recursion for the IO monad. Jeff Lewis helped

me understand the internals of Hugs, and helped with the implementation of the mdo-

notation. Simon Peyton-Jones answered many questions over e-mail, and implemented the

mdo-notation in GHC. The PacSoft research group at OGI provided a fun and stimulating

environment at all times. I had many joyful conversations with Zine Benaissa, Magnus

Carlsson, Iavor Diatchki, John Matthews, Thomas Nordin, Emir Pašalić, Walid Taha, and

many other friends at OGI. My heartfelt thanks go to all of them.

I am indebted to numerous people for shaping up my thinking and expanding my

horizons over the years, including Sadi Yalgın, Halit Oğuztüzün, Cem Bozşahin, Hamilton

Richards, and Nicholas Asher. I thank them all.

My research was supported by grants from the Air Force Materiel Command (F19628-

96-C-0161) and the National Science Foundation (CCR-9970980). I am thankful to our

administrative staff for taking care of all the necessary details with meticulous care.

I would like to thank my parents, Fatma and Atila Erkök, for always being supportive,

and trusting me with my decisions. I sincerely hope that I am worthy of their trust.

Finally, I would like to thank my wife Şengül Vurgun, for being on my side through

thick and thin, taking over many of my responsibilities, and especially for believing in me

when I did not. Thank you Şengül, I could not have done it without you.

iv



Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Recursion and effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 A motivating example: Modeling circuits using monads . . . . . . . . . . . 2
1.3 Recursive monadic bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 A generic mfix? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 The basic framework and notation . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Properties of value recursion operators . . . . . . . . . . . . . . . . . . . . 12

2.1 Strictness (Nothing from nothing) . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Purity (Just like fix ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Left shrinking (No recursion – No fix ) . . . . . . . . . . . . . . . . . . . . . 13
2.4 Sliding (Pure mobility) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Nesting (Two for the price of one) . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Derived properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.1 Constant functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.2 Approximation property . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.3 Pure right shrinking . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.4 Parametricity: The “free” theorem . . . . . . . . . . . . . . . . . . . 20

2.7 Stronger properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7.1 Strong sliding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7.2 Right shrinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Classification and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Structure of monads and value recursion . . . . . . . . . . . . . . . . . . . 25

3.1 Monads with a strict bind operator . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Idempotent monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Commutative monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Monads with addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Monad transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 A catalog of value recursion operators . . . . . . . . . . . . . . . . . . . . . 35

4.1 Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Exceptions: The maybe monad . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Output monad and monads based on monoids . . . . . . . . . . . . . . . . . 46
4.6 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.7 Tree monad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.8 Fudgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.9 Monad transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Continuations and value recursion . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 A monad for continuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 The continuation monad transformer . . . . . . . . . . . . . . . . . . . . . . 61
5.3 First-class continuations and value recursion . . . . . . . . . . . . . . . . . . 62
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Traces and value recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1 Parameterized value recursion . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.1 Symmetric monoidal categories . . . . . . . . . . . . . . . . . . . . . 68
6.2.2 Traced symmetric monoidal categories . . . . . . . . . . . . . . . . . 69
6.2.3 Traces and Conway operators . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Traces and value recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.1 Commutative monads and traces . . . . . . . . . . . . . . . . . . . . 72
6.3.2 Monads arising from commutative monoids . . . . . . . . . . . . . . 74
6.3.3 The correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4 Dropping the monoidal requirement . . . . . . . . . . . . . . . . . . . . . . 78
6.4.1 Arrows and loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.2 Traced premonoidal categories . . . . . . . . . . . . . . . . . . . . . 80

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 A recursive do-notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.2 The basic translation and design guidelines . . . . . . . . . . . . . . . . . . 86

7.2.1 Let generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2.3 Shadowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 Translation of mdo-expressions . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.3.2 The translation algorithm . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3.3 Type checking mdo-expressions . . . . . . . . . . . . . . . . . . . . . 95

vi



7.4 Current status and related work . . . . . . . . . . . . . . . . . . . . . . . . 96
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8 The IO monad and fixIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2 Motivating examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.3 The language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.4.1 IO layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.4.2 Functional layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.4.3 The marriage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.4.4 Structural rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.4.5 Meaning of program states . . . . . . . . . . . . . . . . . . . . . . . 112

8.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.6 Properties of fixIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

9.1 The repmin problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.2 Sorting networks and screen layout in GUI’s . . . . . . . . . . . . . . . . . . 125
9.3 Interpreters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.4 Doubly linked circular lists with mutable nodes . . . . . . . . . . . . . . . . 128
9.5 Logical variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

10 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

10.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A Fixed-point operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140

B Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142

B.1 Proposition 2.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
B.2 Proposition 2.6.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
B.3 Proposition 2.7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
B.4 Lemma 3.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
B.5 Proposition 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
B.6 Proposition 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
B.7 Proposition 4.9.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
B.8 Proposition 6.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158

Biographical Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162

vii



Abstract

Value Recursion in Monadic Computations

Levent Erkök

Ph.D., OGI School of Science and Engineering,

Oregon Health and Science University

October 2002

Thesis Advisor: Dr. John Launchbury

This thesis addresses the interaction between recursive declarations and computational

effects modeled by monads. More specifically, we present a framework for modeling cyclic

definitions resulting from the values of monadic actions. We introduce the term value

recursion to capture this kind of recursion.

Our model of value recursion relies on the existence of particular fixed-point operators

for individual monads, whose behavior is axiomatized via a number of equational prop-

erties. These properties regulate the interaction between monadic effects and recursive

computations, giving rise to a characterization of the required recursion operation. We

present a collection of such operators for monads that are frequently used in functional

programming, including those that model exceptions, non-determinism, input-output, and

stateful computations.

In the context of the programming language Haskell, practical applications of value

recursion give rise to the need for a new language construct, providing support for re-

cursive monadic bindings. We discuss the design and implementation of an extension to

Haskell’s do-notation which allows variables to be bound recursively, eliminating the need

for programming with explicit fixed-point operators.

viii



Chapter 1

Introduction

This thesis addresses the interaction between two fundamental notions in programming

languages: Recursion and effects. Recursion is the essence of cyclic definitions, both for

recursive functions and circular data structures. Effects are the essence of computational

features, including I/O, exceptions, and stateful computations. Although both notions

have been studied extensively on their own, their interaction has received relatively little

attention.

1.1 Recursion and effects

In the traditional domain theoretic setting, the denotational semantics of recursive def-

initions are understood in terms of fixed-points of continuous functions. That is, the

semantics of a definition of the form x = f x is taken to be the least fixed-point of the

map corresponding to f [82, 83]. The same principle works for both recursive functions

and circular data structures, a rather pleasing situation.

Handling of effects in the denotational framework, however, proved to be much more

problematic, often summed up by the phrase “denotational semantics is not modular” [53,

64]. Briefly, addition of new effects require substantial changes to the existing semantic

description. For instance, exceptions can be modeled by adding a special failure element to

each domain, representing the result of a failed computation. But then, even such a simple

thing as the meaning of an arithmetic operation requires a messy denotational description;

one needs to check for failure at each argument, and propagate accordingly. The story is

similar for other cases, including I/O and assignments, two of the most “popular” effects

found in many programming languages [76, 77].

It was Moggi’s influential work on monads that revolutionized the semantic treatment

of effects, which he referred to as notions of computation. Moggi showed how monads can

be used to model programming language features in a uniform way, providing an abstract

view of programming languages [62, 63]. In the monadic framework, values of a given type

1



2

are distinguished from computations that yield values of that type. Since the monadic

structure hides the details of how computations are internally represented and composed,

programmers and language designers work in a much more flexible environment. This

flexibility is a huge win over the traditional approach, where everything has to be explicit.

Perhaps what Moggi did not quite envision was the response from the functional pro-

gramming community, who took the idea to heart. Wadler wrote a series of articles

showing how monads can be used in structuring functional programs themselves, not just

the underlying semantics [89, 91]. Very quickly, the Haskell committee adopted monadic

I/O as the standard means of performing input and output in Haskell, making monads an

integral part of a modern programming language [68, 69]. The use of monads in Haskell

is further encouraged by special syntactic support, known as the do-notation [47].

As the monadic programming style became more and more popular in Haskell, pro-

grammers started realizing certain shortcomings. For instance, function application be-

comes tedious in the presence of effects. Or, the if-then-else construct becomes unsightly

when the test expression is monadic. However, these are mainly syntactic issues that

can easily be worked around. More seriously, the monadic sublanguage lacks support for

recursion over the values of monadic actions. The issue is not merely syntactic; it is sim-

ply not clear what a recursive definition means when the defining expression can perform

monadic effects.

This problem brings us to the subject matter of the present work: Semantics of recur-

sive declarations in monadic computations. More specifically, our aim is to study recursion

resulting from the cyclic use of values in monadic actions. We use the term value recursion

to describe this notion.

1.2 A motivating example: Modeling circuits using monads

To illustrate value recursion, we will consider the example that motivated our work in

the first place: modeling circuits using monads. Microarchitectural design languages have

been the target of programming language research in recent years, aiming at providing

better language support for managing the complexity of such designs [12, 58]. Lava [8]

and Hawk [49, 59] are two recent systems designed to address this need. In this section,

we will consider a stripped down version of such a language, embedded in Haskell.

To familiarize ourselves with the types of circuits we can define, let us first consider

a simple non-monadic implementation. We represent signals by lists, successive elements

representing the values at each clock tick. Haskell is already expressive enough to define

the basic building blocks without much difficulty:



3

type Sig α = [α]

and , xor :: Sig Bool → Sig Bool → Sig Bool
and xs ys = zipWith (&&) xs ys
xor xs ys = zipWith (6=) xs ys

inv :: Sig Bool → Sig Bool
inv xs = map not xs

delay :: String → α → Sig α → Sig α
delay v xs = v : xs

The delay element forms a signal that behaves as its second argument during the first

clock cycle, behaving as its third argument afterwards. (The first argument to delay is

intended to be a name for v. We will use it later.) Of course, a more realistic example

would come equipped with multiplexers, registers, etc., but the elements above will be

sufficient for our purposes. For instance, we can model a half-adder simply by:

halfAdd :: Sig Bool → Sig Bool → (Sig Bool , Sig Bool)
halfAdd xs ys = (sum, carry)

where sum = xor xs ys
carry = and xs ys

Here is a sample run:

Main> halfAdd [True, True] [False, True]

([True,False],[False,True])

As another example, we can create a circuit that toggles its output at each clock tick,

starting from the value False:

out

INV

DELAY  False
inp toggle :: Sig Bool

toggle = out
where inp = inv out

out = delay “False” False inp

Variables inp and out are defined mutually recursively, corresponding to the feedback

loop in the circuit diagram. The recursive definition capability of Haskell’s where clause

plays a crucial role in expressing the required cyclic dependency. We have:

Main> toggle

[False,True,False,True,False,True,False,True,...

Note that the result is an infinite signal.



4

What can we do with circuit descriptions? Since we model circuits by functions, we

can pass them around and combine them to build bigger circuits. But, eventually, all we

can do with a circuit is to simulate it, that is, run it on a particular input. As pointed

out by Launchbury et al. [49], and Claessen [12], this model does not allow for multiple

interpretations. Ideally, we would like to be able to analyze our circuits, translating

them to other hardware description languages such as VHDL. Alternatively, we may want

to render the circuit graphically, obtaining a schematic diagram, or recast the circuit

description in the language of a theorem prover to let us reason about it. We would like

our language to be flexible enough to support all of these views.

The standard way of attacking this problem is to abstract away from any particular

signal or circuit model, hiding the control flow behind a monad, and basic circuit elements

behind a type class. Each alternative semantics will be represented as an instance of this

class, providing new views of circuits. Then, by simply switching to a different monad,

we will be able to obtain an alternative interpretation without changing existing circuit

descriptions. Here is one way of capturing the required structure:1

class Monad m ⇒ Circuit m where

and , xor :: Sig Bool → Sig Bool → m (Sig Bool)
inv :: Sig Bool → m (Sig Bool)
delay :: String → α → Sig α → m (Sig α)

For instance, the description of the half-adder becomes:

halfAdd :: Circuit m ⇒ Sig Bool → Sig Bool → m (Sig Bool , Sig Bool)
halfAdd i1 i2 = do sum ← xor i1 i2

carry ← and i1 i2
return (sum , carry)

Note that the new model of halfAdd is not committed to any particular circuit model,

or signal data type. It is a generic description of half-adders. To simulate, all we need is

the identity monad for expressing the control structure, and the list model for signals:

type Sig α = [α]
data Simulate α = Sim α deriving Show

instance Monad Simulate where

return x = Sim x
Sim x �= f = f x

Unsurprisingly, the Circuit instance for the Simulate monad will simply mimic our

non-monadic implementation:

1A better alternative would be parameterizing the Circuit class over the Sig type as well, using a
multiparameter type class. We refrain from doing so, however, for the sake of simplicity.



5

instance Circuit Simulate where

and xs ys = return (zipWith (&&) xs ys)
xor xs ys = return (zipWith ( 6=) xs ys)
inv xs = return (map not xs)
delay v xs = return (v :xs)

Using this model, we have:

Main> halfAdd [True, True] [False, True] :: Simulate ([Bool], [Bool])

Sim ([True,False],[False,True])

More interestingly, we can consider an alternative semantics which will create a wire-

by-wire description of a given circuit. In this model, signals will be identified by symbolic

names. Our monad will have to generate new names for intermediate wires, accumulating

a textual “drawing” of the circuit as it is built. Hence, we employ a combination of state

and output monads:

type Sig α = String
data Draw α = D (Int → (α, [String ], Int))

instance Show α ⇒ Show (Draw α) where

show (D f ) = let (l , s , ) = f 0
in concatMap (++“\n”) s ++ “Result: ” ++ show l

instance Monad Draw where

return x = D (λi. (x , [ ], i))
D f �= g = D (λi. let (a, o, i ′) = f i

D h = g a
(b, o ′, i ′′) = h i ′

in (b, o ++ o ′, i ′′))

We will need the following auxiliary functions:

newWire :: Draw String
newWire = D (λi. (’w’:show i , [ ], i+1))

output :: String → Draw ()
output s = D (λi. ((), [s ], i))

item :: String → String → String → Draw String
item a b c = do n ← newWire

output (n ++ “ = ” ++ a ++ “ ” ++ b ++ “ ” ++ c)
return n

The function newWire simply returns a new name. (The variable i keeps track of the

number of wires.) The function output lets us emit intermediate descriptions. Finally,



6

item is a generic function for creating a new wire together with a description of how it is

obtained. Using these auxiliaries, the Circuit instance for the Draw monad becomes:2

instance Circuit Draw where

and a b = item “and” a b
xor a b = item “xor” a b
delay s v a = item “delay” s a
inv a = do n ← newWire

output (n ++ “ = inv ” ++ a)
return n

We have:

Main> print (halfAdd "a" "b" :: Draw (Sig Bool, Sig Bool))

w0 = xor a b

w1 = and a b

Result: ("w0","w1")

It is worth emphasizing that the description of halfAdd did not change, we simply used

a different monad. This is the strength of the monadic approach.

Unfortunately, a similar translation for the toggle circuit does not work. Consider:

toggle :: Circuit m ⇒ m (Sig Bool)
toggle = do inp ← inv out

out ← delay “False” False inp
return out

Although the description perfectly fits the circuit diagram we had before, we have lost the

feedback loop. The variables inp and out are no longer recursively defined! (In fact, the

definition above is not even valid Haskell; the variable out is not in scope in the first line.)

Our non-monadic implementation did not have this problem, as it relied on the recursive

definition capabilities of Haskell. But now, we are on our own: Haskell does not let us

write recursive specifications in the presence of monadic effects.

Unfortunately, the problem is not merely syntactic. It is not clear how to perform this

kind of recursion at all: we want the values (i.e., the signals) to be defined recursively, but

we certainly do not want the effects to be repeated or lost (i.e., we do not want to create

circuit elements repeatedly, or not to create them at all). We refer to this kind of recursion

as value recursion. In short, to be able to express the required recursive structure, we need

the underlying monad to support recursive monadic bindings [18]. Just as the usual fixed-

point operator handles “normal” recursion, we expect to find value recursion operators,

2 The delay element did not use its first argument in the simulation model, and here it does not use
the second. The name is irrelevant for simulation, while it is all we need in a textual representation.



7

generically called mfix, mediating the interaction between the underlying effect and the

recursion operation.

Getting back to circuit modeling, we will require circuits to be modeled by monads for

which such fixed-point operators are available, captured by the MonadFix class:

class Monad m ⇒ MonadFix m where

mfix :: (α → m α) → m α

class MonadFix m ⇒ Circuit m where

-- and , xor , inv , delay as before

Now, we can tie the recursive knot over inp and out, expressing toggle as follows:

toggle :: Circuit m ⇒ m (Sig Bool)
toggle = mfix (λ ˜ (inp, out). do inp ← inv out

out ← delay “False” False inp
return (inp, out))

�= λ(inp, out). return out

The final missing piece is the MonadFix instances for Simulate and Draw monads. At

this point, we ask the reader to simply accept the following definitions:

instance MonadFix Simulate where

mfix f = Sim (let Sim a = f a in a)

instance MonadFix Draw where

mfix f = D (λi. let D g = f a
(a, s , i ′) = g i

in (a, s, i ′))

Note that the Simulate instance is essentially the same as the usual fixed-point opera-

tor. The Draw instance is a bit more complicated, but the reader can see that we perform

the fixed-point computation over the variable a, (i.e., the value), passing around i and s

untouched. Now, to simulate toggle, we just use our Simulate monad:

Main> toggle :: Simulate (Sig Bool)

Sim [False,True,False,True,False,True,False,...

and, to get a simple textual drawing, we simply switch to the Draw monad:

Main> toggle :: Draw (Sig Bool)

w0 = inv w1

w1 = delay False w0

Result: "w1"

The handling of recursion via mfix is somewhat mysterious at this point. The whole

point of this thesis is to expose the mystery, and to explore the interaction between

recursion and effects, heading toward an equational theory of value recursion.



8

1.3 Recursive monadic bindings

The use of mfix to tie the recursive knot in a monadic computation is similar to the handling

of recursive bindings in usual let-expressions. For clarity, we will use the keyword letrec

here when a binding can be recursive, and let otherwise. In the pure world, we have:

letrec x = e in e ′

≡ let x = fix (λx. e) in e ′

≡ (λx. e ′) (fix (λx. e))

What happens in a monadic computation? Similar to letrec, let us use the keyword

mdo3 for monadic bindings that can be recursive, and do otherwise. We have:

mdo { x ← e; e ′ }

≡ do { x ← mfix (λx. e); e ′ }

≡ mfix (λx. e) �= λx. e ′

In Chapter 7, we will describe an extension to the do-notation of Haskell allowing

bindings to be recursive, using an enhanced version of this translation. Then, we will be

able to write the toggle example of the previous section as follows, the compiler taking

care of the insertion of appropriate calls to mfix :

toggle = mdo inp ← inv out
out ← delay “False” False inp
return out

There is an opportunity here to clarify a potentially confusing issue about value re-

cursion. Consider a recursive definition of the form:

countDown n = if n == 0
then print “Done!”
else do print n

countDown (n−1)

The intention is clear: Each time countDown is called, we want the effect of printing to
take place. In this thesis, we will not be dealing with such definitions, as they are already
explained in terms of the usual fixed-point construction:

countDown = fix (λf. λn. if n == 0
then print “Done!”
else do print n

f (n−1))

3The closest we can get to µdo using ASCII. (We would have used dorec, but that is just too long.) Note
that the use of Haskell-like syntax is just for convenience. We could have used Moggi’s letT x⇐ e in e′

notation and the keyword letrecT as well [63].



9

Note that effects are part of countDown’s execution, rather than its definition. That

is, the effect of printing is not performed to determine the meaning of countDown itself.

In the toggle example, however, we see that effects are part of the definition: They are

performed in order to determine the values of inp and out, and the cyclic dependence

gives rise to the need for value recursion. In a sense, the use of recursion and effects in

countDown are orthogonal, with no interference in between. As shown above, this kind of

recursion is already explained in terms of fix, the usual fixed-point operator.

1.4 A generic mfix?

In Section 1.2, we saw two particular examples of mfix, one for the Simulation monad,

and another one for the Draw monad. Are these functions actually instances of a generic

schema? That is, can we find a definition of mfix that will work for all monads, regardless

of which kind of effect we deal with? Let us pause briefly and consider how one might go

about defining such a generic operator.

Recall that the least fixed-point operator on domains satisfies the property:

fix :: (α → α) → α

fix f = f (fix f )

which also serves as a definition for fix in a lazy language such as Haskell. One might

think that a similar defining equation can be found for mfix as well. Indeed, it is not hard

to generalize to the monadic case:

mfix :: Monad m ⇒ (α → m α) → m α

mfix f = mfix f �= f

Note that this definition makes sense for all monads (i.e., it is polymorphic in m). But

is it a “good” definition? That is, can we use it sensibly to implement value recursion?

The short answer to this question is, unfortunately, no. To see why not, simply note

that this definition is equivalent to:

mfix f = fix (λm. m �= f ) =
⊔

{⊥, ⊥ �= f, ⊥ �= f �= f, . . .}

which will diverge whenever the�= operator is strict in its first argument.4 Furthermore,

even when �= is not strict, this definition will attempt to compute the fixed-point over

4Note that the call to mfix f will diverge regardless of what f is. In general, monads based on sum
types will suffer from this problem, as the �= operator needs to inspect its first argument to see how to
proceed. Haskell’s maybe and list monads are two popular examples that are based on sum types. Other
important examples where the �= operator is strict in its first argument include the frequently used IO
and strict state monads.



10

both values and effects, which is simply not what we are trying to achieve. In value

recursion, we want the fixed-point to be computed only over the values, without repeating

or losing the effects. We will codify what we mean by value recursion in Chapter 2 using

a number of equational properties, exploring the interaction between recursion and effects

in depth. Then, we will be able to see more clearly why this default definition is not

appropriate for implementing value recursion.

1.5 The basic framework and notation

For most of this thesis we investigate value recursion in the usual domain theoretic seman-

tics of programming languages, where types are modeled by domains [77, 82]. We write ⊥τ

for the least element of the domain representing the type τ , dropping the subscript when-

ever unambiguous. Functions are modeled by continuous (and hence monotonic) maps

between domains, not necessarily strict. Recursion is modeled via least-fixed points. We

use monads to model effects, following Moggi [63]. Although by no means comprehensive,

the reader may find it useful to skim over Appendix A, which contains a brief review of

fixed-point operators.

We expect readers to be familiar with functional programming [35, 87], particularly

Haskell [7, 68]. For the most part, we use Haskell simply as a syntactically beefed up ver-

sion of λ-calculus [30], so familiarity with any functional language should be sufficient. A

basic understanding of domain theoretic semantics of programming languages is necessary

to follow the technical development [76, 83]. Except for Chapter 6, we will be mainly inter-

ested in the “functional programming view” of monads [4, 91], rather than the categorical

one [2, 55]. Finally, we will have occasion to use the parametricity principle, allowing us

to derive theorems from the types of polymorphic functions [50, 75, 88].

Naturally, the theory of value recursion is independent of any particular programming

language. However, our work is closely tied to Haskell, and we will be careful in pointing

out the cases when the domain theoretic semantics and the semantics of Haskell do not

quite match up. The main differences show up in the treatment of products. Since tuples

are lifted in Haskell, it is not the case that (⊥α,⊥β) = ⊥α×β. Therefore, the equality

x = (π1 x, π2 x) fails. Similarly, λ(x :: α).⊥β 6= ⊥α→β , i.e., the function type is lifted too.

Similar comments apply to sum types as well. Finally, the unit data type has two members,

⊥() and () itself, that is, it is not really a terminal object. Luckily, these differences do

not cause much trouble in practice, as long as one is aware of them. We point out the

cases where the difference becomes significant.

In our exposition, we will stick to Haskell notation as much as possible, deviating

from it only for typographical purposes. The difference mainly shows up in compositions



11

and λ-bindings. For instance, we will write Haskell’s: \f -> \g -> \x -> (f . g) x as

λf. λg. λx. (f · g) x.

1.6 Outline of the thesis

Our aim is to get through the basics of value recursion rather quickly, before we actually

investigate individual instances. To this end, we use the next two chapters to introduce

a number of equational properties that govern the behavior of value recursion operators.

Among these, we will identify three fundamental properties (namely strictness, purity, and

left shrinking), and in the remainder of the thesis we will consider only those operators

that satisfy this minimal core.

Chapters 4 and 5 are dedicated to the study of individual instances. In Chapter 4, we

investigate a wide range of monads that are frequently used in functional programming,

presenting value recursion operators for them. In Chapter 5, we argue that it is highly

unlikely that the continuation monad has an associated value recursion operator that will

satisfy our requirements.

Chapter 6 takes a step back and looks at a possible categorical theory of value recursion,

based on the notion of premonoidal categories and traces. Even though the theory of traces

does not provide a perfect fit, it is illuminating to see how recent work in this area can be

generalized to capture value recursion for a certain class of monads.

Chapters 7 and 8 deal with the Haskell language in particular. In Chapter 7, we will

turn our attention to syntactic support for value recursion, presenting a recursive version

of Haskell’s do-notation. In Chapter 8, we will study Haskell’s IO monad. Since the IO

monad is hardwired into Haskell, it is not possible to investigate value recursion for it

directly. Hence, we present a model language (complete with I/O operations and mutable

variables), and show how one can model value recursion in this world.

Chapter 9 presents a number of examples, which, in addition to the circuit modeling

example of this chapter, provides a tour of potential applications of value recursion.

Chapter 10 concludes the thesis with a discussion of related work and future research

directions. A brief review of fixed-points, along with several proofs that are omitted from

the main body of the thesis are given in the appendices.

Each chapter in the remainder of this thesis starts with a brief description of its

contents. Although we intend the chapters to be read in order, readers may find it useful

to quickly skim over these segments to determine a particular reading plan according to

their own interests.



Chapter 2

Properties of value recursion operators

What kinds of properties do we expect value recursion operators to satisfy? So far, we have

been using phrases like “recursion without repeating or losing effects,” or “recursion only

over the values” to characterize value recursion. The aim of this chapter is to formalize

our intuitions by means of equational properties.

Synopsis. We discuss a number of equivalences that we expect value recursion operators

to satisfy. These properties range from those that imitate properties of the usual fixed-

point operator over domains, to those that govern the interaction between recursion and

effects. We also provide a number of derived properties, including those that are granted by

virtue of parametricity. Several properties that might be naively expected, yet unsatisfiable

for a wide range of monads, are discussed as well.

2.1 Strictness (Nothing from nothing)

The domain theoretic treatment of recursion in programming languages relies on least

fixed-points [76, 83]. That is, given a specification of the form x = f x, where f :: α→ α,

we expect x to be the least α satisfying this equation. In this setting, one can show that a

function is strict if and only if its least fixed-point is ⊥. Since ⊥ represents no information

in the domain theoretic ordering, our slogan in this case is simply nothing from nothing.

Generalizing to value recursion, we expect the following property to hold:

Property 2.1.1 (Strictness.) Let f :: α→ m α,

f ⊥α = ⊥m α ⇔ mfix f = ⊥m α (2.1)

Remark 2.1.2 In Section 2.6.2, we will be able to derive the right to left implication

from other properties, i.e., we will show that if mfix f is ⊥, then f must be strict. We

prefer expressing the strictness law as it is, however, as it uniquely characterizes strict

functions of type α→ m α.

12



13

2.2 Purity (Just like fix)

Purity formalizes the intuition that mfix should behave exactly like fix, in case there are

no effects:

Property 2.2.1 (Purity.) Let h :: α→ α,

mfix (return · h) = return (fix h) (2.2)

Diagrammatically, we capture purity as follows:

=returnh returnh

Remark 2.2.2 We use wiring diagrams to capture properties pictorially. Note that we

do not formalize these diagrams, nor use them for any purpose other than illustration.

Dashed boxes represent where value recursion is performed. Thin lines show data flow.

The thick line, called the effect line, refers to the details of the monadic computation.

Although it is not correct to consider the effect line as carrying data, it usually helps to

think of it as such. (The effect line analogy holds very well for the state monad, but it is

not very intuitive for, say, the exception monad.) We indicate pure computations by not

letting them use the effect line, as illustrated by the h box in the above diagram. The

solid loop on the right hand side indicates the use of fix. (Note that there are no dashed

boxes on the right hand side as there are no applications of mfix.)

2.3 Left shrinking (No recursion – No fix)

Recall our naive translation schema for the recursive do-notation from Section 1.3. Nat-

urally, we would like mdo to behave exactly like do, provided there are no recursive

bindings. That is, the following two code fragments should have the same meaning:

mdo x ← A

B

do x ← A

mdo B

provided A does not make use of x, or any variable defined in the block B. If B does not

have any recursive bindings either, we can push mdo further down, eventually eliminating

it altogether. We capture this correspondence by the left shrinking property:



14

Property 2.3.1 (Left shrinking.) Let f :: α→ β → m α, a :: m β,

mfix (λx. a �= λy. f x y) = a �= λy. mfix (λx. f x y) (2.3)

where x does not occur free in a.

The name “left shrinking” is suggested by the corresponding diagram:

=y

x

y

x

a
f

a
f

Remark 2.3.2 The reader might expect an analogous right shrinking property as well.

But, as we will see in Chapter 3, arbitrary lifting of computations from the right hand

side of a �= is not possible in general. We can, however, lift pure computations out. We

will provide a derived law to deal with this case in Section 2.6.3.

2.4 Sliding (Pure mobility)

Let f :: α→ β and h :: β → α. As reviewed in Appendix A, the equation

fix (h · f ) = h (fix (f · h)) (2.4)

expresses the dinaturality condition for fix, an extremely important law for manipulating

fixed-points. We expect value recursion operators to satisfy a similar law as well.

Two problems arise in translating Equation 2.4 to the world of value recursion. The

order of f and h is swapped, and h is duplicated on the right hand side. Obviously, if f

and h can both perform effects, swapping and duplication are both out of question. When

h is pure, however, we expect to be able to slide it over f :

Property 2.4.1 (Sliding.) Let f :: α→ m β, h :: β → α,

f (h ⊥) = f ⊥ ⇒ mfix (map h · f ) = map h (mfix (f · h)) (2.5)

where map :: (a → b) → m a → m b is the usual lifting function.1 The consequent

can be equivalently expressed as:

mfix (λx. f x �= return · h) = mfix (f · h) �= return · h (2.6)

1The function map is defined by the equation map f m = m �= return · f. Note that, in Haskell
notation map is called fmap, and the name map is reserved to be used with the list monad only [68].
Deviating from Haskell, we use the name map consistently for all monads.



15

Diagrammatically:

 = h
f

h
f

h

The side condition, i.e., f · h and f should agree on ⊥, is essential. When we think of

recursion as an iterative process that starts with ⊥, we see that f first receives ⊥ on the

left hand side in the recursive loop, but receives h ⊥ on the right. If h ⊥ 6= ⊥, f will have

more information to start with on the right hand side. The side condition guarantees that

this extra knowledge is irrelevant: f must not distinguish between ⊥ and h ⊥. It is worth

noting that dinaturality of fix (Equation 2.4) does not require any such conditions. As

we will see in Chapter 3, however, without the side condition, sliding is unsatisfiable for

many practical monads of interest.

Observation 2.4.2 The side condition is trivially satisfied if h is strict. It turns out

that this particular case is derivable from parametricity (see Corollary 2.6.12).

Note The alert reader will note that the order of effects does not matter for commutative

monads, and hence one might expect a swapping property where both computations are

effectful. This is indeed the case, see Section 3.3 for details.

2.5 Nesting (Two for the price of one)

Bekič’s property for usual fixed-points states that simultaneous recursion over multiple

variables is equivalent to recursion over one variable at a time (see Appendix A.) In the

value recursion world, one way to express this relation is to assert the equivalence of the

following two expressions:

mdo x ← mdo y ← f (x , y)

return y

return x

mdo x ← f (x , x )

return x

The nesting property2 stipulates this equivalence:

Property 2.5.1 (Nesting.) Let f :: (α, α)→ m α,

mfix (λx. mfix (λy. f (x , y))) = mfix (λx. f (x , x )) (2.7)

2This property was first suggested to us by Ross Paterson (personal communication).



16

The following proposition states an equivalent form of nesting, which is quite useful in

symbolic manipulations:

Proposition 2.5.2 Let f :: (τ, σ)→ m (τ, σ). Assuming true products, the equation

mfix (λ(x , ). mfix (λ( , y). f (x , y))) = mfix f (2.8)

is satisfied exactly when nesting holds, provided mfix satisfies the sliding property.

Proof See Appendix B.1. �

Using Equation 2.8, it is easy to describe nesting diagrammatically:

=f f
y
x

y
x

Just like the Bekič property for fix, nesting generalizes to any number of variables. For

instance, one can derive:

mfix (λ(x , , ). mfix (λ( , y , ). mfix (λ( , , z ). f (x , y , z ))))

= mfix (λ(x , y , z ). f (x , y , z ))
(2.9)

Note that the order of nesting is also immaterial, we could have recursed over any permu-

tation of the variables; for instance, first over z, then x and finally y, etc.

Remark 2.5.3 We will take a closer look at Equation 2.8 in the case of lifted products

(as in Haskell). Assuming mfix satisfies strictness, the left hand side will always be ⊥, due

to strict matching against pairs. Using irrefutable patterns, one might attempt:

mfix (λ˜ (x , ). mfix (λ˜ ( , y), f (x , y))) = mfix f

However, a problem still remains. If f is strict, then the right hand side will be ⊥, but

the left hand side might produce an answer, because ⊥ 6= (⊥,⊥).3 The proper way of

expressing Equation 2.8 with lifted products is:

mfix (λ˜ (x , ). mfix (λ˜ ( , y), f (x , y))) = mfix (λ˜ (x , y). f (x , y)) (2.10)

Similar to Proposition 2.5.2, one can establish:

Proposition 2.5.4 In the case of lifted products, Equation 2.7 is equivalent to Equa-

tion 2.10, provided mfix satisfies sliding. �

3Peter Thiemann was first to notice this problem (personal communication).



17

2.6 Derived properties

One can derive new equalities using the properties we have described so far, and proper-

ties of the underlying domain-theoretic framework. This section presents a collection of

such laws—those that we have found to be the most useful when reasoning about value

recursion.

2.6.1 Constant functions

Left shrinking and purity properties imply an expected property of fixed-point operators:

If the fixed-point variable is not used, recursion is irrelevant:

Proposition 2.6.1 Let a :: m α be a constant (i.e., x does not occur free in a). Then,

mfix (λx.a) = a (2.11)

provided mfix satisfies purity and left shrinking laws.

Proof

mfix (λx. a) = mfix (λx. a �= λy. return y)

= a �= λy. mfix (λx. return y) {left shrinking}

= a �= λy. return (fix (λx. y)) {purity}

= a �= λy. return y

= a

Note that fix (λx. y) = (λx. y) (fix (λx. y)) = y. �

The diagram in this case is trivial:

= aa

Similarly, we can lift a conditional expression from inside an mfix, if the test expression

is not involved in the recursion computation:

Proposition 2.6.2 Let a be a boolean expression where x does not occur free in a. Let

f, g :: α→ m α. We have:

mfix (λx. if a then f x else g x ) = if a then mfix f else mfix g (2.12)

Proof Case analysis on the value of a. The True and False cases are obvious. When

a = ⊥, the left hand side yields ⊥ by Proposition 2.6.1, guaranteeing the equivalence. �



18

2.6.2 Approximation property

Monotonicity implies that f ⊥ always provides an approximation to mfix f :

Proposition 2.6.3 Let f :: α→ m α. Then,

f ⊥ v mfix f

provided mfix satisfies purity and left shrinking.

Proof Since (λx. f ⊥) v (λx. f x), we have mfix (λx. f ⊥) v mfix f by the monotonic-

ity of mfix. But the left hand side is f ⊥ by Proposition 2.6.1, completing the proof. �

Remark 2.6.4 Proposition 2.6.3 states more than a rudimentary fact: f ⊥ yields valu-

able information on the structure of the fixed-point. Consider the list monad, for instance.

If f :: a → [a], and if f ⊥ is a cons-cell, then so is mfix f . In particular, if f ⊥ is a finite

list of length k, then the length of the fixed-point is k as well. In general, for any monad

based on a sum type, f ⊥ determines the top level structure of mfix f.

We can now establish the strictness property in one direction (see Remark 2.1.2):

Corollary 2.6.5 Let f :: α → m α, and mfix f = ⊥. Then f is strict, provided mfix

satisfies purity and left shrinking laws.

Proof By Proposition 2.6.3, f ⊥ v ⊥, implying that f ⊥ = ⊥. �

2.6.3 Pure right shrinking

The sliding property allows lifting of pure computations from the right hand side of a�=:

Corollary 2.6.6 Let f :: α→ m α, and h :: α→ β,

mfix (λ(x , y). f x �= λz. return (z , h z ))

= mfix f �= λz. return (z , h z )
(2.13)

provided mfix satisfies sliding. (On the left hand side, the value-recursion loop is over

(α, β), while the one on the right hand side it is over α only.)

Proof We have

mfix (λ(x , y). f x �= λz. return (z , h z ))

= mfix (map (λz. (z , h z )) · f · π1) {slide}

= map (λz. (z , h z )) (mfix (f · π1 · (λz. (z , h z ))))

= mfix f �= λz. return (z , h z )

Sliding applies, since (f · π1) ⊥ = (f · π1 · λz.(z, h z)) ⊥ = f ⊥. �



19

The diagram in this case looks like:

 =f
h

x

f
hx

y

which suggests the name pure right shrinking.

Warning 2.6.7 In case we have lifted products, as in Haskell, the pattern matches

against pairs should be done lazily. That is, every formula of the form: λ(x, y). f x y

should be replaced with λt. f (π1 t) (π2 t), or the Haskell equivalent λ˜ (x , y). f x y.

(And similarly for triples, quadruples, etc.) For instance, Equation 2.13 should be ex-

pressed as:

mfix (λt. f (π1 t) �= λz. return (z , h z )) = mfix f �= λz. return (z , h z )

or,

mfix (λ˜ (x , y). f x �= λz. return (z , h z )) = mfix f �= λz. return (z , h z )

avoiding the strict match against the tuple.

It is possible to generalize Equation 2.13, so that h can use x and y as well. We call

this variant the scope change law:

Proposition 2.6.8 Let f :: α→ m α, h :: α→ (α, β)→ β,

mfix (λ(x , y). f x �= λz. return (z , h z (x , y)))

= mfix f �= λz. return (fix (λ(x , y). (z , h z (x , y))))
(2.14)

provided mfix satisfies purity, left shrinking, nesting, and sliding laws.

Proof See Appendix B.2. �

Remark 2.6.9 Simple manipulation of the right hand side of Equation 2.14 yields the

following equation:

mfix (λ(x , y). f x �= λz. return (z , h z (x , y)))

= mfix f �= λz. return (z , fix (λy. h z (z , y)))
(2.15)

This form of the scope changing property is quite useful in derivations, although somewhat

less symmetric than Equation 2.14.



20

2.6.4 Parametricity: The “free” theorem

The least fixed-point operator on domains satisfies the following uniformity law [60, 82]:

Let f :: α→ α, g :: β → β, and s :: α→ β, where s is strict. Then,

s · f = g · s =⇒ s (fix f ) = fix g (2.16)

This extremely useful law is exactly the free theorem for the type (α → α) → α, and

hence granted by virtue of parametricity in our setting [75]. For mfix, parametricity gives

us the following theorem for free:

Theorem 2.6.10 Let f :: α→ m α, g :: β → m β, s :: α→ β,

map s · f = g · s =⇒ map s (mfix f ) = mfix g (2.17)

provided s is strict. �

Remark 2.6.11 It is worth emphasizing that we use Theorem 2.6.10 freely in our treat-

ment of value recursion.4 If one takes a more abstract view, of course, we expect Equa-

tion 2.17 to be postulated as a property to be checked, rather than taken for granted. Of

course, this begs the question exactly what strict would mean in this new setting. See

Simpson and Plotkin’s recent work for a modern account of such questions [79]. (We will

return to the treatment of value recursion in more abstract settings in Chapter 6.)

As we pointed out before, sliding strict computations is a direct consequence of para-

metricity:

Corollary 2.6.12 Let f :: α→ m β, h :: β → α. Then,

mfix (map h · f ) = map h (mfix (f · h)) (2.18)

provided h is strict.

Proof Direct consequence of the free theorem with F 7→ f · h,G 7→ map h · f and

S 7→ h, where we use capital letters to identify variables in Equation 2.17. �

4A word of caution is in order regarding Haskell and parametricity. It is well known that the seq

primitive weakens the parametricity properties of Haskell [50, 68, 88]. We do not make use of this primitive
in our work.



21

Parametricity allows us to take mirror images of our properties. For instance, the

following equation is essentially the same as Equation 2.13:

mfix (λ(x , y). f y �= λz. return (h z , z )) = mfix f �= λz. return (h z , z )

Obviously, we can consider the same equation over arbitrary length tuples and arbitrary

permutations as well. We capture the essence of this process in the following corollary:

Corollary 2.6.13 Let f, g :: (α, β) → m (α, β). The equation mfix f = mfix g holds

exactly when its mirror image, that is:

mfix (map swap · f · swap) = mfix (map swap · g · swap)

holds, where swap (x , y) = (y , x ).

Proof Simple application of Corollary 2.6.12 on both sides. Note that swap is strict. �

As a final corollary to the free theorem, we consider the following injection law:

Corollary 2.6.14 Let f :: α → m α, i :: α → β, p :: β → α, where p is strict and

p · i = idα. We have:

mfix f = map p (mfix (map i · f · p)) (2.19)

Proof Let F 7→ map i · f · p, G 7→ f , and S 7→ p in the free theorem. Again, capital

letters denote the variables in Equation 2.17. �

Note that Corollary 2.6.14 also follows from the sliding property. The intended reading

of Equation 2.19 is as follows. The function i injects α’s to β’s, while p projects back.

Hence, we can introduce spurious variables into the recursive loop, as long as they are not

used anywhere.

2.7 Stronger properties

In this section we present two laws, strong sliding and right shrinking, which might be

naively expected to be satisfied by value recursion operators. As we will prove in Chap-

ter 3, however, they are both unsatisfiable for a wide variety of monads of practical inter-

est. The most important monad satisfying both these properties is the lazy state monad

(Section 4.4).



22

2.7.1 Strong sliding

If Equation 2.5 holds unconditionally, (i.e., without requiring f (h ⊥) = f ⊥), we say that

the given value recursion operator satisfies the strong sliding property. As we will see in

Chapter 3, strong sliding is not satisfiable for a variety of practical monads. However,

when available, it allows us to deduce several interesting equalities:

Proposition 2.7.1 Let f :: α→ m α, and q :: α. Then,

mfix (λ(x , ). f x �= λy. return (q, y)) = f q �= λy. return (q , y) (2.20)

provided mfix satisfies the purity, left shrinking and strong sliding properties.

Proof See Appendix B.3. �

Proposition 2.7.2 Let f :: α→ m β, g :: β → m α. Then,

mfix (λ(x , y). f x �= λy ′. g y �= λx ′. return (x ′, y ′))

= mfix (λ(x , ). f x �= λy ′. g y ′ �= λx ′. return (x ′, y ′))
(2.21)

provided mfix satisfies the purity, left shrinking, nesting and strong sliding properties.

Diagrammatically:

=
f g f g

y’x

x’

y’

y

x’

y’
y’x

Proof Straightforward applications of nesting, left shrinking, and the mirror image of

the previous proposition on the left hand side. �

2.7.2 Right shrinking

Pure right shrinking (Corollary 2.6.6) tells us how to pull pure computations from the right

hand side of a�=. Although it is not possible to pull out effectful computations in general,

there are certain monads for which it is possible to do so, the most important examples

being the output monad (or, in general, monads based on monoids—see Section 4.5), and

the lazy state monad (Section 4.4). The following property captures the situation:

Property 2.7.3 (Right shrinking.) Let f :: α→ m α, g :: α→ m β,

mfix (λ(x , y). f x �= λz. g z �= λw. return (z , w))

= mfix f �= λz. g z �= λw. return (z , w)
(2.22)



23

Diagrammatically:

=zx

z 

z

ww x

f g f gy

Fact 2.7.4 Obviously, Equation 2.22 generalizes 2.13. That is, if a given value recursion

operator satisfies right shrinking, it will automatically satisfy the pure version as well.

The combination of right shrinking and strong sliding allow us to generalize the scope

change law (Proposition 2.6.8) as well:

Proposition 2.7.5 Let f :: α→ m α, g :: α→ (α, β)→ m β,

mfix (λ(x , y). f x �= λz. g z (x , y) �= λw. return (z , w))

= mfix f �= λz. mfix (λb. g z (z , b)) �= λw. return (z , w)
(2.23)

provided mfix satisfies purity, left shrinking, nesting, strong sliding and right shrinking.

Proof Analogous to the proof of Proposition 2.6.8. �

2.8 Classification and summary

Our properties try to capture the expected behavior of value recursion operators, formal-

izing our intuitions. It is worth reiterating the most important goals:

• Recursion should be performed only over the values, and the fixed-point computation

should be similar to that of fix,

• Effects should be neither repeated nor lost,

• In the case when there are no recursively bound variables, mdo should behave

exactly like a do.

How do our properties match these goals? Strictness states that the fixed-point is ⊥

exactly when the given function is strict, analogous to fix. Purity states that, in case there

are no effects, mfix should behave exactly like fix. These two properties are as close as we

get to the behavior of the usual fixed-point operator on domains. Left shrinking states

that mdo is exactly the same as do, in case there are no recursive bindings. We consider

these three properties to be the most essential, leading to the following definition:



24

Definition 2.8.1 (Value recursion operators.) A value recursion operator for a monad

(m,�=, return) is a function mfix :: (α → m α) → m α, satisfying:

• Strictness: f ⊥α = ⊥m α ⇔ mfix f = ⊥m α,

• Purity: mfix (return · h) = return (fix h),

• Left shrinking: mfix (λx. a �= λy. f x y) = a �= λy. mfix (λx. f x y), pro-

vided x is not free in a.

At this point, two questions arise. First, why are sliding and nesting properties left

out from Definition 2.8.1, even though we have found that they are both satisfied by many

instances of mfix in practice (see Chapter 4)? And second, are there other properties of

interest that we have completely missed?

The answer to the first question is a matter of choice. We would like to keep the

requirements as simple as possible, but no simpler. As we will see several examples in

Chapter 4, operators that do not satisfy the basic properties mandated by Definition 2.8.1

yield results that are not very sensible for value recursion. Other properties are just as

important theoretically, but it is our belief that they are in a secondary status from a

practical point of view.

It is much harder to answer the second question. Whether we have the “right” def-

inition should become apparent as value recursion finds its place in practical functional

programming. Our work, both in the context of this thesis and in using recursive monadic

bindings in practical Haskell programs, led us to conclude that Definition 2.8.1 satisfacto-

rily captures the minimal common core.

Finally, a comment on uniqueness is in order. Given a particular monad, we do not

require a unique value recursion operator for it. There may be none, exactly one, or many

operators satisfying the requirements of Definition 2.8.1. (For instance, in Chapter 4, we

will be able to show that identity, maybe and list monads of Haskell have unique value

recursion operators, while the state monad has an infinite chain of them. On the other

extreme, the continuation monad probably has none—see Chapter 5 for details.) Further-

more, different operators for the same monad might satisfy different sets of properties in

addition to the basic set mandated by Definition 2.8.1. In such a case, the user has the re-

sponsibility to pick the most appropriate operator for the problem at hand, possibly using

our properties as a guide. We will see a concrete example of this situation in Section 4.4.



Chapter 3

Structure of monads and value recursion

So far, our study of value recursion was set in the context of arbitrary monads. We will

now take a closer look at various properties that monads may satisfy, such as idempotency,

commutativity, or additivity. The aim of this chapter is to investigate the implications of

structural properties of monads for value recursion.

Synopsis. We first consider monads whose �= operator is strict in its first argu-

ment, covering many practical monads of interest. We show that strong sliding and right

shrinking properties are not satisfiable for such monads. We then consider idempotent,

commutative and additive monads, trying to identify how value recursion operators should

behave in each case. Finally, we briefly discuss embeddings and monad transformers.

3.1 Monads with a strict bind operator

Consider a monad m whose �= operator is strict in its first argument. That is:

⊥m τ �= f = ⊥m σ (3.1)

for all f :: τ → m σ. Haskell’s maybe, list, IO, and strict state monads are examples of

such monads. In this section, we will prove that neither strong sliding, nor right shrinking

properties can be satisfied for such a monad, unless it is trivial in the following sense:

Definition 3.1.1 (Trivial monad.) A monad (m, �=, return) is trivial if, for all types

τ , the domain corresponding to the type m τ consists only of ⊥m τ .

Remark 3.1.2 The canonical example of a trivial monad is:

data Void α -- no constructors, all we have is ⊥

return x = ⊥
m �= f = ⊥

25



26

Note that all of our properties hold for a trivial monad, with the only possible definition

mfix f = ⊥.

Lemma 3.1.3 Let (m, �=, return) be a monad where�= is strict in its first argument.

If return is strict as well, then m is trivial.1

Proof Pick an arbitrary type τ , and let a be an arbitrary element of m τ . We have:

a = const a ⊥τ {const x y = x}

= returnτ ⊥τ �= const a {left unit}

= ⊥m τ �= const a {return is strict}

= ⊥m τ {�= is strict}

The result now follows by Definition 3.1.1. �

Note that Lemma 3.1.3 requires return to be strict at all types. The following lemma

simplifies this requirement, reducing the proof obligation to return being strict at only one

particular type:2

Lemma 3.1.4 Let (m, �=, return) be a monad where�= is strict in its first argument.

If return is strict at one type, (i.e., there exists a type τ s.t. returnτ ⊥τ = ⊥m τ ), then it

is strict at all types.

Proof See Appendix B.4. �

After these preliminary results, we can now proceed with our original goal:

Proposition 3.1.5 Let (m, �=, return) be a monad where �= is strict in its first

argument. If there is a value recursion operator for m that satisfies the strong sliding

property of Section 2.7.1, then m is trivial.

Proof We will first establish that if such an operator exists, then return must be strict.

Define:3

f :: () → m ()

f () = return ()

h :: () → ()

h = ()

Note that f · h = λx. return (). Let mfix be a value recursion operator for m satisfying

the strong sliding property. Then, Equation 2.6 must hold with no side conditions. The

right hand side of Equation 2.6 reads:

1For brevity, we simply refer to a monad (m, �=, return) by the name of its type constructor, i.e., m.
2This lemma and its proof has been suggested to us by Ross Paterson (personal communication).
3The domain corresponding to the unit type, written () following the Haskell notation, consists of

exactly two elements: ⊥ and (), with the obvious ordering ⊥
�

().



27

mfix (f · h) �= return · h

and, by Proposition 2.6.1 and the left unit law, it must be equal to return (). Similarly,

the left hand side of Equation 2.6 reads:

mfix (λx. f x �= return · h)

and, by the strictness property, it must compute to ⊥. (Note that f is strict because

it matches its argument against (), and �= is strict in its first argument by hypothesis.)

Hence, strong sliding implies return () = ⊥. By monotonicity, then, return must be strict

at the type (). Hence, by Lemmas 3.1.4 and 3.1.3, m must be trivial. �

A similar argument shows that right shrinking property shares the same fate:

Proposition 3.1.6 Let (m, �=, return) be a monad where �= is strict in its first

argument. If there is a value recursion operator for m that satisfies the right shrinking

property of Section 2.7.2, then m is trivial.

Proof Define:

f :: [Int ] → m [Int ]

f xs = return (1 : xs)

g :: [Int ] → m Int

g [x ] = return x

g = return 1

It is easy to see that the left hand side of Equation 2.22 must yield ⊥ by the strictness

property (note that g will diverge on 1 : ⊥). By purity, we have

mfix f = return (fix (λxs. 1 : xs))

Hence, the right hand side of Equation 2.22 evaluates to

return (1, fix (λxs. 1 : xs))

implying that ⊥ = return (1, fix (λxs. 1 : xs)). By monotonicity, then, return must be

strict at the type (Int , [Int ]) . Hence, by Lemmas 3.1.4 and 3.1.3, m must be trivial. �

In other words, unless a given monad m is trivial, no value recursion operator for

m can satisfy strong sliding and right shrinking properties, provided m’s �= operator is

strict in its first argument. This is an important result, as it identifies inherent limitations

on properties that can be expected to hold for many practical monads of interest.

Corollary 3.1.7 Neither strong sliding nor right shrinking properties are satisfiable for

Haskell’s maybe, list, strict state and IO monads, as none of these monads are trivial (no

pun intended—see Definition 3.1.1). �



28

3.2 Idempotent monads

A monad m is said to be idempotent if the equation4

a �= λx. a �= λy. return (x , y) = a �= λx. return (x , x ) (3.2)

holds for all a :: m τ [46]. Identity, maybe and environment monads are examples of

idempotent monads. Intuitively, a monad is idempotent if computations can be duplicated

whenever their results are needed.

Note that Equation 3.2 does not specify any data flow between repeated computations.

That is, the equation

λx. f x �= f = f (3.3)

is not required to hold.5 However, if a monad is idempotent, we expect both sides of

Equation 3.3 to be indistinguishable by mfix. Furthermore, once mfix f is computed for

a function f , further applications of f should not change the result. We capture these

intuitions in the following property:

Property 3.2.1 (Idempotency.) Let f :: α → m α, where m is an idempotent monad

with a value recursion operator mfix. Then,

mfix (λx. f x �= f ) = mfix f (3.4)

mfix f �= f = mfix f (3.5)

The first equality can be captured diagrammatically as follows:

=f f f

We leave it to the reader to picture Equation 3.5.

Remark 3.2.2 It is important to note that Property 3.2.1 does not state that Equa-

tion 3.4 or 3.5 can be used as definitions of value recursion operators whenever the un-

derlying monad is idempotent.6 For instance, Equation 3.5 will always produce ⊥ for

4In category theory, a monad m is called idempotent if its join :: m (m α) → m α operator is an
isomorphism [55]. The definition we use is more useful from a practical point of view, however. For instance,
the maybe monad is idempotent with our definition, although its join operator is not an isomorphism.

5As a counterexample, consider the identity monad where Equation 3.3 is satisfied only for idempotent
functions (i.e., f2 = f ), but not in general.

6Individual definitions might coincide, of course. For instance, in Chapter 4, we will see that Equa-
tion 3.5 does indeed define value recursion operators for identity and environments, but not for exceptions.



29

mfix in a monad with a �= operator that is strict in its first argument, which is clearly

undesirable.

We will discuss idempotency property with respect to identity, exception, monads

based on idempotent monoids, and environments in Chapter 4.

3.3 Commutative monads

A monad m is said to be commutative if the order of effects does not matter. That is, if

the equation

λ(x , y). f x �= λx ′. g y �= λy ′. return (x ′, y ′)

= λ(x , y). g y �= λy ′. f x �= λx ′. return (x ′, y ′)
(3.6)

holds for all f :: α → m β and g :: τ → m σ. For a commutative monad, we expect mfix

to satisfy swapping of computations similarly, as depicted in the following diagram:

=
f g g f

y’ x’
y

x’

y’
x

y

x’

y’ x

Property 3.3.1 (Commutativity.) Let f :: α → m β, g :: β → m α, where m is a

commutative monad with a value recursion operator mfix. Then,

mfix (λ(x , ). f x �= λy ′. g y ′ �= λx ′. return (x ′, y ′))

= mfix (λ( , y). g y �= λx ′. f x ′ �= λy ′. return (x ′, y ′))
(3.7)

In case a value recursion operator satisfies nesting and strong sliding laws, Equation 3.7

can be derived automatically:

Proposition 3.3.2 Equation 3.7 follows from nesting and strong sliding laws.

Proof Straightforward applications of Equation 2.21, Equation 3.6, nesting, left shrink-

ing, and Equation 2.20 on the left hand side. �

Examples of commutative monads include identity, environments, and monads based

on commutative monoids. We will investigate the commutativity property with respect

to these monads in Chapter 4.



30

3.4 Monads with addition

A monad m is said to be additive if there exists an element zero :: m τ , and an operation

⊕ :: m τ → m τ → m τ , such that:

zero ⊕ p = p

p ⊕ zero = p

(p ⊕ q) ⊕ r = p ⊕ (q ⊕ r)

zero �= f = zero

p � zero = zero

The relation between ⊕ and�= is not specified, although one generally checks for the

following distributive laws:

(p⊕ q)�= f = p�= f ⊕ q �= f (3.8)

p�= (λx. q x⊕ r x) = p�= q ⊕ p�= r (3.9)

In Haskell, additive monads are captured as instances of the MonadPlus class, where

zero is called mzero and ⊕ is called mplus [68]. The maybe and list monads are instances of

this class.7 It is interesting to note that the list monad satisfies Equation 3.8, but not 3.9;

while the maybe monad satisfies Equation 3.9, but not 3.8.

For an additive monad, we expect the following property to hold:

Property 3.4.1 (Distributivity.) Let m be an additive monad with ⊕ as the binary

operator. Let mfix be a value recursion operator for m. Distributivity states:

mfix (λx. f x⊕ g x) = mfix f ⊕mfix g (3.10)

If Equation 3.8 holds, left shrinking is sufficient to establish the distributivity property:

Proposition 3.4.2 Let m be an additive monad with ⊕ as the binary operator, and let

mfix be a value recursion operator for m. If ⊕ satisfies Equation 3.8, then mfix will satisfy

distributivity.

Proof See Appendix B.5. �

Remark 3.4.3 It is worth noting that Equation 3.8 is a sufficient, but not a necessary

condition for satisfying distributivity. As we will see in Chapter 4, the maybe monad does

not satisfy Equation 3.8, yet it has a value recursion operator satisfying distributivity.

7In fact, the law p � zero = zero fails for both the maybe and list monads when p = ⊥. This
discrepancy does not cause any trouble for our purposes. (Recall: m � k = m �= λ .k.)



31

3.5 Embeddings

Consider Haskell’s maybe and list monads. Intuitively, every value of type Maybe τ can

be considered as a value of type [τ ], mapping Nothing to [ ] and Just x to [x]. In a certain

sense, the list monad is rich enough to capture the features of the maybe monad. Formally,

this relation is captured by monad homomorphisms and embeddings [53, 89]:

Definition 3.5.1 (Monad homomorphisms and embeddings.) Let m and n be two mon-

ads. A monad homomorphism, ε :: m → n, is a family of functions, one for each type τ ,

ετ :: m τ → n τ , such that:

ε · returnm = returnn (3.11)

εσ (k �=m f) = ετ k �=n εσ · f (3.12)

where k :: m τ and f :: τ → m σ. An embedding is a monad homomorphism where each

ετ is monic (i.e., injective).

Equations 3.11 and 3.12 precisely describe how ε interacts with the proper morphisms

of the involved monads. For value recursion, we also need to specify how ε and mfix

interacts:

Definition 3.5.2 (Monad homomorphisms and embeddings for value recursion.) Let m

and n be two monads with respective value recursion operators mfixm and mfixn. Let

ε :: m → n be a monad homomorphism or embedding. We say that ε respects value

recursion if, for all f :: τ → m τ ,

ε (mfixm f ) = mfixn (ε · f ) (3.13)

In Chapter 4, we will see several concrete examples, including the embeddings of maybe

into list, environment and output into state, and identity into any other monad.

Proposition 3.5.3 Let ε : m→ n be an embedding of a monad m into a monad n. Let

mfixn be a value recursion operator for n. Let g :: (τ → m τ) → m τ be a function,

satisfying the strictness property. If ε satisfies Equation 3.13 where g plays the role of

mfixm, then g is a value recursion operator for m, i.e., it will satisfy purity and left

shrinking properties as well.

Proof Simple equational reasoning. We present the left shrinking case to illustrate the

idea:



32

ε (g (λx. a �= λy. f x y))

= mfix (λx. ε (a �= λy. f x y))

= mfix (λx. ε a �= λy. ε (f x y))

= ε a �= λy. mfix (λx. ε (f x y))

= ε a �= λy. ε (g (λx. f x y))

= ε (a �= λy. g (λx. f x y))

{Eqn. 3.13}

{Eqn. 3.12}

{left shrink}

{Eqn. 3.13}

{Eqn. 3.12}

Since ε is injective, we obtain:

g (λx. a �= λy. f x y) = a �= λy. g (λx. f x y)

showing that g satisfies left shrinking. �

Remark 3.5.4 It is unfortunate that strictness is not necessarily reflected. Using the

proof technique above, one gets: ε (g f ) = mfix n (ε · f ), but we cannot conclude that g

satisfies strictness unless ε is strict. It turns out that requiring ε to be strict is an overkill;

many embedding examples we will see in Chapter 4 are not strict.

Proposition 3.5.5 The sliding, nesting, strong sliding and right shrinking properties are

reflected through embeddings as well. That is, if ε : m → n is an embedding respecting

value recursion, and if mfixn satisfies any of these properties, then so will mfixm.

Proof Similar to the previous proposition. �

Observation 3.5.6 Composition of two embeddings is still an embedding, hence prop-

erties are reflected through multiple embeddings as well.

Is it possible to derive value recursion operators using embeddings? Intuitively, if a

monad m embeds into another monad n, and if n has a value recursion operator, one

might expect to be able to derive a value recursion operator for m. In this case, we will

need the embedding to be a split monic, i.e., to possess a left inverse, in order to be able

to map results back to m. For instance, the embedding of the maybe monad into the list

monad, and its left inverse, are given by:

ε Nothing = [ ]

ε (Just x ) = [x ]

ε` [ ] = Nothing

ε` (x :xs) = Just x

More formally, let ε :: m→ n be an embedding with the left inverse ε` :: n→ m, i.e.,

ε`
τ · ετ = idm τ . Note that, in general, ε` is not a monad homomorphism.8 Let mfixn be a

8Furthermore, ε and e` are not required to form a retraction pair, i.e., ε · ε` 6v id [77]. In fact, ε · ε` is
generally incomparable to id, as demonstrated by the embedding of maybe into list.



33

value recursion operator for n. When is the function:

g :: (α → m α) → m α

g f = ε` (mfixn (ε · f)) (3.14)

a value recursion operator for m? Since e` is not a monad homomorphism, not all required

properties will follow automatically. Still, this construction gives a way of obtaining a

candidate value recursion operator, and we can test whether ε respects value recursion

with respect to it. In this case, we need to verify:

(ε · ε`) (mfixn (ε · f)) = mfixn (ε · f) (3.15)

for all f :: α→ m α. If Equation 3.15 holds, Propositions 3.5.3 and 3.5.5 will be sufficient

to establish properties for g automatically.

Remark 3.5.7 It is easy to see that e` will always satisfy Equation 3.11. In general,

Equation 3.12 will only be satisfied on the subset of values that are in the image of ε. The

maybe into list embedding given above illustrates this point. However, we suspect that the

subset of values on which Equation 3.12 is satisfied might be sufficient to establish further

properties of the derived operator. We leave the exploration of this idea for future work.

3.6 Monad transformers

Closely related to monad homomorphisms is the idea of monad transformers. It is often

the case that one wants to add new features to an already existing monad. For instance,

one can add exceptions, state or non-determinism to a monad, obtaining a monad with

new computational features. Monad transformers have been designed to solve this problem

in a modular manner. Intuitively, given a monad m, a monad transformer t yields a new

monad t m, transforming returnm to returnt m and �=m to �=t m. Furthermore, one

requires a monad homomorphism liftτ :: m τ → t m τ , lifting computations in m to the

new monad. We refrain from going into details here, the reader is referred to the rich

literature on monad transformers for details [22, 42, 53, 54].

For value recursion, we ask a similar question. Given a monad transformer t, is there

a natural way of obtaining mfixt m from mfixm? A generic approach would be to convert a

given function f :: α→ t m α to a function of type α→ m α, apply mfixm to get the fixed-

point m α, and transfer it back to t m α using lift. Unfortunately, to do the conversion

from α → t m α to α → m α, one would need a morphism with type t m α → m α, the

inverse of lift, which is clearly not available in general.



34

On the other hand, it is generally possible to lift arbitrary value recursion operators,

provided we know the exact structure of the monad transformer. We will consider three

examples of monad transformers in Section 4.9, namely errors, environments, and state,

and show how we can lift the value recursion operators through these transformers. (This

technique does not always work, however, as illustrated by the continuation monad trans-

former. See Section 5.2 for details.)

3.7 Summary

In this chapter, we have concentrated on properties of value recursion operators that follow

from the structural properties of underlying monads. As we have seen, if the�= operator

is strict in its first argument, then the strong sliding and right shrinking properties cannot

be satisfied. This is an important point: there are inherent limitations on what we can

expect from recursion in the presence of effects. (We will return to this issue in Chapter 6.)

The latter part of this chapter dealt with how value recursion operators reflect prop-

erties such as idempotency, commutativity, and additivity, and how individual properties

are reflected through monad embeddings. In Chapter 4, we will get a chance to review

these properties with respect to concrete examples of value recursion operators.



Chapter 4

A catalog of value recursion operators

In this chapter, we present value recursion operators for monads that are frequently used

in functional programming, providing a catalog of mfix’s for the working programmer.

Although there is no magic recipe, we believe that these examples present enough patterns

to guide the construction of value recursion operators for new monads.

Synopsis. We establish a framework with the identity monad and then cover excep-

tions, lists, state, output, environments, trees, and fudgets. The continuation monad

proves to be problematic; we consider it separately in Chapter 5. We also discuss monad

transformers, enabling us to create new mfix’s from old.

4.1 Identity

The identity monad is the monad of pure values, modeling computations with no effects:

type Identity α = α

return = id
x �= f = f x

with fix as the corresponding value recursion operator, i.e:

mfix :: (α → Identity α) → Identity α

mfix f = fix f
(4.1)

Proposition 4.1.1 Equation 4.1 defines the unique value recursion operator for the

identity monad.

Proof It is easy to show that fix satisfies strictness, purity, and left shrinking properties.

For uniqueness, we will show that any value recursion operator for the identity monad must

equal fix. Let mfix′ be such an operator. We have:

mfix ′ f = mfix ′ (return · f ) = return (fix f ) = fix f

by using purity and the fact that return = id. �

35



36

Remark 4.1.2 Although we will stick to Haskell notation, we will generally avoid using

explicit tags to reduce clutter as long as we can. For instance, for overloading purposes,

the proper way to define the identity monad and mfix in Haskell is:1

newtype Identity α = Id { unId :: α }

instance Monad Identity where

return x = Id x
Id x �= f = f x

mfix f = fix (f · unId)

Properties It is easy to see that all of our properties hold for Equation 4.1, including

nesting, strong sliding and right shrinking. Furthermore, the identity monad is both

idempotent and commutative, and it is an easy exercise to show that Properties 3.2.1

and 3.3.1 both hold.

The identity monad embeds into any other monad n, as long as returnn is monic.

The homomorphism ε = returnn easily satisfies Equations 3.11-3.13, assuming n has a

value recursion operator. (In other words, the identity monad is initial in the category of

monads and monad homomorphisms.)

4.2 Exceptions: The maybe monad

The maybe monad of Haskell can be used to model exceptions:

data Maybe α = Nothing | Just α

return = Just
Nothing �= f = Nothing
Just x �= f = f x

with the following unique value recursion operator:

mfix :: (α → Maybe α) → Maybe α

mfix f = fix (f · unJust)

where unJust (Just x ) = x

(4.2)

Proposition 4.2.1 Equation 4.2 defines the unique value recursion operator for the

maybe monad.

1The newtype declaration avoids adding a separate ⊥ element. If a data declaration is used,�= should
match lazily (i.e., ˜ (Id x ) �= f = f x ) to avoid strictness problems. (See Section 3.1 for details.)



37

Proof Strictness and purity are straightforward. For left shrinking, we need to show:

mfix (λx. a �= λy. f x y) = a �= λy. mfix (λx. f x y)

where a is a free variable. Case analysis on a suffices to show the equivalence. When

a = ⊥, both sides yield ⊥. When a = Nothing, we get Nothing. Finally, when a = Just z

for some z, both sides yield mfix (λx. f x z ).

To show uniqueness, we do a similar case analysis. If f ⊥ = ⊥, mfix f must be

⊥ by strictness. If f ⊥ = Nothing, monotonicity implies that f = const Nothing , and

Proposition 2.6.1 guarantees that mfix f = Nothing. Finally, if f ⊥ = Just z for some

z, then f must factor through Just by monotonicity, i.e., there must be a function h such

that f = Just · h , or equivalently, h = unJust · f. Therefore,

mfix f = mfix (Just · h)

= mfix (return · h)

= return (fix h) {purity}

= return (fix (unJust · f ))

To summarize, we have:

mfix f = case f ⊥ of

Nothing → Nothing

Just → return (fix (unJust · f ))

(4.3)

Note that we did not make any choices in constructing Equation 4.3; the behavior of

mfix is completely dictated by the properties that must be satisfied by all value recursion

operators. We leave it to the reader to show that Equations 4.2 and 4.3 are equivalent,

establishing uniqueness. �

Remark 4.2.2 By Proposition 2.6.3, f ⊥ is always an approximation to mfix f , justify-

ing the case expression in Equation 4.3. Note that the case when f ⊥ = ⊥ is implicitly

handled by pattern match failure.

Properties It is easy to show that Equation 4.2 also satisfies sliding and nesting prop-

erties. As stated in Corollary 3.1.7, strong sliding and right shrinking properties fail.

How about idempotency (Proposition 3.2.1) and commutativity (Proposition 3.3.1)?

It turns out that the exception monad is indeed idempotent (i.e., satisfies Equation 3.2).

Equations 3.4 and 3.5 are both satisfied. On the other hand, exceptions are not commuta-

tive, due to the possibility of non-termination: Nothing �= λx. ⊥ = Nothing , whereas

⊥ �= λx. Nothing = ⊥. Consequently the commutativity property is not applicable.



38

Finally, we consider the distributivity (Property 3.4.1). As mentioned in Section 3.4,
the maybe monad is additive:

zero = Nothing
Nothing ⊕ y = y
Just x ⊕ y = Just x

To establish

mfix (λx. f x⊕ g x) = mfix f ⊕mfix g

it suffices to do a case analysis on f ⊥. In case f ⊥ = ⊥, both sides will yield ⊥. In case

f ⊥ = Nothing, we will get mfix g on both sides. Finally, if f ⊥ takes the form of a Just,

both sides will reduce to mfix f. We leave the details to the reader.

Remark 4.2.3 It is instructive to study failing definitions of mfix as well. Consider:

mfix ′ f = let Just x = f x

in return x

which is somewhat intuitive, considering how the recursive knot is tied over x. Obviously,

strictness fails. More seriously, left shrinking fails as well:

mfix ′ (λx. Nothing �= λy. return 1) = Just ⊥

Nothing �= λy. mfix ′ (λx. return 1) = Nothing

compromising the equivalence of do and mdo expressions in the absence of recursion. We

also have mfix ′ (λx. Nothing) = Just ⊥, which is truly bizarre.

4.3 Lists

The list monad of Haskell can be used to model computations with multiple results:

return x = [x ]

[ ] �= f = [ ]
(x :xs) �= f = f x ++ (xs �= f )

Given a function f :: α → [α], how do we compute mfix f :: [α] ? Intuitively, we need

to select a pivot value to tie the recursive knot. Consider the following two candidates:

let (a : ) = f a

in f a

let ( : a : ) = f a

in f a



39

where we pivot over the first and the second element of the result, respectively. Of course,

there is an infinite family of such functions, one for each particular position. As we will

see later in this section, none of these alternatives give rise to a value recursion operator.

Instead, we consider a moving pivot: Rather than fixing a single pivot element for the

entire computation, we compute each element in the result using its own position as the

pivot element. That is, the ith element of the fixed-point of f can be selected as the

fixed-point of the function head i · f , suggesting:

mfix f = fix (head · f ) : mfix (tail · f )

There is a slight problem with this approach, however: It always generates an infinite list,

repeating ⊥ after reaching the actual end of the list. Luckily, there is an easy solution.

Rather than computing fix (head · f ), we can compute fix (f · head), and stop when

the result is [ ]. Putting these ideas altogether, we obtain the following operator:

mfix :: (α → [α]) → [α]

mfix f = case fix (f · head) of

[ ] → [ ]

(x : ) → x : mfix (tail · f )

(4.4)

As the following proposition shows, this definition of mfix is extremely well-behaved:

Proposition 4.3.1 The function mfix given by Equation 4.4 satisfies:

mfix f = ⊥ ⇔ f ⊥ = ⊥ (4.5)

mfix f = [ ] ⇔ f ⊥ = [ ] (4.6)

head (mfix f ) = fix (head · f ) (4.7)

tail (mfix f ) = mfix (tail · f ) (4.8)

mfix (λx. f x : g x ) = fix f : mfix g (4.9)

mfix (λx. f x ++ g x ) = mfix f ++ mfix g (4.10)

Proof See Appendix B.6. �

Remark 4.3.2 From the first two equivalences in Proposition 4.3.1, we see that mfix f

structurally follows f ⊥. That is, if mfix f is ⊥ or [ ], then so is f ⊥, and vice-versa.

Similarly, mfix f is a cons-cell exactly when f ⊥ is. We see this correspondence over and

over in monads that are based on sum-like data structures. (See also Remark 2.6.4.)

Proposition 4.3.3 Equation 4.4 defines the unique value recursion operator for the list

monad.



40

Proof Strictness is exactly the first equivalence in Proposition 4.3.1. Purity is easy to

establish; we leave it to the reader. Left shrinking is more interesting. We show:

mfix (λx. a �= λy. f x y) = a �= λy. mfix (λx. f x y)

by structural induction on a. The base cases, a = ⊥ and a = [ ], are immediate. For the

inductive step, we assume a = q : qs, and reason as follows:

mfix (λx. (q : qs) �= λy. f x y)

= mfix (λx. f x q ++ qs �= λy. f x y)

= mfix (λx. f x q) ++ mfix (λx. qs �= λy. f x y)

= mfix (λx. f x q) ++ qs �= λy. mfix (λx. f x y)

= (λy. mfix (λx. f x y)) q ++ qs �= λy. mfix (λx. f x y)

= (q : qs) �= λy. mfix (λx. f x y)

{Eqn. 4.10}

{I.H.}

establishing the left shrinking property, and completing the proof that we have a legitimate

value recursion operator.

For uniqueness, we will appeal to the approximation lemma.2 Let mfix refer to the

function defined by Equation 4.4, and let mfix′ be another value recursion operator for the

list monad. We will show that:

∀n.∀f. approx n (mfix f ) = approx n (mfix ′ f )

establishing uniqueness. The proof is by induction on n. The base case (n = 0) is

immediate. The induction hypothesis is:

∀f. approx k (mfix f ) = approx k (mfix ′ f )

for a fixed natural number k. We need to show that:

∀f. approx (k+1) (mfix f ) = approx (k+1) (mfix ′ f )

Pick an arbitrary function f . The proof proceeds by case analysis on the value of f ⊥.

If f ⊥ = ⊥, then both sides yield ⊥ by the strictness property. If f ⊥ = [ ], then

f = const [ ] by monotonicity, and both sides yield [ ] by Proposition 2.6.1. The case

when f ⊥ is a cons-cell is a bit more involved. By monotonicity, we have

f x = (head · f ) x : (tail · f ) x = [(head · f ) x ] ++ (tail · f ) x (4.11)

for all x, since f will always produce a cons-cell given any argument. Furthermore, the

list monad satisfies Equation 3.8, and hence mfix′ must satisfy Equation 3.10 by Proposi-

tion 3.4.2, where ⊕ = ++. Now, it is easy to see that:

2See Appendix B.6 for a more detailed example use of this lemma.



41

mfix ′ f = mfix ′ (λx. [(head · f ) x ] ++ (tail · f ) x )

= mfix ′ (return · head · f ) ++ mfix ′ (tail · f )

= return (fix (head · f )) ++ mfix ′ (tail · f )

= [fix (head · f )] ++ mfix ′ (tail · f )

= fix (head · f ) : mfix ′ (tail · f )

{Eqn. 4.11}

{Eqn. 3.10}

{purity}

Also note that Equation 4.4 will take its second branch when f ⊥ is a cons-cell. Therefore,

the proof obligation reduces to:

head (fix (f · head)) : approx k (mfix (tail · f ))

= fix (head · f ) : approx k (mfix ′ (tail · f ))

by the definition of approx, and the above derivation. But this equation is immediate:

First elements are equivalent by the dinaturality of fix, and the tails are equivalent by the

induction hypothesis. �

Properties It is not very hard to show that the sliding and nesting properties hold. By

the last equation in Proposition 4.3.1, distributivity holds as well (Property 3.4.1). On

the negative side, both strong sliding and right shrinking properties fail, as pointed out in

Corollary 3.1.7.

Remark 4.3.4 The maybe monad embeds into the list monad, as described in Sec-

tion 3.5. Furthermore, the value recursion operator for the maybe monad is exactly the

one predicted by Equation 3.14.

Remark 4.3.5 We close this section by discussing failing definitions of mfix for the list

monad. Consider the function:

f xs = [take 3 (1 : xs), take 3 (2 : xs)] (4.12)

What should mfix f be? Our definition yields: [[1, 1, 1], [2, 2, 2]], but the reader might

wonder about [[1, 1, 1], [2, 1, 1]], or [[1, 2, 2], [2, 2, 2]], which are produced by the

two alternatives we have seen at the beginning of this section, i.e., by pivoting over the

first and second elements of the result. As we have mentioned, there is an infinite family

of such operators:3

mfix i f = fix (f · head · tail i), i ≥ 0 (4.13)

3Note that these alternatives do not form a chain; they are all incomparable. Furthermore, they are all
incomparable to our definition of mfix (i.e., Equation 4.4) as well.



42

How about properties? It is easy to see that strictness holds for all mfix i, but that’s

where the good news ends. Except for mfix 0, all members violate purity. We have:

mfix i (return · f ) = return (f ⊥), i > 0

Furthermore, the left shrinking property fails for all of them. For instance,

mfix0 (λx. [1, 2] �= λy. [y , x ]) = [1, 1, 2, 1]

[1, 2] �= λy. mfix0 (λx. [y , x ]) = [1, 1, 2, 2]

compromising the equivalence of do and mdo expressions in the absence of recursion.

Intuitively, these definitions cause interference between elements. Note that:

λx. [1, 2] �= λy. [y , x ] = λx. [1, x , 2, x ]

and there is no reason to expect anything but ⊥ to play the role of x in the fixed-point,

as there is no information on what it can be. Indeed, our definition of mfix yields:

mfix (λx. [1, 2] �= λy. [y , x ]) = [1, ⊥, 2, ⊥]

[1, 2] �= λy. mfix (λx. [y , x ]) = [1, ⊥, 2, ⊥]

In the light of this discussion, we see that neither the list [[1, 1, 1], [2, 1, 1]], nor the

list [[1, 2, 2], [2, 2, 2]] constitute a viable fixed-point for the function defined by Equa-

tion 4.12. Each indicate interference between the elements of the fixed-point, violating

the left shrinking property.

In Section 9.1, we will see an example use of value recursion on the list monad, providing

practical evidence for the definition given by Equation 4.4 being preferable over those given

by Equation 4.13.

4.4 State

State monads capture the notion of computations that depend on modifiable stores, pro-

viding safe access to imperative features [51, 52]. A typical state monad, manipulating an

internal state with type τ , has the following structure [7, 91]:

type ST τ α = τ → (α, τ)

return x = λs. (x , s)
f �= g = λs. let (a , s ′) = f s

in g a s ′



43

The corresponding value recursion operator is given by:

mfixω :: (α → ST τ α) → ST τ α

mfixω f = λs. let (a , s ′) = f a s

in (a, s ′)

(4.14)

(The reason for the name will be clear in a moment.)

Remark 4.4.1 The following picture depicts the operation of the value recursion oper-

ator for the state monad, providing the intuition for the diagrams we have been using so

far (see also Remark 2.2.2):

state in state out

a

f
value out

The monads we have considered up to now (i.e., identity, exceptions, and lists) enjoy

the property that they all have unique value recursion operators. Is this the case for

the state monad as well? Referring to the picture above, we see that the resulting state

transformer is required to return the fixed-point value in the value out line in order to

satisfy purity, but it is not clear how we should determine the final state, i.e., the value of

the state out line. Equation 4.14 captures the case when state out is obtained by running

f on the fixed-point value and the current state. It is possible to consider an alternative

semantics, where the resulting state is determined without any regard to the value part,

i.e., without any use of the fixed-point value. That is, a definition of the form:

mfix f = λs. let (a, ) = f a s in (a, π2 (f ⊥ s)) (4.15)

with the following picture:

state in state out

f
value out

f

We might think of this operator as being strictly sequential in the state, i.e., it does

not make use of any “future” knowledge in determining what the final state should be.

There is a whole family of such operators, using approximations to the fixed-point value:

mfix i f = λs. let (a, ) = f a s in (a , pick i f s), i ≥ 0 (4.16)



44

where

picki f s = π2 (f ((λa. π1 (f a s))i ⊥) s) (4.17)

For instance, the picture for pick2 is:

state in state out

ff f

Note that mfix0 is precisely the operator defined by Equation 4.15. By construction,

each picki is an approximation to the next, i.e., picki v picki+1, implying mfixi v mfixi+1.

Furthermore, it is easy to see that:

mfixω =

∞⊔

i=0

mfixi (4.18)

where the mfixω on the left hand side is the operator defined by Equation 4.14.

Example 4.4.2 The functions mfixi, for all i, and mfixω will always agree on the value

part of the fixed-point. It is the final state that will be approximated by each mfixi, the

limit being delivered by mfixω. To demonstrate, consider the following function:

f :: [Int ] → ST [Int ] [Int ]

f xs s = (1 : xs , xs)

We have:

π2 (mfixi f [ ]) =

i times
︷ ︸︸ ︷

1 : 1 : . . . : 1 : ⊥

As expected, π2 (mfixω f [ ]) yields the infinite list of 1’s. Notice how approximations are

reflected in the final state. (In all cases π1 (mfix f [ ]), i.e., the value part, will always be

the infinite list of 1’s.)

Proposition 4.4.3 The functions mfixi, for all i (Equation 4.16), and mfixω (Equa-

tion 4.14) are value recursion operators for the state monad.

Proof For brevity, we will only consider mfixω here. Proofs for mfixi are a bit more

tedious, but equally easy. For strictness, we note that a function f of type α→ ST τ α is

strict exactly when f ⊥α s = (⊥α,⊥τ ) for all s. We have:

mfixω f s = let (a, s ′) = f a s in (a, s ′)

= let a = fix (λa. π1 (f a s)) in (a, π2 (f a s))



45

Because the function λa. π1 (f a s) is strict, its fixed-point is ⊥. Therefore, mfixω f s =

(⊥,⊥), establishing that mfixω f is ⊥.4

For purity, we have:

mfixω (return · f) = λs. let (a , s ′) = (return · f ) a s in (a, s ′)

= λs. let (a , s ′) = (f a, s) in (a , s ′)

= λs. let a = fix (λa. f a) in (a , s)

= λs. (fix f , s)

= return (fix f )

For left shrinking, we need to show that:

mfixω (λx. g �= λy. f x y) = g �= λy. mfixω (λx. f x y)

Simple symbolic manipulation reduces both sides to:

λs. let (a , s ′) = g s

(a ′, s ′′) = f a ′ a s ′

in (a ′, s ′′)

completing the proof. �

Remark 4.4.4 Abusing the terminology a bit, one might consider mfixω as a lazy-in-

the-state value recursion operator, while mfix0 is strict. As we will see in Section 4.8

and in Chapter 8 in detail, the operation of mfix0 is quite similar to the operation of

value recursion operators for stream processing and IO monads. It is hard to develop

a corresponding intuition for mfixi when i 6= 0. We do not know any applications that

might benefit from them. Furthermore, they behave strangely with respect to the nesting

property, as we will see shortly.

Properties Having established that mfixi for all i, and mfixω are value recursion oper-

ators, we now take a look at other properties. It turns out that sliding (Property 2.4.1)

is satisfied by all of them, but nesting (Property 2.5.1) only holds for mfix0 and mfixω.

Strong sliding and right shrinking properties only hold for mfixω.

Counterexample 4.4.5 Let us first consider nesting. Let

4We caution the reader about the use of true products. In case of lifted products, we would get
mfix f = λs. (⊥, ⊥) 6= λs. ⊥, violating strictness. But this is hardly surprising—even monad laws fail
in this case. It is easy to see that (λs. ⊥) �= return = λs. (⊥, ⊥), failing the right unit law.



46

f :: ([Int ], [Int ]) → ST [Int ] [Int ]

f x s = (1 : π1 x , π2 x )

Considering left and right hand sides of Equation 2.7, for each i > 0, we have:

π2 (mfixi (λx. mfixi (λy. f (x, y))) [ ]) = 1i+1 : ⊥

π2 (mfixi (λx. f (x, x)) [ ]) = 1i : ⊥

where 1k denotes a list of k 1’s. Since the final states differ, nesting fails. (The value part

will be the infinite list of 1’s in both cases.) For the single call to mfixi in the second line,

we simply get a snapshot of the value after i iterations, that is, exactly i 1’s. The nested

calls to mfixi, and hence to picki, result in the extra 1 in the first line. This behavior is

truly bizarre from the viewpoint of value recursion. In case of mfix0, the final states will

both be ⊥, since the inner call to pick will be ignored by the outer one. In case of mfixω,

the final state will be the infinite list of 1’s, as expected.

For strong sliding (Section 2.7.1), consider:

f :: [Int ] → ST [Int ] [Int ]

f xs s = (xs , xs)

h :: [Int ] → [Int ]

h xs = 1 : xs

Note that f (h ⊥) = λs.(1 : ⊥, 1 : ⊥) 6= λs.(⊥,⊥) = f ⊥, hence sliding (Property 2.4.1)

does not apply. Considering Equation 2.5, we have:

π2 (mfix0 (map h · f ) [ ]) = ⊥

π2 (map h (mfix0 (f · h)) [ ]) = 1 : ⊥

showing that strong sliding fails. For right shrinking (Property 2.7.3), let

f :: [Int ] → ST [Int ] [Int ]

f xs s = (1:xs , xs)

g :: [Int ] → ST [Int ] [Int ]

g xs ( : k : ) = (xs , [k ])

We leave it to the reader to show that right shrinking fails for mfix0 with this instantiation.

It is possible to generalize these examples for all other mfixi, whenever i is finite.

Remark 4.4.6 We do not know whether there are other value recursion operators for

the state monad.

4.5 Output monad and monads based on monoids

Every monoid gives rise to a monad, referred to as its representation monad [2]. In pro-

gramming, the best known example is the output monad, as we will see shortly. Let



47

(M,⊕, unit) be a monoid, where M is the underlying type. The corresponding represen-

tation monad is given by:

type RepM α = (α, M )

return x = (x , unit)

ma �= f = let (a, m) = ma

(b, n) = f a

in (b, m ⊕ n)

For instance, substituting String for M , “” for unit, and ++ for ⊕, one obtains the usual

output monad [7, 91]. The obvious value recursion operator is given by:

mfixω :: (α → RepM α) → RepM α

mfixω f = let (a , m) = f a in (a , m) (4.19)

As with the state monad, the choice of the name mfixω is not arbitrary. We have a

family of recursion operators:

mfix i f = let (a, ) = f a in (a, pick i f ), i ≥ 0 (4.20)

where

picki f = π2 (f ((π1 · f)i ⊥)) (4.21)

A straightforward calculation (analogous to Equation 4.18) shows that:

mfixω =

∞⊔

i=0

mfixi (4.22)

The correspondence with the state monad is not accidental. Any such representation

monad embeds into the state monad via the embedding:

ε (a, m) = λn. (a , n ⊕ m) (4.23)

with the left inverse: ε` f = f unit. Furthermore, ε works uniformly over all value

recursion operators, including mfixω. That is, for any monoid M :

ε (mfix
RepM
i f) = mfixST

i (ε · f) (4.24)

where i is either a natural number or ω. It is an easy exercise to show that the embedding

requirements (i.e., Equations 3.11-3.13) hold for ε.



48

Properties By Proposition 3.5.3, whenever an mfix for the state monad satisfies pu-

rity or left shrinking, the corresponding operator for the representation monad of a given

monoid will satisfy it too. Note that ε is not strict, hence strictness is not automati-

cally guaranteed (see Remark 3.5.4). However, it is easy to see that all mfixi and mfixω

satisfy strictness. Therefore, we have an infinite family of value recursion operators for

representation monads, similar to the case for the state monad.

By Proposition 3.5.5, sliding, nesting, strong sliding, and right shrinking properties

hold whenever the corresponding operator for the state monad satisfies them. On the

negative side, all of the counterexamples we gave for the state monad can be converted

to counterexamples for representation monads with no difficulty, invalidating nesting for

mfixi when i > 0, and strong sliding and right shrinking for all but mfixω.

If the underlying monoid is idempotent, the representation monad will be idempo-

tent as well. Similarly, commutativity of the monoid implies the commutativity of the

monad. In both cases, mfixω will preserve idempotency and commutativity (Proper-

ties 3.2.1 and 3.3.1). Unfortunately, this result does not extend to mfixi automatically.5

Remark 4.5.1 Similar to the case for the state monad, it is an open question whether

there are other value recursion operators for monads based on monoids.

4.6 Environments

The environment monad, also known as the reader monad, captures computations that

use a store to read values without modifying them. Using an environment of type ρ, the

environment monad has the following structure:

type Env ρ α = ρ → α

return x = λe. x
f �= g = λe. g (f e) e

The corresponding value recursion operator is given by:

mfix :: (α → Env ρ α) → Env ρ α

mfix f = λe. let a = f a e

in a

(4.25)

5For instance, Equation 3.4 will hold for mfix
0

only when π2 (f ⊥) ⊕ π2 (f (π1 (f ⊥))) = π2 (f ⊥),
which is not guaranteed just by the fact that ⊕ is idempotent. Similar arguments apply to Equations 3.5
and 3.7 as well.



49

Remark 4.6.1 It is an easy exercise to show that Equation 4.25 is equivalent to the

generic mfix given in Section 1.4. To the best of our knowledge, identity and environ-

ment monads are the only examples where the generic version acts as the value recursion

operator.

Unsurprisingly, the environment monad embeds into the state monad. The embedding6

is given by ε f = λs. (f s , s), with the left inverse ε` f = π1 · f . It is easy to see

that strictness holds for Equation 4.25. Therefore, Proposition 3.5.3 guarantees that

Equation 4.25 defines a value recursion operator for the environment monad.

Properties By Proposition 3.5.5 and the observations made above, Equation 4.25 sat-

isfies all the properties satisfied by mfixω of the state monad. That is, sliding, nesting,

strong sliding, and right shrinking properties, along with the basic requirements of strict-

ness, purity and left shrinking are all satisfied.

Finally, the environment monad is both idempotent and commutative, and Proper-

ties 3.2.1 and 3.3.1 are both satisfied.

Remark 4.6.2 We do not know whether Equation 4.25 defines the unique value recur-

sion operator for the environment monad.

4.7 Tree monad

In this section, we will briefly cover the tree monad [42]:

data Tree α = Leaf α | Fork (Tree α) (Tree α)

return x = Leaf x
Leaf x �= f = f x
Fork l r �= f = Fork (l �= f ) (r �= f )

The effect of �= is to splice new subtrees on every Leaf of the first argument. The

corresponding value recursion operator is given by:

mfix :: (α → Tree α) → Tree α

mfix f = case fix (f · unL) of

Leaf x → Leaf x

Fork → Fork (mfix (lc · f )) (mfix (rc · f ))

(4.26)

The functions unL, lc, and rc are defined as follows:

6It does not matter which mfix is chosen for the state monad (i.e., mfixω of Equation 4.14, or any mfixi

given by Equation 4.16).



50

unL :: Tree α → α

unL (Leaf x ) = x

lc, rc :: Tree α → Tree α

lc (Fork l r) = l

rc (Fork l r) = r

Compared to the value recursion operator for the list monad (Equation 4.4), we see

that unL plays the role of head, while tail is replaced by lc and rc, projecting out the

children at each node. Otherwise, the definitions are structurally the same.

Remark 4.7.1 Despite all the similarities, the list monad does not embed into the tree

monad. There is no suitable element to map [ ] to, since our trees are always non-empty.

(An alternative formulation of trees, where data is stored in the nodes and leaves are

empty, does not give rise to a monad structure.)

Proposition 4.7.2 The function mfix given by Equation 4.26 satisfies:

mfix f = ⊥ ⇔ f ⊥ = ⊥ (4.27)

unL (mfix f ) = fix (unL · f ) (4.28)

lc (mfix f ) = mfix (lc · f ) (4.29)

rc (mfix f ) = mfix (rc · f ) (4.30)

mfix (λx. Fork (f x ) (g x )) = Fork (mfix f ) (mfix g) (4.31)

Proof Similar to the proof of Proposition 4.3.1. �

Proposition 4.7.3 Equation 4.26 defines the unique value recursion operator for the

tree monad.

Proof Analogous to the proof for the list monad (Proposition 4.3.3). Note that we

need to use a different version of approx that works on trees [38] (see Appendix B.6). For

uniqueness, we cannot refer to distributivity, as the tree monad is not additive. (There is

no appropriate unit element.) However, we still have the operator: x ⊕ y = Fork x y ,

which satisfies:

x ⊕ y �= f = x �= f ⊕ y �= f

hence a similar argument applies as in the case for the list monad. We leave the details

to the reader. �



51

Properties Sliding and nesting properties can be shown to hold for the tree monad,

while strong sliding and right shrinking fails by Propositions 3.1.5 and 3.1.6.

4.8 Fudgets

In this section, we will take a look at fudgets,7 a monad that has been designed to model

stream based computations. In its simplest form, the fudgets monad looks like:

data Fudget α = Val α
| Put Char (Fudget α)
| Get (Char → Fudget α)

return = Val

Val a �= f = f a
Put c m �= f = Put c (m �= f )
Get h �= f = Get (λc. h c �= f )

We will model functional I/O using a simple interpreter over this data type:8

run :: Fudget α → String → (String , α, String)
run (Val a) inp = (“ ”, a, inp)
run (Put c m) inp = let (o, a, r) = run m inp in (’!’ : c : o, a, r)
run (Get f ) [ ] = error “trying to Get from an empty stream!”
run (Get f ) (c:cs) = let (o, a, r) = run (f c) cs in (’?’ : c : o, a , r)

The function run accepts a fudget and an input stream, runs the computation and

delivers the list of I/O operations that took place, together with the final value and the

remainder of the input. The list of operations consists of all characters that are printed

via Put (prefixed by !), and all characters that are read from the input via Get (prefixed

by ?). Note that the order is important, as it indicates the temporal relationship between

I/O actions. For instance, we have:

run (Put ’a’ (Get (λc. Put c (Val c)))) “123” = (“!a?1!1”,’1’,“23”)

For value recursion, we are interested in the meanings of fudgets of the form:

mfix (λxs. Put ’a’ (Val (1 : xs))) (4.32)

7It would me more appropriate to call these “fudget-style stream processor monads,” as the presentation
here is only loosely based on the original work on fudgets by Carlsson and Hallgren [28, 29]. For brevity,
however, we will continue using the word fudget.

8We will investigate Haskell’s internal IO monad in detail in Chapter 8.



52

which intuitively models a computation that will print the character a and then deliver

an infinite list of 1’s. Or, more interestingly:

mfix (λcs. Get (λc. Val (c : cs))) (4.33)

which will first read a character from the input stream (if available), and then return an

infinite list containing copies of that character.

One possible value recursion operator for the fudgets monad is given by:

mfix f = case f ⊥ of

Val → fix (f · unVal)

Put c → Put c (mfix (unPut · f ))

Get → Get (λc. mfix (unGet c · f ))

(4.34)

where

unVal (Val a) = a
unPut (Put m) = m
unGet c (Get h) = h c

With this definition, Expression 4.32 yields:

run (mfix (λxs. Put ’a’ (Val (1 : xs)))) “z” = (“!a”, 1, “z”)

where 1̄ denotes the infinite list of 1’s. The result indicates that there was one I/O action,

which was printing the character ’a’, and no input was consumed. Expression 4.33 yields:

run (mfix (λcs. Get (λc. Val (c : cs)))) “z” = (“?z”, ’z’, “ ”)

indicating that the character ’z’ is read from the input, the infinite list of z’s are returned,

and all of the input was consumed. If the input stream was empty to start with, we would

end up with the error case, i.e., the result would be undefined.

So far, the behavior of mfix seems to be consistent with the way we perceive I/O. Here

is a slightly more challenging expression:

mfix (λc. Put c (Val ’a’)) (4.35)

What should the result be? Two possibilities arise. If we consider Put as an action causing

I/O, we see that it will not have its character ready for printing until after the computation

proceeds. That is, we should have:

run (mfix (λc. Put c (Val ’a’))) “ ” = (“!⊥”, ’a’, “ ”)



53

leaving the printed character undefined.9 Another option is to make the fixed-point value

available throughout the whole computation, yielding:10

run (mfix (λc. Put c (Val ’a’))) “ ” = (“!a”, ’a’, “ ”)

However, this alternative behavior is quite questionable. Consider the expression:

mfix (λc. Put c (Get (λd. Val d)))

In this case, we have to look past Get to determine what Put should print. However,

this character is simply not available until we run this fudget with a particular input

stream. Such an operator would violate the temporal relationship between Put and Get.

(Furthermore, to achieve this effect, one would need to combine the operation of run and

mfix, making the input stream available when the fixed-point is computed.)

Proposition 4.8.1 Equation 4.34 defines a value recursion operator for fudgets.

Proof Strictness and purity are immediate. Left shrinking can be established by

induction. (As discussed briefly above, uniqueness is not guaranteed as we can speculate

on the character to be printed whenever we have a Put constructor.) �

Properties Strong sliding and right shrinking both fail by Propositions 3.1.5 and 3.1.6.

Although we have not constructed the proofs, we believe that sliding and nesting properties

should hold.

4.9 Monad transformers

As pointed out in Section 3.6, monad transformers allow construction of new monads

from old ones. Although there is no magic recipe that will automatically lift a given mfix

through a transformer, it is possible to do so in many practical cases. In this section, we will

study three of the most common instances, namely error, environment, and state monad

transformers. (For a discussion of the continuation monad transformer, see Section 5.2.)

Liang defines the error monad transformer as follows [53]:

9The mfix we have given in Equation 4.34 produces this answer. As we will see in Chapter 8, the function
fixIO, the value recursion operator for Haskell’s IO monad, behaves similarly. (See Example 8.2.2.)

10Ignoring the Get constructor, the fudgets monad is very similar to the output monad of Section 4.5.
The second alternative corresponds to the function mfixω (Eqn. 4.19), while the first one corresponds to
mfix

0
(Eqn. 4.20). It is possible to think of operators that correspond to mfixi when i 6= 0 too.



54

data Err α = Ok α | Err String
type ErrT m α = m (Err α)

return a = return (Ok a)
m �= k = m �= λa. case a of

Ok x → k x
Err s → return (Err s)

lift m = m �= λa. return (Ok a)

Note that the return and �= on the left hand side are the definitions for the new

monad Err m, while those on the right belong to the monad m. If m has a value recursion

operator mfixM, we can lift it up to Err m as follows:

mfixErrM :: (α → ErrT m α) → ErrT m α

mfixErrM f = mfixM (f · unErr)

where unErr (Ok a) = a

(4.36)

The similarities between Equations 4.36 and 4.2 are not accidental. The function

unErr plays the same role as unJust, it providing access to the value part of the compu-

tation. While the value recursion operator for the maybe monad uses fix (i.e., the value

recursion operator for the identity monad) to tie the recursive knot, mfixErrM uses the

value recursion operator for the underlying monad to do so.

Proposition 4.9.1 Let mfixM be a value recursion operator for a given monad m. The

function mfixErrM, defined by Equation 4.36, is a value recursion operator for the monad

ErrT m.

Proof See Appendix B.7. �

Let us now consider the environment monad transformer, which adds an immutable

store to arbitrary monads. The definitions for the environment monad transformer are [53]:

type EnvT ρ m α = ρ → m α

return a = λe. return a
m �= k = λe. m e �= λa. k a e

lift m = λe. m

If the underlying monad has a value recursion operator mfixM, we can lift it to the

transformed monad as follows:

mfixEnvM :: (α → EnvT ρ m α) → EnvT ρ m α

mfixEnvM f = λe. mfixM (λa. f a e)
(4.37)



55

The definition of mfixEnvM exactly mimics the value recursion operator for the envi-

ronment monad (Equation 4.25), just like the case for the error monad transformer and

the maybe monad. Analogous to Propisition 4.9.1, we have:

Proposition 4.9.2 Let mfixM be a value recursion operator for a given monad m. The

function mfixEnvM, defined by Equation 4.37, is a value recursion operator for the monad

EnvT ρ m. �

Finally, we consider the state monad transformer [53]:

type StateT σ m α = σ → m (α, σ)

return a = λs. return (a, s)
m �= k = λs. m s �= λ(a , s ′). k a s ′

lift m = λs. m �= λx. return (x , s)

Applying the pattern we have seen with the previous two examples, a given mfixM can

be lifted through the state monad transformer as follows:

mfixStateM :: (α → StateT σ m α) → StateT σ m α

mfixStateM f = λs. mfixM (λr. f (π1 r) s)
(4.38)

Proposition 4.9.3 Let mfixM be a value recursion operator for a given monad m. The

function mfixStateM, defined by Equation 4.38, is a value recursion operator for the monad

StateT σ m. �

Remark 4.9.4 The lifting given by Equation 4.38 behaves analogously to mfixω as given

by Equation 4.14. It does not seem possible to lift arbitrary value recursion operators so

that they will behave similarly to any of the mfixi where i is finite (Equation 4.16).

4.10 Summary

In this chapter we have considered a wide range of monads and value recursion operators

for them. Although there is no magic recipe to automate the process, the examples provide

sufficient detail to guide the construction of value recursion operators for new monads.

There is one notable exception, however. The continuation monad does not seem to

possess a value recursion operator. Chapter 5 contains the details.

We summarize the properties of value recursion operators we have studied in this

chapter in the following table, along with the IO monad (studied in Chapter 8). The last



56

column indicates whether the corresponding value recursion operator is unique. A cell

marked with ∗ indicates a conjecture.

Str. Pure Left Slide Nest S. Slide Right Unique

Identity X X X X X X X X

Exceptions X X X X X 7 7 X

Lists X X X X X 7 7 X

mfix0 X X X X X 7 7

State mfixi X X X X 7 7 7 7

mfixω X X X X X X X

mfix0 X X X X X 7 7

Monoids mfixi X X X X 7 7 7 7

mfixω X X X X X X X

Environment X X X X X X X X∗

Tree X X X X X 7 7 X

Fudgets X X X X∗ X∗ 7 7 7

IO X X X X∗ X∗ 7 7 X∗

Let us conclude this chapter by making several observations about value recursion

operators:

• We might hope that mfix constructs a fixed point value in the process of compu-

tation. Unfortunately, in general, we cannot expect to find a value zf such that

mfix f = f z f . Consider the function f xs = [1 : xs, 2 : xs]. There is no inte-

ger value zf such that f z f = [1 : 1 : ..., 2 : 2 : ...], which is the required result

in this case. Similarly, in the case of the state monad, the closest we can get is:

λs. f (fix (λa. π1 (f a s))) s, which shows that the state in which the recursive

computation gets performed is essential in determining the final result. Similar

comments apply to the expression mfix f = m f �= f as well.

• Similarly, one might hope for a morphism suppress :: m α → m α, such that

mfix f = suppress (mfix f ) �= f

The aim of suppress is to strip out effects. There are some monads for which such a

morphism is available, but not in general. For instance, for the state monad:

suppress f = λs. let (a , ) = f s in (a, s)



57

Intuitively, suppress can only exist when there is a clear structural separation be-

tween values and effects. For instance, such a separation seems impossible for the

maybe or list monads

• The equality mfix f � g = f ⊥ � g does not hold in general. Since the value

produced by mfix f is discarded, one might think that the recursive computation

may be skipped as well. However, g might depend on the effects performed by the

first computation, which might very well be different for mfix f and f ⊥.

• It is worth reemphasizing some differences between fix and mfix. Recall that fix

satisfies the equality fix (f · f ) = fix f , for all f . However, it is not the case that:

mfix f = mfix (λx. f x �= f ), unless f is pure. In general, this equation only

holds when the underlying monad is idempotent (see Section 3.2). Similarly, the

equation fix (f · h) = f (fix (h · f )) translates into

mfix (map h · f ) = map h (mfix (f · h))

and requires f ⊥ = f (h ⊥) (see Section 2.4). Most importantly, the defining

equation for fix, fix f = f (fix f ), simply does not have any counterpart in the

value recursion world. The unfolding view of recursion is not suitable for explaining

value recursion except for very mild effects (such as identity and environments), as

it does not distinguish between values and effects at all.



Chapter 5

Continuations and value recursion

Is there a value recursion operator for the continuation monad? Originally designed to

model jumps, continuations come close to being the “universal” monad [24], and their

interaction with recursion proves to be quite intricate. In this chapter, we will take a

closer look at the structure of continuations from the viewpoint of value recursion.

Synopsis. We start with a review of the continuation monad, and continue by showing

that a value recursion operator for continuations is highly unlikely to exist. After a brief

discussion of the continuation monad transformer, we turn to first-class continuations,

as found in Standard-ML and Scheme languages. We explore the interaction between

recursive binding constructs and first-class continuations, showing that the left shrinking

property is unattainable in such a setting.

5.1 A monad for continuations

Traditionally, continuation-passing style (CPS) has been used to model jumps in pro-

gramming languages [90]. Continuations provide an extremely powerful effect, especially

first-class continuations as supported by SML of New Jersey and Scheme [31, 44], hence

effective use of continuations require great care: As demonstrated by Thielecke, many

seemingly obvious equivalences fail to hold in the presence of a call-by-current-continuation

construct [84]. We will see a particular example related to recursion in Section 5.3.

Computations based on CPS can be described using monads. Wadler discusses monads

for continuations in a typed setting [90], while Espinosa’s thesis contains a discussion in

the untyped world [22]. A typical continuation monad has the following structure:

type Cont σ τ = (τ → σ) → σ

return x = λk. k x

m �= h = λk. m (λv. h v k)

58



59

The type variable σ encodes the result type. For any type σ, continuation-based computa-

tions with a result value of type of σ are modeled by the monad Cont σ. Other operations

on continuations include run, which provides an initial continuation; abort, which ignores

its continuation and immediately returns a result; and callcc, which enables saving the

current continuation for later use:

run :: Cont σ σ → σ abort :: σ → Cont σ σ

run m = m id abort e = λk. e

callcc :: ((τ → Cont σ τ) → Cont σ τ) → Cont σ τ

callcc h = λk. h (λv. (λc. k v)) k

It is worth noting that run takes continuations of type Cont σ σ, i.e., the argument and

the result types are the same. (Similarly, the result of abort is also restricted.) In callcc,

the function h is given a handle to the current continuation k. If h uses its first argument,

the control will be transferred to the point where callcc h was originally invoked. Note

that the inner argument, λc. k v, ignores its own continuation c, transferring the control

back to k. Otherwise h might ignore its first argument, proceeding normally.

Let us now turn to the question of value recursion for the continuation monad. Recall

that a value recursion operator has type (α → m α) → m α, where m is the underlying

monad. Expanding this type for continuations, we get

mfix :: (α→ (α→ σ)→ σ)→ (α→ σ)→ σ (5.1)

where σ is the type of answers. Following the general pattern for value recursion, we

need to perform the fixed-point computation over α. However, it is simply not possible

to obtain a plausible value of type α by only using the arguments to mfix. Indeed, we

were not able to produce a plausible definition of mfix of even the correct type for the

continuation monad, let alone a definition that would satisfy the required properties.

Let us explore the situation a bit more closely. Being explicit about the quantification,

we can rewrite Type 5.1 as:

∀σ.∀α.(α→ (α→ σ)→ σ)→ (α→ σ)→ σ (5.2)

What are the inhabitants of this type? Fixing an answer type σ, we see that the Type 5.2

is isomorphic to:

∀α.((α→ σ)→ α→ σ)→ (α→ σ)→ σ (5.3)

and it is not hard to see that this type is (infinitely) inhabited if we have a fixed-point



60

operator. Each one of the following cases forms a class of inhabitants:

mfix ′ f k =







f i (const v) ⊥α, i ≥ 0, v ∈ σ

f i k ⊥α, i ≥ 0

(fix f) ⊥α

(5.4)

By v ∈ σ, we mean that v is an element of the domain that models the type σ. Each mfix ′

gives rise to an mfix via the equation mfix = mfix ′ · flip, and vice versa.1

We conjecture that the Equation set 5.4 completely covers all the inhabitants of

Type 5.3. The proof attempt for such a claim would require an in-depth analysis of

the type, and is beyond the scope of the current work.

Conjecture 5.1.1 Let σ be an arbitrary type. Every inhabitant of Type 5.3 falls into

one of the categories given by Equation set 5.4. �

Proposition 5.1.2 None of the candidate definitions for mfix ′ gives rise to an mfix that

would satisfy the purity law.

Proof We will only prove the case

mfix ′ f k = f i k ⊥α, i ≥ 0

Other cases are similar, if not simpler. Let α be a type and h be a function of type α→ α.

By purity, we must have:

mfix (return · h) k = return (fix h) k = k (fix h)

Fix a natural number i. By the chosen definition of mfix ′, we need:

(flip (return · h))i k ⊥α = k (fix h) (5.5)

It is easy to see that:

(flip (return · h))i k = k · hi (5.6)

Substituting 5.6 in 5.5, we get:

k (hi ⊥α) = k (fix h) (5.7)

Obviously, Equation 5.7 does not hold for all k and h, given that i is a fixed natural

number. �

1The function flip is defined by the equation flip f x y = f y x.



61

Remark 5.1.3 By the previous proposition, we conclude that the continuation monad

(as defined in Section 5.1) does not possess a value recursion operator, provided Conjec-

ture 5.1.1 holds.

The reader might wonder what happens if we restrict α to be the same as σ in the

Type 5.1, providing positive occurrences of α to work on. It is possible to show that there

is an infinite family of candidate mfix’s in this case as well, but none of them satisfy our

requirements. We leave the details to the interested reader.

5.2 The continuation monad transformer

The continuation monad transformer [53] is defined by:

type ContT σ m α = (α → m σ) → m σ

return a = λk. k a
m �= f = λk. m (λa. f a k)

lift m = λk. m �= k

Let mfixM be a value recursion operator for a monad m. Can we lift it through

the continuation monad transformer, obtaining a value recursion operator for the monad

ContT σ m? Following the recipe set forth by the examples of Section 4.9, we are led to

the following ill-typed definition:

mfixContM :: (α → ContT σ m α) → ContT σ m α

mfixContM f = λk. mfixM (λa. f a k) -- ill−typed !
(5.8)

Since the argument to mfixM has type α→ m σ, the application is ill-typed. This failure

is hardly surprising, as setting m to be the identity monad would have resulted in a value

recursion operator for the continuation monad.

Remark 5.2.1 Magnus Carlsson has suggested that such a lifting might be possible

when restricted to monads that support the notion of mutable variables (personal com-

munication). In collaboration with Carlsson, we investigated a number of possible liftings,

but none of our attempts were satisfactory. In each case, it was fairly easy to show that

the required properties were violated. We conjecture that a viable lifting is not possible

even in this restricted setting, leaving the exploration of this idea for future work.



62

5.3 First-class continuations and value recursion

What sort of properties can we expect from value recursion operators in a setting with

first-class continuations? First-class continuations allow programs to seize the control

state of their own evaluators [31]. This facility is definitely more powerful than what

the continuation monad of Section 5.1 provides, where programs can only manipulate

continuations that are explicitly created and passed around by the programmer.

Many seemingly obvious equivalences fail to hold in the presence of first-class continu-

ations. For instance, as shown by Thielecke, the equivalence (λx. False) (k True) = False

fails in the context callcc (λk. [ ]). (We refer the interested reader to Thielecke’s work for

many other interesting examples [84].) When we consider the equivalences dictated by our

properties, we see that they are simply too strong to hold in a language with first-class

continuations as well. For instance, consider the left shrinking property (Section 2.3),

which states the following equivalence:

mfix (λx. a �= λy. f x y) = a �= λy. mfix (λx. f x y)

Recall that the computation represented by a does not use the recursion variable x (i.e.,

x is not free in a). However, in the presence of first class continuations, a can capture its

continuation via a call to callcc, thereby getting a handle on f which uses x. That is, a

can indirectly access x through f , breaking the left shrinking property.

The following example in Scheme provides further insight into the problem. The

example demonstrates that a simple equality between recursive and non-recursive bindings

(even simpler than our left shrinking law) fails to hold in the Scheme case. (This example

was brought to our attention by Amr Sabry, who traces it back to a message sent to the

comp.lang.scheme newsgroup in 1988 by A. Bawden, titled “letrec and callcc implement

references.”) Consider the following two Scheme expressions:

(define (test1)

(letrec ((x (call-with-current-continuation

(lambda (c) (list #T c)))))

(if (car x) ((cadr x) (list #F (lambda () x)))

(eq? x ((cadr x))))))

(define (test2)

(let ((x (call-with-current-continuation

(lambda (c) (list #T c)))))

(if (car x) ((cadr x) (list #F (lambda () x)))

(eq? x ((cadr x))))))

Note that these two expressions are the same character for character, except the first

one uses the recursive binding construct (letrec) of Scheme, while the second one uses



63

the non-recursive version (let). Intuitively, these expressions should evaluate to the same

result, since the bound variable, x, is not even mentioned in the right hand sides of the

bindings. Alas, these two expressions are not equivalent! When run, test1 evaluates to

#T, i.e., True, while test2 yields #F, i.e., False. Regarding this example, Bawden wondered

if there were any “. . . real compilers that make this mistaken optimization,” regarding that

we might view test2 as an optimized version of test1. Of course, our concern is quite

the opposite. We rather ask if there are any language constructs that might render the

implied equivalence invalid.

Understanding why these expressions yield different values requires an understanding

of how Scheme is interpreted. We will try to convey the idea here as it is essential in

understanding why the left shrinking property is likely to be too strong a requirement in

the presence of first-class continuations. To keep the notation simple, let us rewrite these

expressions in a more Haskell-like syntax:2

test1 ≡

letrec x = callcc (λc. (True, c))

in if fst x

then snd x (False, const x )

else eq? x (snd x ())

test2 ≡

let x = callcc (λc. (True, c))

in if fst x

then snd x (False, const x )

else eq? x (snd x ())

Intuitively, letrec x = A in B in Scheme is implemented by allocating a cell called x

with a bogus error value, computing the value of the expression A (with x in scope), and

then overwriting the cell x with the result [44]. This allocate-compute-overwrite paradigm

practically achieves the knot-tying implementation of recursion. The evaluation then goes

on with the expression B, again with x in scope. A simple let binding, on the other hand,

does not create a cell to start with: let x = A in B is interpreted by evaluating A, storing

the result into a newly created cell x, and evaluating B with x in scope. With this model

in mind, consider the letrec expression in the definition of test1:

letrec x = callcc (λc. (True, c)) in . . .

To interpret this expression, one allocates a cell named x, and initializes it with ⊥. Then,

the right hand side is interpreted. The crucial point is realizing what continuation is

captured by the call to callcc. Recalling our description above, the following continuation

will be captured:

1. Let a be the argument passed to the continuation. Overwrite the cell x with a,

2The function eq? checks for pointer equality in Scheme, rather than structural equality.



64

2. Evaluate the expression part of letrec, i.e., evaluate:

if fst x then snd x (False, const x )

else eq? x (snd x ())

Let us call the continuation described above κ. Now, the right hand side of the letrec

binding is computed, which returns the tuple (True, κ). Since the definition is not actually

recursive, the initial (undefined) value of x is not used. Then, the cell pointed to by x

is overwritten by this tuple and the interpreter continues on with the evaluation of the

body. Since fst x is True, the conditional takes its first branch. And it is exactly at

this point that we invoke the continuation through the expression snd x, which is passed

the argument (False, const x). Recalling the description of κ above, this tuple overwrites

the cell x. It is crucial to note the cyclic structure thus created: When called with an

argument, the function stored in the second element of x will return a pointer back to the

tuple itself. As dictated by step 2 of κ, we now evaluate the body with this new value

stored in the cell pointed to by x. But this time fst x is False, hence we end up evaluating

the expression eq? x (snd x ()). Since, snd x () returns a pointer back to x, the call to

eq? checks for the pointer equality of x and x, which simply results in the value True.

What happens with test2? Since we have a non-recursive let expression, the cell for

x is not created before the right hand side is computed. Let us call this continuation φ.

Here is our description of it:

1. Let a be the argument passed to the continuation. Store a in a new cell called x,

2. Evaluate the expression part of let, which is exactly the same as before.

To evaluate test2, we proceed by computing the right hand side of the let binding.

As before, we immediately get back the tuple (True, φ). Now a new cell named x is

created, which stores this tuple. The conditional again takes its first branch, and the

continuation is called with (False, const x). Unlike the previous case, however, the call to

the continuation creates a new cell named x, shadowing the earlier value of x: The cyclic

structure is no longer available! It is not hard to see what happens now. The body is

evaluated as before and the conditional takes its second branch. But this time we compare

two different tuples in the call to eq?. Hence the result is simply False.

The relevance of this example to the left shrinking property is obvious. Basically, the

right hand side of the letrec binding, which is not recursive, corresponds to the constant

computation in the left shrinking property. If left shrinking were to hold, we would be

allowed to pull it out of the mfix loop, i.e., replace the recursive binding with a non-

recursive one. As we have seen, at least in the Scheme case, such a transformation is not

valid in the presence of first-class continuations.



65

5.4 Summary

As we have seen, the continuation monad in Haskell (as defined in Section 5.1) does

not seem to have a suitable value recursion operator. A similar comment applies to the

continuation monad transformer. Furthermore, in the case of first-class continuations, the

properties we expect to hold for value recursion operators are simply too strong.

Regarding the handling of recursive definitions arbitrarily mixed with computational

effects in Scheme, Andrzej Filinski states (personal communication):

...as far as I know, the only popular functional language that allows such defi-

nitions is Scheme; and I believe that allowing them was a mistake. The extra

generality is virtually never used, but it disallows some useful optimizations

by unnecessarily constraining the implementation. It is well known that in the

presence of call/cc, one can expose the imperative nature of letrec and use it

to define a general mutable cell; any RnRS-conforming system must support

this behavior no matter how it implements recursion...

We share the same point of view.



Chapter 6

Traces and value recursion

Trace operators were introduced into category theory by Joyal et al., as a means for model-

ing feedback operations arising in physics and mathematics [43]. Later work by Hasegawa

bridged the gap between recursion and traces, establishing a one-to-one correspondence

between fixed-point operators and traces over cartesian categories [9, 10, 32, 33, 79]. Can

we explain value recursion in this framework as well? The aim of this chapter is to review

the recent research in this area, trying to gain a better understanding of value recursion.

Synopsis. First, we will introduce parameterized value recursion operators, making the

dependence on the environment explicit. After reviewing traced monoidal categories, we

will show that value recursion operators give rise to traces for a restricted class of monads.

Although the set of monads for which this is possible is quite small, the correspondence is

strong enough for us to explore. The restriction arises as a consequence of trace axioms,

which are simply too strong for value recursion in general. Motivated by this discussion,

we will briefly review recent work by Paterson [66], and Benton and Hyland [5], which

aims to generalize traces to premonoidal categories.

6.1 Parameterized value recursion

Recall that a value recursion operator for a monad m has type (α → m α) → m α. In a

categorical setting, one needs explicitly to account for terms that contain free variables,

i.e., variables that are defined in the enclosing environment. To do so, we parameterize

our type to:

((e, α)→ m α)→ (e→ m α)

where e represents the environment. In the concrete case, e is generally a product, using

the cartesian structure of the underlying language. Parameterized and non-parameterized

66



67

value recursion operators are interdefinable:

pmfixe,α :: ((e, α)→ m α)→ (e→ m α)

pmfixe,α f = λe. mfixα (λa. f (e, a)) (6.1)

mfixα :: (α→ m α)→ m α

mfixα f = pmfix � ,α (f · π2) () (6.2)

where
�

is the terminal object whose only element is written (). The choice for the terminal

object is the natural one for e in Equation 6.2, as it represents the empty environment.

In fact, any type would do, since the environment is simply ignored.

Remark 6.1.1 Before proceeding further, a word on notation is in order. In this chapter,

we will be using a more categorical notation where appropriate. For instance, types will be

written with capital letters (as objects in a certain category), products will be written with

×, etc. This shift is unfortunate, but necessary. We do not want to impose a Haskell-like

notation when talking about categorical constructs: Such a coercion seems to complicate

matters even more. As an example, the type for pmfix in 6.1 will be written:

pmfixA,X : D(A×X, T X)→ D(A, T X)

where D is the category of domains and T is the underlying functor for the monad we are

considering. (The notation D(A, B) denotes the set of arrows from A to B in D.) We

will stick to Latin letters for objects, following the general practice. The use of particular

letters (i.e., X for the recursion variable, and A for the parameter) is inherited from

Hasegawa’s work [33]. Also, we will use categorical products and function spaces, rather

than Haskell’s lifted versions.

The second generalization we want to make is more technical than the first. Rather

than considering the morphisms in the base category, we move to the Kleisli category of

the given monad. There is one difficulty, however. The Kleisli category is not necessarily

cartesian. More specifically, the binary operator inherited from the cartesian product of

the base category is not necessarily bifunctorial. We will see the details and implications

of this problem in Section 6.4.2. For the time being, let us just assume that we have

a product-like operation in the Kleisli category, named ×. Let DT denote the Kleisli

category of a given strong1 monad T over D. It is easy to see that pmfix can be considered

1A monad over a category with a monoidal operation ⊗ is called strong if there exists a natural
transformation tA,B : A⊗T B → T (A⊗B), called the strength, subject to certain conditions [63]. It turns
out that all Haskell monads are strong, with the strength defined as t (a, tb) = tb �= λb. return (a, b).



68

as a family of functions with the type:

pmfixA,X : DT (A×X, X)→ DT (A,X) (6.3)

If DT is cartesian, Type 6.3 is precisely the same as that of a Conway operator (see

Appendix A). This view of value recursion will prove essential in the following discussion.

6.2 Preliminaries

In this section, we review the central notions in Joyal et al., and Hasegawa’s work [33, 43],

covering symmetric monoidal categories, traces, and the correspondence between traces

over cartesian categories and Conway operators.

6.2.1 Symmetric monoidal categories

In computer science, we often deal with binary operators that are associative only up to

isomorphism. Monoidal operators and monoidal categories provide a setting where such

operators can be modeled formally [2, 55]:

Definition 6.2.1 (Symmetric Monoidal Category.) A symmetric monoidal category,

SMC for short,M = (M,⊗, I, a, l, r, s) is a categoryM with a bifunctor⊗ :M×M→M,

an object I ∈M, and natural isomorphisms:

aA,B,C : A⊗ (B ⊗ C)→ (A⊗B)⊗ C lA : I ⊗A→ A

sA,B : A⊗B → B ⊗A rA : A⊗ I → A

such that the following diagrams commute:

Associativity Pentagon:

A⊗ (B ⊗ (C ⊗D))
a //

A⊗a

��

(A⊗B)⊗ (C ⊗D)
a // ((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D) a
// (A⊗ (B ⊗ C))⊗D

a⊗D

OO

Unit triangles and symmetry:

A⊗ (I ⊗B)

a

��

A⊗l

&&M

M

M

M

M

M

M

M

M

M

M

A⊗B
A⊗B

$$I

I

I

I

I

I

I

I

I

I

s

��

A⊗ I

s

��

r

!!D

D

D

D

D

D

D

D

D

(A⊗ I)⊗B
r⊗B

// A⊗B B ⊗A s
// A⊗B I ⊗A

l
// A



69

Bilinearity:

A⊗ (B ⊗ C)
a //

A⊗s

��

(A⊗B)⊗ C
s // C ⊗ (A⊗B)

a

��
A⊗ (C ⊗B)

a
// (A⊗ C)⊗B

s⊗B
// (C ⊗A)⊗B

Example 6.2.2 All cartesian categories are symmetric monoidal. Let C = (C,×,
�
) be

a cartesian category where × is the direct product with projections π1 : A× B → A and

π2 : A×B → B. In this case, the natural isomorphisms of Definition 6.2.1 are given by:

a = 〈〈π1, π1 · π2〉, π2 · π2〉 l = π2 r = π1 s = 〈π2, π1〉

a−1 = 〈π1 · π1, 〈π2 · π1, π2〉〉 l−1
A = 〈!A, A〉 r−1

A = 〈A, !A〉 s−1 = 〈π2, π1〉

where !A : A →
�

denotes the unique map to the terminal object. In Haskell notation

these morphisms correspond to the following functions (with more suggestive names):

assoc (x , (y , z )) = ((x , y), z ) assoc−1 ((x , y), z ) = (x , (y , z ))
left ((), y) = y left−1 y = ((), y)

right (x , ()) = x right−1 x = (x , ())
swap (x , y) = (y , x ) swap−1 (y , x ) = (x , y)

6.2.2 Traced symmetric monoidal categories

Trace operators provide a categorical framework for studying cyclic structures:2

Definition 6.2.3 (Traced SMC.) A traced symmetric monoidal category is a symmetric

monoidal categoryM = (M,⊗, I, a, l, r, s) with a family of functions:

TrX
A,B :M(A⊗X, B ⊗X)→M(A,B)

subject to the following conditions:

• Naturality in A (left tightening):

A

g

��

M(A⊗X, B ⊗X)
TrX

A,B //M(A, B)

A′ M(A′ ⊗X,B ⊗X)
TrX

A′,B

//

M(g⊗X,B⊗X)

OO

M(A′, B)

M(g,B)

OO

For all f : A′ ⊗X → B ⊗X, g : A→ A′, Tr (f · (g ⊗X)) = Tr f · g.

2The original work on traces was presented in the slightly more general setting of braided monoidal

categories [43]. Following Hasegawa [33], we only consider symmetric monoidal categories here.



70

• Naturality in B (right tightening):

B

g

��

M(A⊗X,B ⊗X)
TrX

A,B //

M(A⊗X,g⊗X)
��

M(A,B)

M(A,g)
��

B′ M(A⊗X, B′ ⊗X)
TrX

A,B′

//M(A, B′)

For all f : A⊗X → B ⊗X, g : B → B ′, Tr ((g ⊗X) · f) = g · Tr f .

• Dinaturality in X (sliding):

X

g

��

M(A⊗X ′, B ⊗X)
M(A⊗g,B⊗X) //

M(A⊗X′,B⊗g)
��

M(A⊗X,B ⊗X)

TrX

A,B

��
X ′ M(A⊗X ′, B ⊗X ′)

TrX′

A,B

//M(A, B)

For all f : A⊗X ′ → B ⊗X, g : X → X ′, Tr (f · (A⊗ g)) = Tr ((B ⊗ g) · f).

• Vanishing:

– For all f : A→ B, TrI
A,B(r−1 · f · r) = f .

– For all f : A⊗ (X ⊗ Y )→ B ⊗ (X ⊗ Y ),

TrX
A,B (TrY

A⊗X,B⊗X (a · f · a−1)) = TrX⊗Y
A,B f .

• Superposing: For all f : A⊗X → B ⊗X,

TrX
C⊗A,C⊗B (a · (C ⊗ f) · a−1) = C ⊗ TrX

A,B f .

• Yanking: For all X , TrX
X,X (sX,X) = X .

The graphical versions of these axioms are given in Figure 6.1 [33, 43]. It is worth

comparing these diagrams to those that we have given in Chapter 2 for mfix. The thick

lines in the figures for mfix represent monadic actions, i.e., side-effects, changes in the

state, etc., while the corresponding lines in Figure 6.1 represent data flow. The fixed-

point argument (i.e., X) is not directly available to the outside world in the formulation

of trace (although this limitation can be easily circumvented). In mfix, however, the result

is the fixed-point value together with monadic actions.

6.2.3 Traces and Conway operators

The following theorem of Hasegawa (also independently established by Hyland) states the

connection between traces and Conway operators (See Appendix A for a brief review of

Conway operators):



71

g f

 fg  f g

 fg

 f  f
 s

f

 f  f

=

Right Tightening

g

=

=

Left Tightening

 fg

Sliding

=

Superposing

Vanishing

 f

=

Yanking

=
f

=

Figure 6.1: Trace Axioms

Theorem 6.2.4 (Hasegawa, Hyland) A cartesian category is traced exactly when it

possesses a Conway operator.

Proof See Theorem 7.1.1 of Hasegawa’s thesis [32]. �

The correspondence can be summarized as follows. Assuming we have a trace operator

Tr, we can define a Conway operator (·)† : C(A×X, X)→ C(A,X) as follows:

f † = TrX
A,X (∆X · f) : A→ X (6.4)

Similarly, given a Conway operator (·)†, we can define the following trace operator:

TrX
A,B f = π1 · f · 〈A, (π2 · f)†〉 : A→ B (6.5)

Since Conway operators provide a generalization of fixed-point operators on domains,

traces on symmetric monoidal categories provide a firm categorical framework for studying

fixed-point operators.

Example 6.2.5 In the setting of domains and continuous functions, the unique least

fixed-point operator for a function f : A→ A is given by:

fix f =
⊔

i

f i ⊥A

which gives rise to the following Conway operator: Given f : A×X → X,

f† a = fix (λx.f (a, x)) : A→ X



72

And, by Equation 6.5, we obtain the following (unique) trace operator: Given f : A×X →

B ×X,

TrX
A,B f = π1 · f · 〈A, λa. fix (λx. π2 (f (a, x)))〉 : A→ B

In Haskell-like notation, this definition simply reads:

trace :: ((α, γ) → (β, γ)) → α → β

trace f a = let (b, x ) = f (a , x )

in b

(6.6)

which clearly shows the intent: The recursive knot is tied over x, leaving a function of

type A→ B as the residue.

6.3 Traces and value recursion

As we have seen in the preceding section, traces provide a natural framework for studying

fixed-point operators, and by virtue of Theorem 6.2.4, the usual notion of recursion can

be explained by traces over cartesian categories. Does the correspondence hold up when

we consider value recursion? It turns out that a close relationship can be established

for commutative monads whose Kleisli categories are traced, but the trace axioms are

simply too strong for the general case. Still, we will explore this limited correspondence

closely, as it will help us identify the problems that arise in the general case. We start by

examining two particular classes of monads: commutative monads and monads based on

commutative monoids.

6.3.1 Commutative monads and traces

Let T be a strong commutative monad over an SMC M = (M,⊗, I, a, l, r, s) with the

given strength t. We write η for the unit, and µ for the multiplier of T . The monoidal

structure overM carries over to the Kleisli category of T , denotedMT , as follows:

MT = (MT , ⊗′, I, η · a, η · l, η · r, η · s)

The monoidal operator ⊗ is lifted to MT as follows. On objects, ⊗′ is defined to be the

same as ⊗. On arrows, f ⊗′ g is defined to be the arrow Θ · (f ⊗ g) inM, where

Θ : T A⊗ T B → T (A⊗B)

Θ = µ · T t · t′

Recall that t′ is the dual of t, given by T s · t · s. Since T is commutative, the other

candidate for Θ, i.e., µ · T t′ · t, yields exactly the same arrow.



73

In the case of CCC’s, a trace operator on the Kleisli category of a commutative monad

gives rise to a parameterized value recursion operator on the underlying category. To see

this, let C be a CCC, and T be a commutative monad over C. If CT is traced, we have a

family of functions:

TrX
A,B : CT (A×′ X, B ×′ X)→ CT (A, B)

which implies the existence of the following family of functions in C:

TrX
A,B : C(A×X,T (B ×X))→ C(A, T B)

Hence, a candidate parameterized value recursion operator can be defined by setting:

pmfixE,A f = TrA
E,A (T 4A · f) (6.7)

where ∆ a = (a, a).

Example 6.3.1 The environment monad provides a nice example of obtaining a value

recursion operator from a trace. For a fixed object E in a CCC, the functor T A = E ⇒ A,

i.e., the exponentiation functor with the first argument fixed, gives rise to the environment

monad. For convenience, we will stick to the Haskell notation. The monad structure and

the strength are given by:

return a = λe. a

join f = λe. f e e

t (a, f ) = λe. (a , f e)

It is easy to see that T is commutative. The Kleisli category is traced, and the

corresponding family of functions in the base category is given by:

trace :: ((α, τ) → (E → (β, τ))) → α → (E → β)

trace f a = λe. let (b, x ) = f (a, x ) e

in b

(6.8)

Using Equations 6.7 and 6.2 we get:

mfix :: (α → (E → α)) → E → α

mfix f = λe. let (b, x ) = (map (λz. (z , z )) · f · π2) ((), x ) e

in b

Recalling map f g = f · g for the environment monad, we can simplify this definition to:

mfix f = λe. let x = f x e

in x



74

which is precisely the value recursion operator that we have given in Section 4.6 for the

environment monad.

Example 6.3.2 This example demonstrates that having a commutative monad is not

sufficient to guarantee the construction of a value recursion operator: The corresponding

Kleisli category should be traced as well. As an example, consider modeling exceptions in

Set by disjoint sums, using the endofunctor T A =
�

+ A, where
�

is the terminal object.

In Haskell-like notation, the monad structure and the strength are given by:

η a = inr a

µ (inl ()) = inl ()

µ (inr a) = a

t (a , inl ()) = inl ()

t (a , inr b) = inr (a, b)

It is easy see that T gives rise to a commutative monad, and hence its Kleisli category

is symmetric monoidal. If SetT is traced, then we should have a family of arrows TrX
A,B :

SetT (A⊗X,B⊗X)→ SetT (A,B), where ⊗ is the lifting of the cartesian product. Hence,

we must have a family of arrows Set(A × X,
�

+ (B × X)) → Set(A,
�

+ B). However,

since the computation might fail, we do not have a way of getting an X to tie the recursive

knot. In this case, the Kleisli category does not seem to possess a trace.

The reader might appreciate the situation in Haskell. The exception monad is the

usual Maybe monad, except the Haskell version is not commutative (due to the possibility

of non-termination). Ignoring the non-termination issue for a moment, we would need to

find a trace operator with the type:

((α, τ) → Maybe (β, τ)) → α → Maybe β

Here, τ is the recursion argument, on which we need to tie the recursive knot. However,

the required trace operator just does not exist, since we are not guaranteed to get a τ to

form the required recursive loop. (Recall that there is no such problem for value recursion

in our setting—see Section 4.2 for details.)

6.3.2 Monads arising from commutative monoids

In Section 4.5, we explored monads that arise from monoids. In this section, we will

concentrate on those monads that are obtained from commutative monoids, and see how

a trace operator in the underlying category can be used to obtain a value recursion operator

for the corresponding representation monad.

The usual definition of monoids on sets can be generalized to arbitrary monoidal

categories [55]. LetM = (M,⊗, I, a, l, r, s) be a symmetric monoidal category. A monoid



75

in M is a triple M = (M,+, e) where M ∈ M, + : M ⊗M → M , e : I → M , with the

usual associativity and unit laws. (The monoid is commutative if +·s = +, i.e., if the order

of arguments to + does not matter.) For such a monoid, the endofunctor T A = M ⊗ A

gives rise to the following strong monad, known as M ’s representation monad [2]:

η
A

= (e⊗A) · l−1
A

(6.9)

µ
A

= (+⊗A) · a
M,M,A

(6.10)

t
A,B

= a−1
M,A,B

· (s
A,M
⊗B) · a

A,M,B
(6.11)

If M is commutative, then T will be commutative as well.

After all this machinery, we can finally state our goal. Let M be a traced SMC, M

be a commutative monoid in M, whose representation monad is T . As we have seen, T

is commutative and hence its Kleisli category is symmetric monoidal. Furthermore, the

trace onM lifts intoMT , i.e.,MT is also traced. If TrX
A,B :M(A⊗X, B⊗X)→M(A,B)

is the trace operator onM, the trace operator onMT is given by:

Tr′XA,B : MT (A⊗′ X,B ⊗′ X)→MT (A, B)

Tr′XA,B f = TrX
A,M⊗B (a · f) (6.12)

Example 6.3.3 Consider the monoid: (N,+, 0), where N is the flat domain of natural

numbers, and + is addition. The corresponding functor is: T A = N × A. As outlined

above, the monad structure is given by (in Haskell):

return x = (0, x )

join (m, (n, x )) = (m+n, x )

t (x , (m , y)) = (m, (x , y))

t ′ ((m, x ), y) = (m, (x , y))

Since map f (m, x ) = (m, f x ), we have:

(join · map t ′ · t) ((m, x ), (n, y)) = (n+m, (x , y))

(join · map t · t ′) ((m, x ), (n, y)) = (m+n, (x , y))

Hence, the commutativity follows from the commutativity of +, as promised. Recall from

Example 6.2.5 that the trace on the underlying category is given by:

trace f a = let (b, x ) = f (a, x ) in b

which, by Equation 6.12, can be treated as a trace operator on the Kleisli category of T

with the type: (A×X → N× (B×X))→ (A→ N×B). More explicitly, we have (where

we use Integer to represent N):



76

tr ′ :: ((α, σ) → (Integer , (β, σ))) → (α → (Integer , β))

tr ′ f a = let (b, x ) = (assoc · f ) (a, x ) in b

By Equation 6.7, we obtain the following parameterized value recursion operator:

pmfix f = λa. let (b, x ) = (assoc · map (λx. (x , x )) · f ) (a, x )

in b

which gives rise to the following value recursion operator by Equation 6.2:

mfix :: (α → (Integer , α)) → (Integer , α)

mfix f = let (b, x ) = (assoc · map (λx. (x , x )) · f ) x in b

By expanding the definitions and simplifying, one obtains:

mfix :: (α → (Integer , α)) → (Integer , α)

mfix f = let (n, x ) = f x

in (n, x )

(6.13)

which is precisely the value recursion operator we have given for monads based on monoids

(Equation 4.19) in Section 4.5.

Remark 6.3.4 It is important to note that the commutativity of the monoid does not

play any role in establishing the requirements of value recursion, although it is essential

for constructing a trace. If the monoid is not commutative, the representation monad will

not be commutative either, failing to yield a monoidal structure on the Kleisli category. In

that case, one cannot even talk about the notion of trace, as Definition 6.2.3 only applies

to symmetric monoidal categories. We will return to this issue in Section 6.4.2.

6.3.3 The correspondence

We now turn to the correspondence between value recursion operators for commutative

monads and trace operators over Kleisli categories. Before doing so, we will need to

consider what trace axioms mean in the Kleisli category of a given monad. Let T be the

monad under consideration. In this setting, the trace axioms read:3

3In these equations, we use the Haskell notation and try to name variables according to their types,
i.e., a variable named a is of type A. Note the use of shadowing in λ-bindings, where we reuse variable
names to stick to our convention. Compared to the original trace axioms, these versions are indeed very
ugly to look at, but they are much more intuitive from a programming perspective. Also, to save space,
we use η to abbreviate return.



77

• Left tightening: For all f : A′ ×X → T (B ×X), g : A→ T A′,

Tr (λ(a , x ). g a �= λa ′. f (a ′, x )) = λa. g a �= Tr f (6.14)

• Right tightening: For all f : A×X → T (B ×X), g : B → T B ′,

Tr (λ(a , x ). f (a, x ) �= λ(b, x ). g b �= λb ′. η (b ′, x ))

= λa. Tr f a �= g
(6.15)

• Sliding: For all f : A×X ′ → T (B ×X), g : X → T X ′,

Tr (λ(a, x ). g x �= λx ′. f (a, x ′))

= Tr (λ(a , x ′). f (a, x ′) �= λ(b, x ). g x �= λx ′. η (b, x ′))
(6.16)

• Vanishing: For all f : A→ T B,

Tr (λ(a, ()). f a �= λb. η (b, ())) = f (6.17)

and, for all f : A× (X × Y )→ T (B × (X × Y )),

Tr (Tr (λ((a, x ), y). f (a , (x , y)) �= λ(b, (x , y)). η ((b, x ), y)))

= Tr f
(6.18)

• Superposing: For all f : A×X → T (B ×X),

Tr (λ((c, a), x ). f (a , x ) �= λ(b, x ). η ((c, b), x ))

= λ(c, a). Tr f a �= λb. η (c, b)
(6.19)

• Yanking:

Tr (λ(x1, x2). η (x2, x1)) = η (6.20)

After these preliminaries, we can finally state the main result of this chapter:

Proposition 6.3.5 Let D be the category of domains, and T be a commutative monad

over D. Let mfix be a value recursion operator for T , further satisfying strong sliding,

nesting, and right shrinking laws. Then, the family of functions

traceX
A,B : D(A×X, T (B ×X))→ D(A, T B)

trace f = λa. mfixB×X (λ(b, x). f (a, x)) �= η · π1 (6.21)

will satisfy Equations 6.14-6.20, i.e., it will provide a trace operator for DT .



78

Proof See Appendix B.8 for the full derivation. We try to summarize the correspon-

dence at a higher level here. Unsurprisingly, left and right tightenings depend on the left

and right shrinking properties of mfix respectively. Sliding requires the use of Proposi-

tion 3.3.2, which depends on the commutativity of the monad and strong sliding (of mfix).

The first vanishing rule depends on left shrinking and purity, the second one also uses

nesting. The superposing rule only needs pure right shrinking (which is guaranteed by

right shrinking). Finally, yanking is a direct consequence of purity. �

Remark 6.3.6 Ideally, we should also establish that a trace operator on the Kleisli

category of a commutative monad yields a value recursion operator, using a translation of

the form:

mfixA : (A→ T A)→ T A

mfix f = TrA� ,A (λ( , a). f a�= λa. η (a, a)) ()

But we will refrain from pursuing the correspondence in this direction for the following

reasons:

• Our treatment of value recursion operators takes place in the setting of continuous

functions over domains. On the other hand, trace operators are presented in the

abstract setting of monoidal categories, hence the assumptions for the underlying

structure are significantly weaker. For instance, it is not clear what our strictness

axiom (i.e., f ⊥α = ⊥T α iff mfixα f = ⊥T α) would correspond to in this setting.4

• As we explored above, the correspondence of traces and value recursion is rather

limited. Very few monads are commutative, and even fewer have their Kleisli cate-

gories traced. What we should seek, then, is a notion of trace in the non-monoidal

case. In short, trace axioms are just too strong for value recursion.

6.4 Dropping the monoidal requirement

As we have seen in the preceding section, the trace-based categorical account of fixed-

point operators falls short of explaining value recursion for all but a very restricted set

of monads. Is it possible to generalize the theory of traces so that we can accommodate

value recursion more satisfactorily? In this section, we will briefly review two recent

4Hasegawa suggests that it might be possible to study strictness via the notion of uniform trace opera-

tors. See Proposition 7.1.4 in Hasegawa’s thesis [33].



79

attempts in this direction. First, we will look at Paterson’s work, which lifts mfix to

the world of arrows [66]. Second, we will review Benton and Hyland’s work on traced

premonoidal categories [5]. It turns out that both attempts describe essentially the same

axiomatization, although presented in slightly different contexts. The general idea is to

move to premonoidal categories, effectively dropping the monoidal requirement.5

6.4.1 Arrows and loop

Hughes introduced arrows as a generalization of monads, making the input-output flow

more explicit [36]. An arrow ⇒ is a binary type constructor equipped with:

arr : (α → β) → (α ⇒ β)

≫ : (α ⇒ β) → (β ⇒ γ) → (α ⇒ γ)

first : (α ⇒ β) → (α × γ ⇒ β × γ)

Intuitively, α ⇒ β represents a computation that receives an input of type α, performs

a computation with possible side effects, and delivers a result of type β, corresponding

to what an imperative programmer might call a procedure. The morphism arr makes a

procedure out of a pure function, while ≫ runs two procedures in sequence, threading the

result of the first to the second. The function first lets information to be passed around for

later use, mainly used for storing results of intermediate computations. The morphisms

arr, ≫, and first are required to satisfy a number of laws, similar to monad laws.

Example 6.4.1 Arrows generalize monads in the following sense. For every monad m,

the type Kleisli m gives rise to an arrow, where:

type Kleisli m τ σ = τ → m σ

arr f = return · f

f ≫ g = λa. f a �= g

first f = λ(a , c). f a �= λb. η (b, c)

Paterson argues that Power and Thielecke’s Freyd categories are equivalent to Hughes’s

arrows [73]. (We will briefly review Freyd categories in Section 6.4.2.)

Is there a corresponding notion of value recursion for arrows? Paterson generalizes

mfix to arrows, introducing the following loop operator [66]:

loop : (α × γ ⇒ β × γ) → α ⇒ β (6.22)

5 We mention in passing that Jeffrey also used the so-called partial traces (ordinary traces that are
restricted to be applied only to certain maps) to model flow graphs and recursion in programming lan-
guages [39]. We will not review his work here, however, as it is not directly related to value recursion.



80

Note the similarity between this type and the type of trace operators (Definition 6.2.3).

As expected, value recursion operators give rise to loop operators for the corresponding

Kleisli arrows. Given a value recursion operator mfix, Paterson defines:

loop f = map π1 · mfix · f ′

where f ′ x y = f (x , π2 y)
(6.23)

which can be shown to be equivalent to the function we have given for obtaining a trace

operator from mfix (Equation 6.21).

Paterson generalizes the trace axioms of Section 6.2.2 for loop, and adds a law called

extension, similar to our purity property. As expected, he weakens the sliding axiom

so that the function moved over is of the form arr k for some function k, syntactically

guaranteeing purity. Unlike our sliding property for mfix, however, Paterson does not

require a further guarding equation to regulate the behavior on ⊥ (i.e., the antecedent in

Equation 2.5). Similarly, right tightening is postulated as an axiom as well. Therefore,

the failure of strong sliding or right shrinking properties for the underlying mfix will cause

the trace axioms to fail. Similar comments apply to arrows that are not derived from

monads as well. Paterson makes similar observations, although he does not weaken his

axiomatization to accommodate accordingly [66].

6.4.2 Traced premonoidal categories

Closely related to Paterson’s work is Benton and Hyland’s recent generalization of traces

to premonoidal categories [5]. As we have seen throughout this chapter, the crux of

the problem lies in the monoidal requirement that comes with traces. Motivated by

this observation, Benton and Hyland generalize traces to premonoidal categories. If the

category is indeed monoidal, their definition simply reduces to the usual definition of traces

over monoidal categories.

Let us review the problem with the monoidal requirement more formally. What hap-

pens when the monad is not commutative? Let C be symmetric monoidal, with ⊗ as

the monoidal operation. Let T be a strong monad over C, with strength t. We do not

assume that T is commutative. Consider the Kleisli category of T , CT . For clarity, we

will use the symbol ⇀ to denote arrows in CT . The symmetry in C lifts into CT with

no problems, i.e., CT is symmetric as well. For any fixed object A, we have the functor

A ⊗ – in CT , mapping a given object B to A ⊗ B and an arrow f : B ⇀ B ′ to the

arrow t · (A ⊗ f) : A ⊗ B → T (A ⊗ B ′) in C, which corresponds to the required arrow

A⊗B ⇀ A⊗B′ in CT . It is easy to see that –⊗A also yields a functor in CT . However,

⊗ is not a bifunctor, unless T is commutative. To see this, let f : A ⇀ A ′ and g : B ⇀ B ′



81

be two arrows in CT . There are two ways of obtaining the arrow f ⊗ g : A⊗B ⇀ A′⊗B′,

as captured by the following Haskell expressions:

λ(a, b). f a �= λa ′. g b �= λb′. return (a ′, b ′)

λ(a, b). g b �= λb ′. f a �= λa ′. return (a ′, b ′)

The first composition is denoted by n, i.e., f n g = A′ ⊗ g · f ⊗ B. Similarly, we define

f o g = f ⊗ B′ · A ⊗ g. Unless the monad is commutative, these two compositions

are generally different, as they reflect the order in which f and g are performed. This

discrepancy is the main reason why the monoidal structure in the base category does not

lift to a monoidal structure in the Kleisli category.

Of course, even when we only have a non-monoidal operation, there might exist a

subset of arrows for which the order does not matter—think of f (or g) having the form

return ·h in the expressions above. Such arrows are called central. More formally, an arrow

f is central if, for all g, f n g = f o g, and g n f = g o f .

Generalizing from this example, Power and Robinson introduced premonoidal cate-

gories [72]. In short, a premonoidal category is just like a monoidal category, except the

binary operation is only required to be functorial in each of the variables separately. (Note

that every monoidal category is trivially premonoidal.) As we have sketched above, Kleisli

categories of strong monads are examples of premonoidal categories.

Given a symmetric premonoidal category, can we come up with a notion of trace?

Recall that traces are only meaningful in symmetric monoidal categories. Naively, one

might hope that the definition of trace (Definition 6.2.3) might very well apply in this

case as well. Unfortunately this is not the case:

Proposition 6.4.2 (Benton, Hyland [5]) A symmetric premonoidal category with a trace

(Definition 6.2.3) is actually monoidal. �

As expected, the sliding axiom causes the trouble. Benton and Hyland show that

sliding implies f n g = f o g for all arrows f and g, establishing that the category

is indeed monoidal. To remedy the situation, Benton and Hyland generalize traces to

centered symmetric premonoidal categories. A centered symmetric premonoidal category

is a premonoidal category K, with a distinguished monoidal center M, and an identity-

on-objects strict symmetric premonoidal functor J : M → K [72]. For our purposes, it

suffices to considerM as a subcategory of K, where all arrows inM are central.

Kleisli categories of strong monads over symmetric monoidal categories are classical

examples of premonoidal categories. LetM be symmetric monoidal, and let T be a strong

monad over M. As we have seen above, MT is symmetric premonoidal. Recall that a

Kleisli category has the same objects as the base category. Let the functor J :M→MT



82

be defined as follows. On objects, J is the identity. Given an arrow f : A → B, let

J f = ηb · f : A ⇀ B, where η is the unit of T . Then J : M → MT is a centered

symmetric premonoidal category, with the distinguished monoidal centerM. (Of course,

J is nothing but the usual inclusion functor.) In this case, a central arrow inMT is simply

any arrow that is lifted from the monoidal center, i.e., any arrow that factors through η

in the base category.

The intuitive understanding of a centered symmetric premonoidal category J :M→K

is as follows: K is considered to be the category where arrows denote computations,

possibly with observable effects. As expected, K does not possess a monoidal structure.

M, on the other hand, is a subcategory of K denoting values, i.e., where we can swap

the order of computations, duplicate values only to discard later, etc. A crude analogy in

programming terms is given by any “almost” functional language: For instance, think of

K as corresponding to the Standard-ML language, containing references etc., and M as

the purely functional subset of Standard-ML.

Getting back to traces, Benton and Hyland define [5]:

Definition 6.4.3 (Traced centered symmetric premonoidal categories.) A trace on a

centered symmetric premonoidal category J :M→K is a family of functions:

TrX
A,B : K(A⊗ U,B ⊗ U)→ K(A,B)

satisfying the same conditions as given in Definition 6.2.3, except (i) the sliding condition is

weakened such that g is assumed central, and (ii) given a central arrow f : A⊗X → B⊗X ,

TrX
A,B f : A→ B is required to be central.

It is easy to see that this definition generalizes the notion of trace, since all arrows are

central in a symmetric monoidal category.

In order to generalize Theorem 6.2.4, Benton and Hyland also develop the notion

of Conway operators on Freyd categories. Briefly, a Freyd category is a symmetric pre-

monoidal category J : C → K, where C is cartesian [73]. A parameterized fixed point

operator on a Freyd category J : C → K is defined to be a family of functions

(·)∗A,X : K(A⊗X, X)→ K(A,X) (6.24)

Benton and Hyland require (·)∗ to satisfy the so-called center preservation, naturality, and

central fixed-point properties, corresponding to our left shrinking and purity laws.

To be able to establish a correspondence between traces over Freyd categories and

parameterized fixed point operators, Benton and Hyland define Conway operators, which

further satisfy laws that correspond to our right shrinking and nesting properties. Hence,



83

similar to Paterson’s axiomatization of loop, the correspondence with premonoidal traces

only holds for the set of value recursion operators that further satisfy strong sliding and

right shrinking properties. As we have seen in Section 3.1, these two properties are unsat-

isfiable for value recursion operators in general (Corollary 3.1.7).

6.5 Summary

In this chapter, we summarized the notion of traces from category theory, and investigated

how value recursion might fit into the picture. As we have seen, for a very small class of

monads, value recursion operators correspond to trace operators over Kleisli categories.

The environment monad is the most important example exhibiting this correspondence

(other than the obvious identity monad). In the general case, however, the correspondence

fails because of the monoidal requirement in the formalization of trace operators.

It turns out that Paterson’s loop axioms and Benton and Hyland’s generalization of

traces to premonoidal categories are essentially the same, although developed indepen-

dently and presented in slightly different contexts [5, 66]. Both these axiomatizations take

the correspondence one step further, but not to the point where a satisfactory theory for

value recursion can emerge. To summarize, both require right shrinking and strong slid-

ing properties, which are known to be unsatisfiable for many monads (see Chapter 3). In

terms of concrete monads, their work can handle the lazy state and the output monads,

but not exceptions, lists, strict state, and the IO monad of Haskell. In this respect, we

consider both attempts to be significant steps in understanding and generalizing value

recursion, but not the final categorical account of the whole problem.



Chapter 7

A recursive do-notation

Haskell’s do-notation simplifies monadic programming significantly, but it lacks support for

recursive bindings, a key syntactic feature for value recursion. In this chapter, we describe

an enhanced translation schema for the do-notation and its integration into Haskell.1

The new translation will allow variables to be bound recursively, provided the underlying

monad comes equipped with a value recursion operator.

Synopsis. We start with a motivating example, showing the need for recursive bindings

in the do-notation. The issues related to let-generators and the need for segmentation are

discussed next, followed by a detailed description of the translation algorithm. We also

provide several comments on the integration of the new do-notation into Haskell.

7.1 Introduction

Recursive declarations are ubiquitous in the functional paradigm. While fixed-point op-

erators provide a solid framework for reasoning about and understanding recursion, they

are hardly suitable for practical programming tasks. For instance, compare:

let sum n = if n == 0 then 0 else n + sum (n − 1) in sum 10

to its non-recursive equivalent:

let sum = fix (λf.λn. if n == 0 then 0 else n + f (n − 1)) in sum 10

Clearly, the use of fix makes the definition much harder to read, especially for beginning

programmers. The situation gets worse with mutually recursive bindings.

As we have briefly mentioned in Section 1.3, a similar problem arises in the framework

of value recursion. Rather than using explicit calls to mfix, we would like to have a

complementary binding construct, providing syntactic support for value recursion. In the

1The material in this chapter is based on a paper that appears in the Haskell Workshop’02 [19].

84



85

context of Haskell, an extension to the do-notation allowing recursive bindings seems to

fit the bill. To illustrate, we will revisit the circuit modeling example from Section 1.2.

This time, we will model a simple counter, one that increments its output by 1 at each

clock tick. The count goes back to 0 whenever the reset line goes high:

zero

inc

out

next

MUX

reset

DELAY 0

0

+1

By extending the Circuit class (see Section 1.2) with multiplexers and monadic lift

functions, we can model this circuit monadically as follows:

counter :: Circuit m ⇒ Sig Bool → m (Sig Int)

counter reset = mfix (λ˜ (next , inc, out , zero).

do next ← delay “zero” 0 inc

inc ← lift1 “add1” (+1) out

out ← mux reset zero next

zero ← lift0 “zero” 0

return (next , inc, out , zero))

�= λ(next , inc, out , zero). return out

As we have argued in Section 1.2, the monadic implementation has numerous advan-

tages. Syntactically, however, it carries a lot of baggage, making it hard to understand and

maintain. (Note that binders can be arbitrary patterns in general, as in “Just x ← f x”,

making the situation even worse.) As pointed out by Launchbury et al. [49], and as we

have outlined in Section 1.3, what we need is a recursive counterpart of the do-notation,

allowing us to write simply [49]:

counter reset = do next ← delay “zero” 0 inc

inc ← lift1 “add1” (+1) out

out ← mux reset zero next

zero ← lift0 “zero” 0

return out

eliminating the explicit call to mfix. Note that this description of the circuit follows the

diagram given above almost literally. The translation we will introduce in this chapter

will handle such recursive definitions automatically, without bothering programmers with

the details of the necessary plumbing.



86

7.2 The basic translation and design guidelines

For clarity, we refer to the recursive version of the do-notation as the mdo-notation, and

write mdo-expressions using the keyword mdo.2 Whenever we refer to the do-notation,

we mean the currently available notation in Haskell that does not allow variables to be

bound recursively.

Inspired by the counter circuit example of the previous section, one might naively

translate mdo-expressions as follows:

mdo p1 ← e1

...

pn ← en

e

=⇒

mfix (λ˜BV. do p1 ← e1

..

pn ← en

return BV )

�= λBV. e

where BV stands for the tuple consisting of all variables occurring in patterns p1 . . . pn.

The lazy match, obtained by ˜, is essential in avoiding strictness problems.

However, there are a number of problems raised by the schema above. First of all,

do-expressions in Haskell can use let-generators to introduce polymorphic bindings for

pure expressions [68]. It is not clear how such bindings can be integrated into this trans-

lation. Similarly, ordinary do-expressions can bind identifiers repeatedly, later bindings

shadowing earlier ones. When bindings can be recursive, shadowing becomes problem-

atic. Furthermore, the use of a single mfix to handle recursion over the entire body of an

mdo-expression may induce poor termination properties whenever the right-shrinking laws

fails (see Section 7.2.2)—intuitively, recursion should only be performed over generators

that depend on each other cyclically, leaving the rest untouched. Finally, we would like

to address these issues within the boundaries of the “syntactic-sugar” approach. That is,

the translation should produce only valid (well-formed and well-typed) Haskell code. This

approach keeps the extension simple, providing a smooth transition.

To summarize, the basic design guidelines for the mdo-notation are:

• Syntactic agreement with the do-notation: Programmers familiar with the do-notation

should have no trouble using the recursive version.

• Semantic agreement with the do-notation: To the extent possible, valid do-expressions

should also be valid mdo-expressions, with their meanings preserved.

• Segmentation: Calls to mfix should be isolated to recursive segments only, leaving the

non-recursive parts out of the fixed-point computation. As we will see, segmentation

2The closest we can get to µdo using ASCII.



87

is essential because extending the scope of recursion can give poorer results for those

monads that fail to satisfy the right shrinking property.

• Pure syntactic sugar: The translation should only produce well-formed and well-

typed Haskell code.

In the remainder of this section, we address these issues, refining the basic translation

scheme as we go along.

7.2.1 Let generators

The do-notation of Haskell allows let-generators, with the following translation [68]:

do let p1 = e1

...

pn = en

stmts

=⇒

let p1 = e1

...

pn = en

in do stmts

The variables bound in p1 . . . pn can be polymorphically typed. In mdo-expressions, these

variables should be visible throughout the entire body as well, suggesting the translation:

mdo stmts1

let p1 = e1

...

pn = en

stmts2

e

=⇒

mfix (λ˜BV. do stmts1

let p1 = e1

...

pn = en

stmts2

return BV )

�= λBV. e

where the variables bound in p1 . . . pn will appear in BV as well. Unfortunately, the

resulting code is not guaranteed to be well-typed. To illustrate, consider:

mdo z ← f 2 y

y ← f ’a’ z

let f x = return x

return (f y z , f z y)

=⇒

mfix (λ˜ (z , y , f ).

do z ← f 2 y

y ← f ’a’ z

let f x = return x

return (z , y , f ))

�= λ(z , y , f ). return (f y z , f z y)

Since f is λ-bound, it becomes monomorphically typed, making its use at two different

types illegal. In fact, the situation is even worse: Referring to the schematic translation

above, let-bound variables in patterns p1 . . . pn will have monomorphic types over stmts1



88

and e, while they will retain their polymorphic typings over stmts2 and e1 . . . en. This

situation is quite bizarre. Unfortunately, there is no easy solution to this problem. Since

the tuple BV is λ-bound, the variables that appear in it will be monomorphically typed

when we attempt to type check the body of the do-expression and the final expression e.

How should we deal with this problem? Clearly, it is unacceptable to ban let-generators

completely because they are quite useful in practice. (Requiring let-bound variables to

be visible only in the textually following generators would also be wrong.) An alternative

is to go slightly beyond Haskell 98, using records with polymorphically typed fields [40].

Rather than using tuples, we can package the arguments into a record with polymorphic

fields, retaining the polymorphic typings of let-bound variables. However, the resulting

translation is overly complicated (as we need to perform type inference during the trans-

lation), making it hard to formalize and automate [17]. One might also argue that we

can go beyond the “syntactic-sugar” approach, i.e., let the translation produce ill-typed

code, provided we can come up with special typing rules for mdo-expressions. We will not

pursue this option here, however, in order to be able to keep the translation as simple as

possible. (We will return to this point in Section 7.3.3.)

The solution we adopt is to require let bindings to be monomorphic in mdo-expressions.

That is, let becomes just a syntactic sugar within mdo, translated as:

let p1 = e1

...

pn = en

=⇒

BV ← return (let p1 = e1

...

pn = en

in BV )

where BV is the tuple corresponding to the variables bound in p1 . . . pn. This idea easily

extends to more complicated forms of function definitions as well. For instance:

mdo let f [ ] = 0

f (x :xs) = 1 + f xs

return (f [1,2,3], f [ ])

=⇒

mdo f ← return (let f [ ] = 0

f (x :xs) = 1 + f xs

in f )

return (f [1,2,3], f [ ])

Note that we do not commit to a specific monomorphic type for f . As long as f is used

consistently at a single monomorphic type, the translation will be well-typed.

We expect this restriction to be negligible in practice. Such polymorphic let-generators

are hardly ever used in practice, and experience suggests that there is almost always an

obvious way to rewrite the required polymorphic bindings using an explicit let-expression,

avoiding the whole problem. Therefore, we believe that the simplicity of this design far

outweighs any generality that might be obtained by more complicated translation schemas.



89

Remark 7.2.1 It might help programmers if monomorphic bindings were visually dis-

tinguishable from polymorphic ones. In a recent paper, Hughes argues that the syntax

of let-expressions should be extended to allow monomorphic bindings, suggesting the use

of the symbol := to differentiate them from polymorphic ones [34]. If this idea ever gets

adopted in Haskell, let-generators in mdo-expressions can be restricted to use := as well,

emphasizing the fact that they will be monomorphically typed.

7.2.2 Segmentation

Consider the following mdo-expression, which creates two infinite lists consisting of 1’s

and 2’s respectively, and its translation:

mdo putStr “all 1s”
ones ← return (1 : ones)
putStr “all 2s”
twos ← return (2 : twos)
putStr “done”

=⇒

mfix (λ˜ (ones , twos).
do putStr “all 1s”

ones ← return (1 : ones)
putStr “all 2s”
twos ← return (2 : twos)
return (ones, twos))

�= λ(ones, twos). putStr “done”

The resulting code is quite unsatisfactory. The only recursion we need is in independently
computing the lists ones and twos, suggesting a segmented translation of the form:

do putStr “all 1s”
ones ← mdo ones ← return (1 : ones)

return ones
putStr “all 2s”
twos ← mdo twos ← return (2 : twos)

return twos
putStr “done”

where the inner mdo-expressions will further be translated accordingly. This process is

analogous to the handling of ordinary let-expressions in Haskell, where mutually dependent

bindings are grouped together to enhance types of bound variables [68]. In our case, all

variables are λ-bound, i.e., monomorphic, so typing is not an issue. However, we still

need segmentation to avoid the unwanted interference from trailing computations. As an

example, let

checkSingle :: [Int ] → IO ()

checkSingle [x ] = putStr “singleton”

checkSingle = putStr “not−singleton”



90

and consider the following translation:3

mdo xs ← return (1 : xs)

checkSingle xs

return ()

=⇒

fixIO (λxs. do xs ← return (1 : xs)

checkSingle xs

return xs)

�= λxs. return ()

Intuitively, we expect this mdo-expression to print “not-singleton”, as the value of xs

should simply be the infinite list of 1’s. Alas, the translation will diverge! The reason

is simply that the pattern matching in checkSingle is too strict for the computation to

proceed, failing the match immediately. However, with segmentation, we will get the code:

do xs ← fixIO (λxs. return (1 : xs))

checkSingle xs

return ()

which will happily print “not-singleton”, avoiding the unintended interference. Interest-

ingly, if the final “return ()” is omitted, the original translation will work as well, since the

call to checkSingle will be the final expression, automatically pushed outside of the mfix

loop. Just adding “return ()” should not change the result, pointing out the need for seg-

mentation. Note that this problem will arise whenever right shrinking fails (Section 2.7.2),

which is the case for many practical monads of interest. (See Corollary 3.1.7.)

7.2.3 Shadowing

The current syntax of do-expressions allows variable names to be bound repeatedly, later

bindings shadowing earlier ones. One can accommodate such bindings in the mdo-notation

as well, by appropriately renaming them. As a design choice, however, we reject this pos-

sibility. Although shadowing might be convenient at times, it is also a constant source of

bugs. Since bound variables are visible throughout the entire body in an mdo-expression,

allowing repetitions is much more likely to cause confusion.4 Therefore, we disallow shad-

owing in mdo-expressions. (This design choice also implies that the scoping rules for

mdo-expressions are the same as those for let and where expressions, providing a consis-

tent view of scoping in Haskell’s binding constructs, both pure and monadic.)

3As we will see in Chapter 8, the library function fixIO :: (α → IO α) → IO α is the value recursion
operator for Haskell’s IO monad [20].

4In a similar vein, it can be argued that repetitions should not have been allowed in the do-notation
either. List comprehensions become especially horrible: f x = [x | x ← [x .. x+5], x ← [x .. x+10]] is
a confusing (yet legal) Haskell function.



91

7.3 Translation of mdo-expressions

We now present an algorithm to translate mdo-expressions to core Haskell.

7.3.1 Preliminaries

In the following discussion, we assume that let-generators are already de-sugared into their

return equivalents, as described in Section 7.2.1. We use the meta-variable p to range over

patterns, v over variables, and e over expressions.

Definition 7.3.1 (Defined variables.) A generator p ← e defines the variables that

appear in the pattern p. If the generator is of the form e, i.e., without any binding

patterns, then it defines no variables. An mdo-expression m defines a variable v, if v is

defined in a generator of m.

Definition 7.3.2 (Used variables.) A defined variable v is used in a generator p ← e if

v occurs free in e. (And similarly when there is no binding pattern p.)

Definition 7.3.3 (Recursive variables.) Let m be an mdo-expression, and v be a used

variable of m. Let g be the generator that defines v. The variable v is recursive if it is

either used by g itself, or by a generator of m that appears textually before g.

Remark 7.3.4 Every defined variable comes from a distinct generator, due to the no-

repetition requirement. Furthermore, only defined variables can be used, and only used

variables can be recursive. That is, for an arbitrary mdo-expression, we have:

Recursive Variables ⊆ Used Variables ⊆ Defined Variables

Definition 7.3.5 (Dependent generators.) A generator g is dependent on a textually

following generator g ′, if

• g′ defines a variable that is used by g,

• or, g′ textually appears in between g and g ′′, where g is dependent on g′′.

Remark 7.3.6 The second condition in the above definition can be considered as interval

closure. Note that, unlike a usual let-expression, we cannot reorder the generators: Order

does matter in performing side effects. Hence, if a generator is dependent on another, we

are forced to package them together with all the generators in between.



92

Definition 7.3.7 (Segments.) A segment of an mdo-expression is a minimal sequence

of generators such that no generator of the sequence depends on an outside generator. As

a special case, although it is not a generator, the final expression in an mdo-expression is

considered to form a segment by itself.

Remark 7.3.8 To compute the segments, it suffices to start with the first generator of an

mdo-expression, and search for the last generator that it depends on. If such a generator

exists, we add all the generators up to and including it to the segment. This process is

repeated for each and every one of the generators in the segment, until we cannot add any

new generators. Once a segment is found, the very next generator starts a new segment.

Note that the number of segments is bounded above by the number of generators in the

mdo-expression, plus one for the segment corresponding to the final expression.

Definition 7.3.9 (Free variables of a segment.) Let m be an mdo-expression, v be a

defined variable, and s be a segment of m. We say that v is free in s if (i) v appears

free in the right hand side of a generator of s, and (ii) v is defined in a segment textually

preceding s.

Definition 7.3.10 (Exported variables of a segment.) A variable that is defined in a

segment is exported if it is free in any of the textually following segments.

7.3.2 The translation algorithm

We describe the algorithm step by step using the following schematic running example:

mdo {a b} ← {c d}

{e} ← {f }

{g} ← {h}

{f } ← {a}

{i j} ← {i e}

{j g k}

s0

s1

s2

s3

s4

s5

where {v1 . . . vn} stands for a pattern that binds the variables v1 . . . vn on the left hand side

of a generator, and for an expression whose free variables are v1 . . . vn on the right hand

side. Note that the actual patterns or expressions are not important for our purposes. For

instance, the generator s3 uses the variable a, and defines f . Generator s2 defines g, but

does not use h, since h is not defined in this expression. For our purposes, it is nothing

but a constant. Similar remarks apply to the variables c, d, and k as well.



93

Segmentation step: Starting with the first generator, form the segments as described

in Remark 7.3.8.

To perform this step, we will need the defined (Di) and used variables (Ui) of each

generator si. Luckily, for our running example, these sets are obvious:

D0 = {a, b} D1 = {e} D2 = {g} D3 = {f} D4 = {i, j} D5 = ∅

U0 = ∅ U1 = {f} U2 = ∅ U3 = {a} U4 = {i, e} U5 = {j, g}

To compute the segments, we start with s0. Since s0 does not use any variables, it

cannot depend on other generators, i.e., it forms a segment by itself. The next generator

to consider is s1, which uses the variable f . Since f is defined by s3, we have to package

everything in between, i.e., s1, s2, and s3 together. Since none of them depends on s4 or

s5, we stop the iteration, forming our second segment. It is easy to see that s4 and s5

form the next two segments by themselves. Hence, we obtain:

S0 = {s0}, S1 = {s1, s2, s3}, S2 = {s4}, S3 = {s5}

Analysis step: For each segment Si do the following: For each variable v defined in the

segment, determine whether it is recursive (Definition 7.3.3). Collect all recursive variables

of the segment Si in the set Ri. If Ri is empty, this segment does not need fixed-point

computation, leave it untouched. If Ri is not empty, compute the exported variables of

the segment, Ei, and mark this segment as recursive for future processing. Returning to

our example, we have:

R0 = ∅ R1 = {f}, E1 = {e, g} R2 = {i}, E2 = {j} R3 = ∅

Since only R1 and R2 are non-empty, we mark S1 and S2 as recursive; other segments

are left untouched. (Note that the last segment can never be recursive.)

Translation step: At this point, we are left with a number of segments, some of which

are marked recursive by the previous step. For each marked segment, create the tuples

ET and RT corresponding to the sets E and R. (If E is empty, ET will be the empty

tuple.) Create and add a brand new variable v to the tuple RT. Then, form the generator:

ET ← mfix (λ˜RT. do .....
.....
v ← return ET
return RT )

�= λRT. return v

where the dotted lines are filled with the generators of the segment.



94

Note that segments that are marked recursive by the previous step are turned into

a single generator, while non-recursive segments are left untouched.5 Returning to our

example, we create the following generator for S1:

(e, g) ← mfix (λ˜ (f , v). do {e} ← {f }

{g} ← {h}

{f } ← {a}

v ← return (e, g)

return (f , v))

�= λ(f , v). return v

and the following for S2:

j ← mfix (λ˜ (i , v). do {i j} ← {i e}

v ← return j

return (i , v))

�= λ(i , v). return v

Finalization step: Now, concatenate all segments and form a single do-expression out

of them. For our example, we obtain:

do {a b} ← {c d}

(e, g) ← mfix (λ˜ (f , v). do {e} ← {f }

{g} ← {h}

{f } ← {a}

v ← return (e, g)

return (f , v))

�= λ(f , v). return v

j ← mfix (λ˜ (i , v). do {i j} ← {i e}

v ← return j

return (i , v))

�= λ(i , v). return v

{j g k}

Remark 7.3.11 If there are no recursive bindings present to start with, the algorithm

we have described will just leave the input untouched (except for replacing the keyword

mdo by do). That is, the left shrinking property is automatically applied by the algorithm

to get rid of unnecessary calls to mfix. (See Section 2.3.)

5Depending on the sets E and R, several other improvements are possible in forming the required
generator. For instance, if E is a subset of R, then we do not need a new variable. We skip a detailed
discussion of these improvements here, as they are not essential for the translation.



95

Desugaring step: Now we are left with a non-recursive do-expression, and we can apply

the standard translation to replace the do with explicit �=’s, completing the transla-

tion [68].

7.3.3 Type checking mdo-expressions

To accommodate for the overloading of the name mfix, we simply add the following type

class to Haskell:

class Monad m ⇒ MonadFix m where

mfix :: (α → m α) → m α

Intuitively, an mdo-expression is well-typed if its translation produces a well-typed

Haskell expression. In order to perform type-inference, a type judgement of the form:

Γ′ ` ei : m τi Γ′ ` pi : τi Γ′ ` e : m τ

Γ `mdo {pi ← ei} e : m τ

suffices, with the side condition that m must belong to the MonadFix class. In this rule, Γ ′

is obtained by extending Γ with the variables defined in the given mdo-expression. Each

such variable is assigned a monomorphic type variable to begin with. (For simplicity, we

assume all generators have the form p← e.) The only special care is needed in handling

let-generators, which can be typed similarly to normal let-expressions. To ensure that

let-bound variables are monomorphic, it suffices to leave out the generalization step in the

type inference algorithm for let-bound variables [17, 41].

As we have promised in Section 7.2.1, let us reconsider the typing of let-generators,

aiming to find a solution that would allow polymorphic bindings. In fact, it is arguable

that we should have a more liberal scheme, where normal bindings can be polymorphic as

well. For instance, there is no reason why the following expression should be ill-typed:

poly :: Maybe ([Bool ], [Int ]) -- ill−typed

poly = do nil ← return [ ]

return (True : nil , 1 : nil)

However, poly is not a well-typed Haskell expression, since the binding to nil is re-

quired to be monomorphic. Of course, we cannot allow polymorphic typings arbitrarily,

as illustrated by the infamous ML-typing problem [93], coded here in Haskell:

do rf ← newSTRef (λx. x )

writeSTRef rf (λx. x + 1)

f ← readSTRef rf

return (f True)



96

Following the previous example, we might think that rf might be assigned the type

∀α. STRef s (α → α), which leads to disaster. So, it seems that the maybe monad is

mild enough that generalization is acceptable, but the state monad is not. It is beyond

the scope of our current work to investigate exactly when one might allow generalization,

but we conjecture that it is safe to do so in the following two cases:

• For any variable, provided the underlying monad is completely definable in Haskell,

and not built on top of one of the internal state or IO monads,

• Or, variables bound by the let-generators, regardless of the underlying monad.

Since checking for the first condition seems to be rather expensive, we might settle

for allowing generalization in let-bound variables only, which coincides with the treatment

of let-generators in the current do-notation. (Such a solution would be similar to ML’s

value restriction, where only “syntactically distinguishable” values are typed polymorphi-

cally [93].) Of course, a more detailed study is needed before such an approach can be

adopted. We leave the exploration of this idea for future work.

7.4 Current status and related work

The mdo-notation is implemented both by the Hugs interpreter [37] and the GHC com-

piler [26]. Details on these implementations can be found on the web [74].

Predating our work, the need for recursive bindings in the do-notation was also dis-

cussed in the framework of Nordlander’s O’Haskell language, a concurrent, object-oriented

extension to Haskell [65]. O’Haskell extends the do-notation with a variety of new features.

With regard to recursion, O’Haskell provides a special keyword fix, providing a way to

specify a block of generators with mutual dependencies. The translation for fix-blocks is a

simpler version of ours: No segmentation is performed and let-generators are not allowed.

The translation seems to permit shadowing, but that appears to be an oversight, rather

than a conscious design decision. The addition of the fix keyword to the do-notation in

O’Haskell arose from practical programming needs; the syntax and the translation was

not designed to meet a general need.

Paterson’s arrow-notation supports recursive bindings as well, provided the underlying

arrow comes equipped with a loop operator [66]. (See Section 6.4.1 for a discussion of

arrows and loop operators.) Similar to O’Haskell, mutually dependent generators are

explicitly marked, using the keyword rec. No segmentation is performed on recursive

blocks. Currently, let-generators are not supported in the arrow-notation, but the addition

of such bindings seems straightforward. We note that all variables become λ-bound after



97

the translation in the arrow-notation, forcing monomorphic types. Hence, regardless of the

support for recursive bindings, let-generators will suffer from the monomorphism problem

in the arrow-notation.

7.5 Summary

In this chapter, we have described an alternative translation schema for the do-notation of

Haskell, providing syntactic support for recursive bindings. The ability to bind variables

recursively in the do-notation is an essential feature for value recursion as it elegantly

hides the use of explicit value recursion operators.

Recalling the design goals we have set for the mdo-notation, we can conclude that

our translation fulfills its purpose. To review briefly, we have aimed for syntactic and

semantic agreement with the do-notation, segmentation for grouping minimally dependent

sequences of statements together, and preservation of the syntactic-sugar status. Our

translation achieves all these goals, except for syntactic agreement for a relatively small set

of do-expressions. Since let-generators become monomorphic and shadowing is no longer

allowed, any do-expression using these features will be rejected. However, we believe that

neither of these restrictions will cause serious problems in practice. Also, if desired, the

typing problem might be remedied by devising a solution along the lines we have described

in Section 7.3.3.

It is our belief that Haskell should have just one version of the do-notation. Just like

let-expressions, do-expressions should be capable of expressing both recursive and non-

recursive bindings. (The type system will insist on the MonadFix instance only when

recursive bindings are used.) However, such a change will potentially break existing pro-

grams, due to the minor incompatibilities mentioned above. Therefore, a separate notation

(using the keyword mdo) has been adopted for the time being, possibly switching to the

new translation in a future version of the Haskell standard.



Chapter 8

The IO monad and fixIO

The IO monad of Haskell comes equipped with a value recursion operator, namely the

function fixIO.1 Both the IO monad and fixIO are language primitives in Haskell, i.e.,

they cannot be defined within the language itself. Therefore, any attempt to formally

reason about fixIO is futile without a viable semantics for computations in the IO monad.

Recently, Peyton Jones introduced an operational semantics based on observable transi-

tions as a method for reasoning about I/O in Haskell [67]. In this chapter, we build on

his framework, and show how one can model fixIO as well.2

Synopsis. We start with a brief discussion of the operation of fixIO, showing how it

fits within the rest of the IO monad. We then describe a core language based on Haskell,

with basic monadic I/O facilities. We continue by giving a layered semantics for this

language. Finally, we show that our model of fixIO satisfies the requirements for being a

value recursion operator with respect to our semantics.

8.1 Introduction

Ever since Peyton Jones and Wadler showed how monads can be used to model I/O in

a language with non-strict semantics, monadic I/O became the standard way of dealing

with input and output in Haskell [69]. The IO monad in Haskell comes equipped with a

value recursion operator, namely the function fixIO. As Achten and Peyton Jones point

out, and as with all value recursion operators, fixIO “... allows us to manipulate results

[of IO computations] that are not yet computed, but lazily available” [1, Section 4.1].

Unlike many other monads, the IO monad of Haskell is built into the language, as it

cannot be defined within Haskell itself. As a consequence, fixIO is a language primitive

1The function fixIO is not part of the standard Haskell library [68]. Implementations, including Hugs
and GHC, provide it generally in the IOExts library.

2This chapter is based on a paper that will appear in the Journal of Theoretical Informatics and

Applications [21]. A preliminary version of the material presented in this chapter appeared in the Fixed

Points in Computer Science Workshop’2001 [20].

98



99

as well. Given we do not have direct access to the internals of the IO monad, how can

we understand the operation of fixIO? Or, in general, how can we understand IO-based

computations? Recently, Peyton Jones introduced a semantics for Haskell IO [67], similar

to the monadic transition systems of Gordon [27]. In such a system, IO computations

are viewed as sequences of labeled transitions. Each label indicates an effect observable

in the real world, similar to those found in process calculi [61]. Peyton Jones’s work

used an embedding of a denotational semantics for the functional layer into the IO layer.

However, it bypassed the details of this embedding. Such an approach is fine, as long as

one is interested in the big picture. If, on the other hand, one wants to reason about fixIO,

it becomes necessary to be explicit about the relationship between the IO and functional

layers. One aim of this chapter is to bridge this gap.

Our semantics is structured in two layers: IO and functional. The semantics for the

IO layer is based on the approach taken by Peyton Jones [67]. The semantics for the

functional layer is based on the natural semantics for lazy evaluation of Launchbury [48].

A final set of rules precisely shows how these two layers interact with each other. It is

this interaction that allows us to give a semantics for fixIO. (The material in this chapter

builds directly on Peyton Jones’s and Launchbury’s work mentioned above. We assume

that the reader is already familiar with these papers.)

8.2 Motivating examples

Although fixIO is just like any other value recursion operator we have seen so far, the fact

that we cannot give a Haskell definition for it makes it rather mysterious. Also, the IO

monad provides mutable variables, a feature that we will have to deal with explicitly. We

start by considering several examples to get familiar with the operation of fixIO.

Example 8.2.1 Our first example shows the interaction of fixIO with input operations:

fixIO (λcs. do c ← getChar

return (c : cs))

When we run this computation, a character will be read from the standard input, say

a. Then, the computation will immediately deliver an infinite list of a’s.3 We will be

able to pull out as many characters as we wish out of this list, following the demand-

driven evaluation policy of Haskell. There are two crucial points: (i) the action getChar

3 Note that, by applying the left shrinking and purity properties, we can reduce this expression to
getChar �= λc. return (fix (λcs. c:cs)), guaranteeing the described behavior axiomatically. Of course,
we have not yet established that these two properties hold for fixIO, but we will do so in Section 8.6.



100

is executed only once, and (ii) the computation terminates immediately after the reading

is done, i.e., the infinite list is not constructed prior to its demand. In other words, the

fact that the IO monad is strict in actions but not in values is preserved by fixIO.

Here, we also get a feel for what fixIO provides: It provides a means for recursively

defining values resulting from IO computations. That is, it allows naming results of

computations that will only be available later on. For instance, in the expression above,

we were able to name the result of the computation as cs, before we had its value computed.

In this sense, the semantics is similar to the semantics of the pure expression:

let cs = ’a’ : cs in cs

which is a convenient way of writing fix (λcs. ’a’ : cs), where fix is the usual fixed-point

operator. Except, of course, in the fixIO case the character in the list is determined by the

call to getChar, i.e., it depends on the actual input available when we run the computation.

Example 8.2.2 Let us revisit the fudgets example given by Expression 4.35. In terms

of fixIO, the corresponding computation is given by:

fixIO (λc. do putChar c

return ’a’)

When run, this computation diverges as c is not yet available when requested by putChar.

(Note that this behavior is in accordance with mfix as discussed in Section 4.8.)

Example 8.2.3 Here is a Haskell expression showing the interaction of fixIO with mu-

table variables:

fixIO (λ˜ (x , ). do y ← newIORef x

return (1:x , y))

�= λ( , l). readIORef l

In this expression, we allocate a cell in which we store the value of the variable x, before

we know what that value really is. The value of x, determined through the fixed point

computation, is the infinite list of 1’s. The call to fixIO returns the value (which is

discarded) and the address of the cell that stores this cyclic structure. Outside of the call

to fixIO, we dereference the address and get back the lazily computed list of 1’s. Although

this example might look superficial, it basically captures the essence of cyclic structures

with mutable nodes. (See Section 9.4 for an example, where we use a similar idea to

implement doubly linked circular lists in Haskell.)

Once we describe our semantics, we will revisit these examples to see how our system

works in practice.



101

8.3 The language

In this section, we define a language based on Haskell [68], supporting monadic IO primi-

tives, mutable variables, usual recursive definitions, and value recursion.

Notation 8.3.1 We use the following naming conventions for variables:

c ∈ constructors

x, y, z, w ∈ heap variables

r, s, t ∈ mutable variables

To simplify the discussion, we syntactically distinguish between heap and mutable vari-

ables: They are drawn from different alphabets.

Definition 8.3.2 (Terms and values.) Terms and values are defined mutually recur-

sively by the following grammars, respectively:

M, N ::= x
| V
| M N

| let ~x = ~M in N
| case M of {ci ~xi → Ni}

V ::= c x 1 x 2 ... x i

| λx. M
| return M | M �= N
| getChar | putChar M
| fixIO M | updatez M
| r
| newIORef M
| readIORef M
| writeIORef M N

The function updatez, associated with the heap variable z, cannot appear in a valid

input program, and it is never the result of any program either. It is only used internally,

in giving a semantics to fixIO. We will explain its role in detail later. All other constructs

have the same meaning and type as they do in Haskell [7]. Note that IO actions are values

as far as the purely functional world is concerned.

For the purposes of this chapter, we only work with well-typed terms, and ignore the

issues of type checking and inference. We assume that the usual Haskell rules apply to

determine well typed terms. (Typing of Haskell programs has been discussed in detail in

the literature [41, 68].) Notice that return, �=, fixIO, etc., are polymorphic constants.

As usual, let expressions provide recursive (and possibly polymorphic) bindings.

A constructor c of arity i is treated as a function λx1 . . . xi. c x1 . . . xi, which becomes

a value of its own when fully applied. This case is captured by the first alternative in the

definition of values, where c is assumed to have arity i. We model constants as nullary

constructors, that is, numbers, characters, etc., are treated as constructors with zero arity.

(As a notational hint, we will use the letter k to refer to constants.)



102

Remark 8.3.3 It is worth noting that the grammar we gave describes the syntax for

the reduced terms of our language rather than the concrete syntax that we will allow

ourselves to use. In particular, we will freely use the do-notation and pattern bindings in

λ-abstractions. In each case, however, the translation to the core language will be trivial.

Definition 8.3.4 (IO and pure terms.) A well-typed term of type IO τ , for some type

τ , is called an IO term. All other terms are called pure.

Definition 8.3.5 (Terminal values.) A value is called terminal if it has one of the

following forms:

• c x1 x2 . . . xi, where c is a constructor of arity i,

• λx.M ,

• return M ,

where M is an arbitrary term in the second and third cases.

Definition 8.3.6 (Heaps.) A heap is a finite partial function from heap variables to

terms extended with a special black hole value •:

Γ :: Heap Variables ⇀ Terms ∪ {•}

A heap binding can be polymorphically typed. A black hole binding, such as z 7→ •,

indicates that the variable is known but not directly accessible. Intuitively, • is a detectable

bottom.

Notation 8.3.7 Although heaps are functions, we will allow ourselves to use the set

notation freely on them: The notation x 7→ M ∈ Γ simply states that Γ maps x to M .

The empty heap is denoted {}. The notation (Γ, x 7→ M ) denotes the heap Γ extended

with a new binding x 7→ M . In this case, x cannot be already bound in Γ, but might

appear free in M .

Since our language allows input operations, the meaning of a term might depend on the

input stream it receives while being run. To accommodate this view, we have to consider

terms and input streams together.

Definition 8.3.8 (Input streams.) An input stream is a list of characters, not neces-

sarily finite.



103

Notation 8.3.9 We will use the Haskell list notation to denote input streams. [ ] (or "")

denotes the empty input stream, i.e., the case when the input is exhausted. Otherwise, a

stream is of the form (c : I), where c is a character and I is an input stream.

Definition 8.3.10 (Term and program states.) A running program is identified by its

program state, which consists of an input stream, a heap and a term state:

(Terms States) P ::= M Current term

| P | 〈x〉r Passive container

| νr.P Restriction

We use the notation I : Γ : P to denote program states.

A term state is simply the current term under consideration, together with a number

of passive containers. A passive container 〈x〉r represents a mutable variable named r,

which holds a heap variable x. (We only store heap variables in these containers; the

actual contents are stored in the heap.) Restrictions convey the scoping information for

mutable variables. Notice that a program state contains enough information to capture a

program in execution.

Remark 8.3.11 To reduce clutter, we will generally skip the bits of the program state

that are not needed in the discussion, especially when we write our rules. That is, we

will use Γ : P , if the input stream is irrelevant, and similarly I : P , when the heap is

not needed. There is no chance of confusion, however, because we only use capital Greek

letters for heaps and never skip the term state.

Definition 8.3.12 (The functions bn and fn.) The function bn takes a heap and returns

all the variables bound in it, i.e., bn(Γ) = {x | x 7→ M ∈ Γ}. The function fn is defined

for term states and heaps. Given a term state, fn returns the set of free variables in it. A

heap variable x is free if it is not in the scope of a λx binding. A mutable variable r is

free if it is not in the scope of a νr binding. For a heap Γ, fn(Γ) =
⋃
{fn(M) | x 7→M ∈

Γ} − bn(Γ). We treat fn as a variable-arity function to simplify the notation: fn(A,B)

means fn(A) ∪ fn(B), and similarly for more arguments.

Definition 8.3.13 (Slice of a heap.) The slice of a heap Γ, with respect to a term

state P , written Γ/P , is the subset of Γ that is reachable from the free names of P . More

precisely, for a given Γ and P , let

S0 = fn(P )

Si+1 = Si ∪ (
⋃

{fn(M) | x ∈ Si ∧ x 7→M ∈ Γ})



104

and let S =
⋃

i∈ � Si. Then,

Γ/P = {x 7→M | x ∈ S ∧ x 7→M ∈ Γ} (8.1)

Definition 8.3.14 (Closed program states.) A program state S : Γ : P is closed if

fn(Γ) = ∅, and fn(P ) ⊆ bn(Γ). (Note that if the second condition is satisfied, no mutable

variable in P can be free.)

Definition 8.3.15 (Type of a program state.) Let S : Γ : P be a closed program state,

and let M be the term associated with P . We say that S : Γ : P has type τ , and write

(S : Γ : P ) :: τ , when M has type τ when typed in the heap Γ.

Definition 8.3.16 (Terminal program state.) A program state S : Γ : P is terminal if

the term associated with P is terminal (Definition 8.3.5).

8.4 Semantics

We describe the semantics of our language in layers. The IO layer takes care of input-

output and manages mutable variables. The functional layer handles pure computations.

A final set of rules regulate the interaction between these two layers.

Given a term, we need to be able to extract the part that is going to be executed next.

We use contexts to guide this search:

Definition 8.4.1 (Execution Contexts.) Execution contexts are described by the fol-

lowing grammar:

(Execution Contexts) � ::= [·]
| � �= M

An execution context is a term with one hole, where the hole itself is filled with a term.

The notation � [M ] denotes the context � filled with the term M . An empty context is

one where there are no �=’s, as captured by the first alternative. Otherwise, the context

is non-empty, i.e., it is some IO action followed by others.4 If the context is empty, the

term filling the context might be pure.

8.4.1 IO layer

Figure 8.1 gives the transition rules for the IO layer. A rule is a (possibly labeled) transition

from a program state to another. The label ‘!c’ indicates that the character c is printed

4Other authors use the term evaluation context for this concept [23]. We prefer the term execution,
since a non-empty context can only be filled by an IO action which is going to be executed next.



105

� [putChar c ]
!c
−→ � [return () ] (PUTC )

(c : I) : � [getChar ]
?c
−→ I : � [return c ] (GETC )

� [return N �= M ] −→ � [M N ] (LUNIT )

r /∈ fn( � [newIORef M ]) ∧ x /∈ bn(Γ)

Γ : � [newIORef M ] −→ (Γ, x 7→M) : νr.( � [return r ] | 〈x〉r)
(NEWIO )

� [readIORef r ] | 〈x〉r −→ � [return x ] | 〈x〉r (READIO )

y /∈ bn(Γ)

Γ : � [writeIORef r N ] | 〈x〉r −→ (Γ, y 7→ N) : � [return () ] | 〈y〉r
(WRITEIO )

z /∈ bn(Γ)

Γ : � [fixIO M ] −→ (Γ, z 7→ •) : � [M z �= update z ]
(FIXIO )

(Γ, z 7→ •) : � [updatez M ] −→ (Γ, z 7→M) : � [return z ] (UPDATE )

Figure 8.1: Semantics: IO layer

on standard output, and the one labeled ‘?c’ indicates that the next character from the

input stream (which happens to be c) is consumed.5

To simplify the notation, we use a couple of conventions in writing our rules (which

are going to be formalized in Section 8.4.4). Rather than a verbal explanation, we will

consider several illustrative examples:

Example 8.4.2 Consider the program state

"ab" : Γ : getChar�= putChar

for some heap Γ. The term state consists of the single term getChar �= putChar.

When we match this term to the context grammar given in Definition 8.4.1, we see that

there are two possibilities. Either we can have the empty context, filled with the term

getChar �= putChar, or the context [·] �= putChar, filled with the term getChar. Upon

inspection of our rules, we see that only the second has a chance of matching a rule,

namely GETC. Since the GETC rule requires the input stream to be of the form (c : I),

5Note that this is the same convention as we have used for the execution of fudgets in Section 4.8.



106

we have to make sure that we have a non-empty stream. Because "ab" is not empty, the

GETC rule is applicable. Hence, we end up with the transition:

"ab" : Γ : getChar �= putChar
?a
−→ "b" : Γ : return ’a’ �= putChar

Note that the GETC rule does not make use of the heap, hence it is not even mentioned.

The heap is simply carried across unchanged.

Example 8.4.3 Consider what happens when we continue the preceding example. Again,

there are two possible choices for the context. The empty context, filled with the term

return ’a’ �= putChar, or the context [·] �= putChar, filled with the term return ’a’.

Unlike the preceding case, however, the first choice matches the LUNIT rule, while the

second one does not match any. Since the LUNIT rule does not constrain the input stream

or the heap in any way, it is applicable. Hence, we end up with the transition:

"b" : Γ : return ’a’ �= putChar −→ "b" : Γ : putChar ’a’

Since PUTC rule does not make use of the input stream or the heap, it does not explicitly

mention them. They are both simply copied. It should now be obvious that the next

transition is:

"b" : Γ : putChar ’a’
!a
−→ "b" : Γ : return ()

and there are no more transitions from this state, as none of the rules match.

Example 8.4.4 Consider the program state I : Γ : newIORef 5�= readIORef, for some

I and Γ. The only matching choice for the context is [·] �= readIORef, with the term

newIORef 5 filling the hole. The NEWIO rule applies. To satisfy the precondition of this

rule, we have to pick variables r and x such that r /∈ fn(newIORef 5 �= readIORef ) and

x /∈ bn(Γ). We simply pick fresh variables to satisfy these requests. Let us call them r

and x for simplicity. We end up with the transition:

I : Γ : newIORef 5 �= readIORef

−→ I : (Γ, x 7→ 5) : νr.(return r �= readIORef | 〈x〉r)

Example 8.4.5 We will continue with the previous example. Clearly, we want to apply

the LUNIT rule, but it is not clear how we get over the restriction νr. If we look at

the LUNIT rule, we see that only a term in context is specified (as in all rules except

READIO and WRITEIO). The convention we adopt in this case is the following: If a rule



107

only mentions a term in a context in the term state position, then we consider the term

associated with the current program state and try to match it. Any remaining restrictions,

passive containers, etc., are copied along. In this case, we obtain:

I : (Γ, x 7→ 5) : νr.(return r �= readIORef | 〈x〉r)

−→ I : (Γ, x 7→ 5) : νr.(readIORef r | 〈x〉r)

Example 8.4.6 Finally we show how to handle rules that have both a term in context

and a passive reference mentioned in their left hand sides, namely the WRITEIO and

READIO rules. Continuing the previous example, we see that the READIO rule needs

to be applied, which requires a term of the form readIORef r next to a passive container

named r. In this case, our convention is the following: If a rule mentions a term in context

next to a passive container, then a program state matches it if and only if we can show

that the term associated with it matches the term in context, and we are next to the

corresponding passive container. In our case, we get the following transition:

I : (Γ, x 7→ 5) : νr.(readIORef r | 〈x〉r)

−→ I : (Γ, x 7→ 5) : νr.(return 5 | 〈x〉r)

Remark 8.4.7 The careful reader must have noticed that it is not necessarily the case

that we will always have the required passive container positioned nicely. For example, if

we start with the program state

[ ] : {} : newIORef 0 �= λr. newIORef 1 �= λs. readIORef r

we will end up with:

[ ] : {x 7→ 0, y 7→ 1} : νr.(νs.(readIORef r | 〈y〉s) | 〈x〉r)

Clearly, we want to apply the READIOREF rule here as well. Alas, the rule does not

match. In these cases, we will need to use structural rules, which provide means for

transforming the program state into an equivalent one such that there is an applicable

rule. Structural rules are covered in Section 8.4.4.

Some comments about the FIXIO rule are in order. The function fixIO is modeled

after knot tying recursion semantics. We first create a new heap variable, called z, whose

value is not yet known. This is achieved by binding it to •. Then, we call the function and

pass it the argument z, and proceed normally. If the evaluation of this function needs to



108

know the value of z, the derivation will get stuck with a detected black hole. Otherwise, z

could be passed around, stored in data structures, etc.: Note that it is just a normal heap

variable. Once the function call completes, we update the heap variable z by the result,

effectively tying the knot by an application of the UPDATE rule. In summary, z holds

the value of the entire computation, which might in turn depend lazily on its own value,

i.e., it is recursively defined.

Although the rules of our IO layer are quite similar to those given by Peyton Jones [67],

the following differences are worth mentioning:

• We keep track of the input stream explicitly, rather than assuming that standard

input will be consulted whenever a getChar is executed,

• As in the natural semantics of Launchbury [48], we keep track of a separate global

heap to store values of variables,

• Unlike Peyton Jones’s semantics, our reference cells only store heap variables, rather

than arbitrary terms. This restriction is necessary in order to model sharing implied

by lazy evaluation.

8.4.2 Functional layer

Our rules for the functional layer, given in Figure 8.2, follow Launchbury’s natural seman-

tics for lazy evaluation closely [48]. Note that none of the rules in this layer mention the

input stream, as it is irrelevant at this layer. Also, we use the notation ⇓, rather than

−→, for reductions. Compared to the IO layer, where we have a small step semantics, the

rules in the functional layer encode a big step natural semantics.

Γ : V ⇓ Γ : V (VALUE )

Γ : M ⇓ ∆ : λy.M ′ (∆, w 7→ N) : M ′[w/y] ⇓ Θ : V

Γ : MN ⇓ Θ : V
(APP )

(Γ, x 7→ •) : M ⇓ (∆, x 7→ •) : V

(Γ, x 7→M) : x ⇓ (∆, x 7→ V ) : V
(VAR )

(Γ, x̂1 7→ M̂1 · · · x̂n 7→ M̂n) : N̂ ⇓ ∆ : V

Γ : let x1 = M1 · · · xn = Mn in N ⇓ ∆ : V
(LET )

Γ : M ⇓ ∆ : ck ~xk ∆ : Mk[~xk/~yk] ⇓ Θ : V

Γ : case M of {ci ~yi →Mi} ⇓ Θ : V
(CASE )

Figure 8.2: Semantics: Functional layer



109

Compared to Launchbury’s natural semantics [48], some minor differences worth men-

tioning are:

• We introduce a new black hole binding,

• The APP rule is generalized to application of terms to terms, rather than terms to

just variables. Correspondingly, we do not need to perform the normalization pass,

• We perform renaming in the LET rule, rather than the VAR rule.

In the APP rule, we require w /∈ bn(Γ). In the LET rule, we rename all bound variables

x1 . . . xn to x̂1 . . . x̂n so that there will not be any name clashes in the heap when we do

the additions. Similarly, the term M̂i denotes the term Mi, where each occurrence of xi

is replaced by x̂i. (Similarly for N̂ .) The VAR rule is not applicable if the variable being

looked up is bound to • in the heap. If this case ever occurs, the derivation will simply

terminate with failure, corresponding to a detectable black hole.

We refrain from going into details of this layer, as such systems are rather well studied

in the literature. The interested reader is referred to Launchbury’s original exposition [48],

and Sestoft’s work on abstract machines based on such systems [78].

8.4.3 The marriage

Γ : M ⇓ ∆ : k

Γ : � [putChar M ] −→ ∆ : � [putChar k ]
(PUTCEVAL )

Γ : M ⇓ ∆ : r

Γ : � [readIORef M ] −→ ∆ : � [readIORef r ]
(READIOEVAL )

Γ : M ⇓ ∆ : r

Γ : � [writeIORef M N ] −→ ∆ : � [writeIORef r N ]
(WRITEIOEVAL )

Γ : M ⇓ ∆ : V

Γ : � [M ] −→ ∆ : � [V ]
(FUN )

Figure 8.3: Semantics: Marriage of layers. All these rules are subject to the side condition
that M is not a value.

Given separate semantics for the IO and functional layers, we need to specify exactly

how they interact. There are two different kinds of interaction. First, whenever we try

to reduce a term of the form, say, putChar M, we first need to consult the functional

layer to reduce the term M to a character. The IO layer will then perform the output.

(Note that the PUTC rule of the IO-layer only applies when the argument to putChar is

a constant.) We need similar rules for readIORef and writeIORef as well. The first three



110

s /∈ fn(P )

Γ : νr.P ≡ Γ[s/r] : νs.P [s/r]
(ALPHA1 )

y /∈ fn(Γ, M, P ) ∧ y /∈ bn(Γ)

(Γ, x 7→M) : P ≡ (Γ, y 7→M)[x/y] : P [x/y]
(ALPHA2 )

x /∈ bn(Γ) ∧ x /∈ fn(Γ, P )

Γ : P ≡ (Γ, x 7→M) : P
(HEAPEXT )

P | Q ≡ Q | P (COMM )
P | (Q | R) ≡ (P | Q) | R (ASSOC )

νr.νs.P ≡ νs.νr.P (SWAP )

r /∈ fn(Q,Γ/Q)

Γ : (νr.P ) | Q ≡ Γ : νr.(P | Q)
(EXTRUDE )

Figure 8.4: Semantics: Structural rules, Part I

rules in Figure 8.3 take care of this interaction. The second kind of interaction allows

handling of applications, let and case expressions, and variable lookups. This interaction

is provided by embedding the functional world into the IO world, as modeled by the FUN

rule. In all these rules, M is assumed to be a non-value: The functional layer is consulted

to reduce M to a value.

8.4.4 Structural rules

Finally, we need a set of structural rules to shape our derivations. As discussed in Re-

mark 8.4.7, structural rules do not perform evaluation steps as do the other rules, but

they might be necessary in order to transform a program state to an equivalent one such

that one of the transition rules can apply.

The first set of structural rules, presented in Figure 8.4, state that certain program

states are equivalent to others. As usual, we mention input streams and heaps only

when they are relevant. The ALPHA rules state that heap and mutable variables can be

renamed at will, i.e., we do not distinguish program states that differ only in the names

of variables. (Substitution on heaps is defined as Γ[x/y] = {z 7→M [x/y] | z 7→M ∈ Γ}.)

Note that we do not need a side condition of the form s 6∈ bn(Γ) in ALPHA1, since only

heap variables can be bound in the heap.

The HEAPEXT rule states that we can add new bindings, as long as they do not

interfere with existing bindings. See Section 8.6 for an example use of this rule.6 The rules

6We can also add a garbage collection rule to get rid of unreachable heap variables and passive con-
tainers. We will avoid such a rule for the sake of brevity, as it is not essential for our current purposes.



111

P
α
−→ Q

Γ : P
α
−→ Γ : Q

(HEAPIN )
P

α
−→ Q

I : P
α
−→ I : Q

(STREAMIN )

P
α
−→ Q

P | R
α
−→ Q | R

(PAR )
P

α
−→ Q

νr.P
α
−→ νr.Q

(NU )

Γ : P ≡ ∆ : P ′ ∆ : P ′ α
−→ Θ : Q′ Θ : Q′ ≡ Σ : Q

Γ : P
α
−→ Σ : Q

(EQUIV )

Figure 8.5: Semantics: Structural rules, Part II. The label α ranges over empty transitions
as well.

COMM, ASSOC and SWAP state obvious equivalences. Finally EXTRUDE shows how we

can manipulate the scoping of reference variables. The side condition in the EXTRUDE

rule guarantees that no dangling references will be created. (See Example 8.5.4 for details.)

The second set of structural rules, presented in Figure 8.5, formalize our conventions in

applying the rules. The first four rules simply state that we can concentrate on the relevant

bits of the derivation and add the extra bits later on. And finally, EQUIV states that we

only need to consider program states up to equivalence when performing transitions.

Example 8.4.8 We will reconsider the example discussed in Remark 8.4.7. Recall that

we had the program state:

[ ] : {x 7→ 0, y 7→ 1} : νr.(νs.(readIORef r | 〈y〉s) | 〈x〉r)

By applying EXTRUDE, ASSOC, COMM, ASSOC and READIOREF rules (and by ap-

propriate applications of the rules in Figure 8.5 to enable them), we get:

≡ [ ] : {x 7→ 0, y 7→ 1} : νr.(νs.((readIORef r | 〈y〉s) | 〈x〉r))

≡ [ ] : {x 7→ 0, y 7→ 1} : νr.(νs.((readIORef r | 〈x〉r) | 〈y〉s))

−→ [ ] : {x 7→ 0, y 7→ 1} : νr.(νs.((return x | 〈x〉r) | 〈y〉s))

There are no matching rules for the resulting program state. We can apply structural

rules again, but none will give us a program state where a non-structural rule can apply.

Remark 8.4.9 One can extend ≡ to an equivalence relation on program states, simply

by adding rules to make it reflexive and transitive. However, the current definition of ≡

given in Figure 8.4 is simply too crude to be useful for this purpose. Intuitively, we want to



112

be able to identify program states if their “observable behavior” are the same [27, 57, 71].

We leave the exploration of this idea for future work.

8.4.5 Meaning of program states

The meaning of a closed program state is its derivation:

Definition 8.4.10 (Derivations.) Let I : Γ : P be a closed program state. The

derivation for I : Γ : P is a sequence of labeled transitions, where at each step a rule is

applied. Structural rules can be applied at any time, as long as they trigger the application

of a non-structural rule. The derivation continues until there are no applicable rules.

Simple inspection of our rules reveals that we have a deterministic system modulo the

structural rules. That is, given a program state there is at most one non-structural rule

that can apply to it.

Definition 8.4.11 (Effect of a derivation.) The effect of a derivation is the concatena-

tion of its transition labels. Empty transitions do not contribute to the effect.

The effect of a program state is simply a (possibly infinite) list, where each element is

of the form ‘?c’ or ‘!c’ for some character c.

Notation 8.4.12 As usual, −→∗ is the reflexive transitive closure of−→. We will shorten

multiple steps of derivations using the notation I : Γ : P
α
−→∗ I ′ : Γ′ : P ′.

Definition 8.4.13 (Divergent and normal program states.) A closed program state

I : Γ : P is called divergent if the derivation starting from I : Γ : P either

• continues indefinitely (i.e., we never run out of non-structural rules to apply),

• or, gets stuck in a non-terminal program state (Definition 8.3.16) where no non-

structural rule applies.

Otherwise, I : Γ : P is called normal.

Example 8.4.14 It is easy to come up with divergent terms. For instance, one can show

that the derivation for:

I : Γ : let loop = putChar ’a’ � loop in loop (8.2)



113

diverges, since we never run out of rules to apply. However, the derivation for:

I : Γ : let x = x in x (8.3)

will diverge by getting stuck. The FUN rule will never fire, because there are no reductions

for this term in the functional layer. (Notice that the first application of the VAR rule

will result in I : (Γ, x 7→ •) : x, but no other rule will apply since the VAR rule is only

applicable when the binding is not a black hole.) Similarly, a derivation can get stuck via

the use of the FIXIO rule (which introduces a black hole binding in the heap). A final

possibility is the application of the GETC rule when the input stream is empty.

Lemma 8.4.15 (Derivations for normal program states.) Let I : Γ : P be a normal

program state. The derivation starting at this state will take the form

I : Γ : P
α
−→∗ I ′ : ∆ : Q

where I ′ is a suffix of I. Furthermore, Q can be transformed using only the structural

rules to the form ν~r.(N | C), where N is a terminal value (Definition 8.3.5), and C is a

number (possibly zero) of parallel passive containers. The restrictions encoded by ~r cover

all passive containers in C.

Proof (Sketch.) By definition 8.4.13, our proof obligation reduces to establishing that

Q can be transformed into the required ν~r.(N | C) form. By inspection of the structural

rules, we see that the rule EXTRUDE can be repeatedly used to move restrictions to the

top, obtaining the required form. (ALPHA rules can be used to resolve naming conflicts,

if any.) To see the correspondence between restrictions and the passive containers, just

notice that they are introduced together by NEWIO, they are never removed, and all rules

respect the scoping of ν bindings. �

Observation 8.4.16 Note that derivations apply to both pure and IO terms. A deriva-

tion either diverges, or ends up with an abstraction or a saturated constructor application

for a pure term, or with a term of the form return M for an IO term.

Proposition 8.4.17 (Derivations for IO terms in contexts.) Let I : Γ : ν~r.( � [M ] | C)

be a closed program state, where M is an IO term. The derivation starting at this state

will either diverge, or take the form:

I : Γ : ν~r.( � [M ] | C)
α
−→∗ I ′ : ∆ : ν~r′.( � [return N ] | C ′)

β
−→∗ I ′′ : Θ : ν ~r′′.(return O | C ′′)

where I ′ is a suffix of I, and I ′′ is a suffix of I ′.



114

Proof By inspection of our rules, we see that if the derivation for Γ : ν~r.( � [M ] | C)

terminates, then so must the derivation for Γ : ν~r.(M | C). Hence, by the previous

lemma, it must do so in the required intermediate form. The form of the final state is

again guaranteed by the previous lemma. �

To be able to talk about strictness (Equation 2.1), we need to say what ⊥ means for

the type IO τ :

Definition 8.4.18 (Silent derivations.) A derivation is silent if its effect is empty.

Definition 8.4.19 (Bottoms of IO.) A closed program state (I : Γ : M) :: IO τ is a

bottom element (⊥) for the type IO τ , iff the derivation for I : Γ : M silently diverges.

Example 8.4.20 It is easy to see that Program State 8.2 is not a ⊥ of IO, but Program

State 8.3 is. While they both diverge, the former is not silent.

Definition 8.4.21 (Strict functions.) Let Γ be a heap and M be a term such that the

program state ([ ] : Γ : M) :: τ → IO σ is closed. M is strict, if, for all I and ∆ ⊇ Γ/M ,

x /∈ bn(Γ), the derivation for

I : (∆, x 7→ •) : M x

is silently divergent.

8.5 Examples

We revisit the examples given in Section 8.2, and show how our semantics can handle

them. In these examples, we will use the letters a, b, . . . to represent heap variables as

well. To save space, we will apply the structural rules silently.

Example 8.5.1 We will revisit Example 8.2.1. We first remove the do notation in favor

of explicit �=’s:

fixIO (λcs. getChar �= λc. return (c : cs))

To reduce clutter, we will not write the input stream explicitly. We have:

{} : fixIO (λcs. getChar �= λc. return (c : cs))

−→∗ (FIXIO - FUN)

{z 7→ •, a 7→ z} : getChar �= λc. return (c : a) �= update z

?ch
−→ (GETC – assume input stream has ch in front)



115

{z 7→ •, a 7→ z} : return ch �= λc. return (c : a) �= update z

−→∗ (LUNIT - FUN)

{z 7→ •, a 7→ z, b 7→ ch} : return (b : a) �= update z

−→ (LUNIT)

{z 7→ •, a 7→ z, b 7→ ch} : update z (b:a)

−→ (UPDATE)

{z 7→ b : a, a 7→ z, b 7→ ch} : return z

The derivation terminates with a terminal program state at this point. Hence the initial

program state is normal. The final heap contains the cyclic structure that represents the

infinite list of ch’s: The character that was read by getChar. In case elements of this

list are demanded in a context, the usual demand-driven rules modeled by our semantics

would let us produce enough elements to satisfy the need. If the input stream is empty to

start with, the derivation will simply block at the point where the GETC rule is applied,

and wait forever, i.e., the derivation will diverge by getting stuck.

Example 8.5.2 Showing that Example 8.2.2 diverges is fairly easy. We have:

{} : fixIO (λc. putChar c �= λd. return ’a’)

−→∗ (FIXIO - FUN)

{z 7→ •, a 7→ z} : putChar a � λd. return ’a’

And now, we need to apply the PUTCEVAL rule to reduce the variable a to a character.

The functional layer first reduces a to z using the VAR rule, but gets stuck at that point,

as z is bound to • in the heap and the VAR rule does not apply anymore.

Example 8.5.3 We now reconsider Example 8.2.3, which involves reference cells. Again,

removing do-notation and simplifying the patterns, we get:

fixIO (λt. newIORef (fst t) �= λy.

return (1 : fst t , y))

�= λu. readIORef (snd u)

Since there are no calls to getChar, the input stream does not matter. That is, we will

simply copy the same input stream through all transitions in our derivation. Therefore,

we simply do not write it explicitly in what follows.



116

We will first consider the fixIO call. To save space, we will abbreviate newIORef to

new and readIORef to read:

{} : fixIO (λt. new (fst t) �= λy.return (1 : fst t , y))

−→∗ (FIXIO - FUN)

{z 7→ •, a 7→ z} : new (fst a) �= λy. return (1 : fst a , y) �= update z

−→ (NEWIO)

{z 7→ •, a 7→ z, b 7→ fst a} :

νr.(return r �= λy.return (1 : fst a , y) �= update z | 〈b〉r)

−→∗ (LUNIT - FUN)

{z 7→ •, a 7→ z, b 7→ fst a, c 7→ r} :

νr.(return (1 : fst a, c) �= update z | 〈b〉r)

−→∗ (LUNIT - UPDATE)

{z 7→ (1 : fst a, c), a 7→ z, b 7→ fst a, c 7→ r} : νr.(return z | 〈b〉r)

When we consider the original expression, it is not hard to see that we will have:

−→ (LUNIT - FUN)

{z 7→ (1 : fst a , c) , a 7→ z, b 7→ fst a, c 7→ r, d 7→ z} :

νr.(read (snd d) | 〈b〉r)

−→ (READIOEVAL)

{z 7→ (e, f), a 7→ z, b 7→ fst a, c 7→ r, d 7→ (e, f), e 7→ 1 : fst a, f 7→ r} :

νr.(read r | 〈b〉r)

−→ (READIOREF)

{z 7→ (e, f), a 7→ z, b 7→ fst a, c 7→ r, d 7→ (e, f), e 7→ 1 : fst a, f 7→ r} :

νr.(return b | 〈b〉r)

Now, if we chase the value of b in the heap, we see that we will end up with a cyclic

structure effectively representing the infinite lists of 1’s, as intended. The most interesting

step in this derivation is the application of the READIOEVAL rule. The function snd is

a short hand for case over the pairing constructor. The VAR rule in the functional layer

arranges for sharing, resulting in an abundance of variables in the resulting heap. Notice

that, abusing the notation slightly, in the above derivation (1 : fst a, c) refers to a function

application: the pairing constructor applied to the terms 1 : fst and c. In the last two



117

lines, however, (e, f) is a value, i.e., in this case, the pairing constructor applied to the

right number of arguments.

Example 8.5.4 This example demonstrates the importance of the side condition of the

EXTRUDE rule. Consider:

do j ← new 5
k ← new j
l ← read k
read l

By removing the do-notation, we get:

new 5 �= new �= read �= read

We will try to give a derivation for this expression, ignoring the side condition of the

EXTRUDE rule. Again the input stream is irrelevant, and hence ignored:

{} : new 5 �= new �= read �= read

−→ (NEWIOREF)

{x 7→ 5} : νj.(return j �= new �= read �= read | 〈x〉j)

−→∗ (LUNIT-NEWIOREF)

{x 7→ 5, y 7→ j} : νj.(νk.(return k �= read �= read | 〈y〉k) | 〈x〉j)

−→ (COMM)

{x 7→ 5, y 7→ j} : νj.(〈x〉j | νk.(return k �= read �= read | 〈y〉k))

−→ (EXTRUDE – incorrect application)

{x 7→ 5, y 7→ j} : νj.(〈x〉j) | νk.(return k �= read �= read | 〈y〉k)

−→∗ (LUNIT - READ - LUNIT)

{x 7→ 5, y 7→ j} : νj.(〈x〉j) | νk.(read y | 〈y〉k)

−→ (READIOEVAL)

{x 7→ 5, y 7→ j} : νj.(〈x〉j) | νk.(read j | 〈y〉k)

And now we are stuck! The mutable variable j is not visible at this point. Since we

were not careful in applying the extrude rule, we have created a dangling reference. Let

us construct the slice when the rule is applied:

S0 = {y}, S1 = {y, j}, S2 = S1 = S∞

By Equation 8.1, the slice is: {y 7→ j}. Since j ∈ fn({y 7→ j}), EXTRUDE is not

applicable. The side condition prevents the creation of the dangling reference.



118

8.6 Properties of fixIO

Equipped with the semantics we have presented so far, we are now in a position to look

at the properties of fixIO.

Strictness. Consider Equation 2.1, and let Γ be a heap where f is properly bound.

Assuming f is strict (Definition 8.4.21), we will have:

I : Γ : fixIO f −→ I : (Γ, z 7→ •) : f z �= update z

by a single application of the FIXIO rule. The current context specifies that the application

f z should be evaluated. By Definition 8.4.21, the derivation will silently diverge. But

then, by Definition 8.4.19, this divergence implies that fixIO f is ⊥.

Example 8.6.1 Using if as a shorthand for case over the boolean type, consider:

I : {} : fixIO (λx. if x == 0 then return 1 else return 2)

−→ (FIXIO - FUN)

I : {z 7→ •, a 7→ z} : if a = 0 then return 1 else return 2 �= update z

... detected black hole ...

In the last step, the FUN rule is not applicable because there are no reductions for the

current term in the functional layer.

Example 8.6.2 Consider the following non-strict function:

λx. return x :: Char → IO Char

Notice that it returns a computation successfully. Of course, if the result of the fixed-

point computation is used, it will still diverge, but for a different reason:

I : {} : fixIO (λx. return x ) �= putChar

−→ (FIXIO - FUN)

I : {z 7→ •, a 7→ z} : return a �= update z �= putChar

−→ (LUNIT - UPDATE - LUNIT)

I : {z 7→ a, a 7→ z} : putChar z

... detected black hole ...

The last step diverges, because the VAR rule will get stuck trying to reduce z to a character.



119

Example 8.6.3 Consider the function:

λa. putChar ’q’ � if a == 1 then return 1 else return 2

which is not strict according to our semantics. Here is the derivation for it:

I : {} : fixIO (λa. putChar ’q’ � if a == 1 then return 1 else return 2)

−→∗ (FIXIO - FUN)

I : {z 7→ •, a 7→ z} :

putChar ’q’ � if a == 1 then return 1 else return 2 �= update z
!q
−→ (PUTC)

I : {z 7→ •, a 7→ z} : if a == 1 then return 1 else return 2 �= update z

... detected black hole ...

Before getting stuck, we see the character q printed, which is the correct behavior.

Purity. Consider Equation 2.2, where we will use a let expression to capture fix:

fixIO (return · h) = return (let a = h a in a)

Assume Γ is a heap such that ([ ] : Γ : h) :: τ → τ . On the left hand side, we have:

I : Γ : fixIO (return · h)

−→∗ (FIXIO - FUN)

I : (Γ, z 7→ •, a 7→ z) : (return · h) a �= update z

−→ (LUNIT)

I : (Γ, z 7→ •, a 7→ z) : update z (h a)

−→ (UPDATE)

I : (Γ, z 7→ h a, a 7→ z) : return z

Considering the right-hand-side, we immediately get: I : Γ : return (let a = h a in a).

We should now prove that these two program states are equivalent, i.e., that the rules

in our system cannot tell them apart. Such an argument would require a notion of program

state equivalence that is more general than what our structural rules provide. Intuitively,

the program states above will be considered equivalent if we can show that

I : (Γ, z 7→ h a, a 7→ z) : z ≡ I : Γ : let a = h a in a

Note that the second program state reduces to I : (Γ, z 7→ h z) : z. Hence, the equiva-

lence is clear provided we adopt a compaction rule that gets rid of the indirection via a in



120

the first heap. To formalize this argument, we need a precise definition of program state

equivalence and a proof system for showing when two program states are the same. We

leave the development of a such a system for future work.

Left shrinking. Consider Equation 2.3, where we will refer to the computation a as q

to avoid confusion with heap variables. For the left hand side we get:

I : Γ : fixIO (λx. q �= λy. f x y)

−→∗ (FIXIO - FUN)

I : (Γ, z 7→ •, a 7→ z) : q �= λy. f a y �= update z

On the right hand side, we have I : Γ : q �= λy. fixIO (λx. f x y). Now, if the

derivation for q diverges, both derivations will diverge in the exact same way, that is both

sides are equivalent. Otherwise, by Lemma 8.4.15, we will have:

I : Γ : q
α
−→ I ′ : ∆ : ν~r.(return qv | C)

The C on the right hand side captures the passive containers that might be introduced

in the derivation for q, along with the associated restrictions ν~r. Since these containers

will get copied in exactly the same way, we do not show them explicitly in the following

discussion. Using the HEAPEXT and EXTRUDE rules silently, the left hand side yields:

I : (Γ, z 7→ •, a 7→ z) : q �= λy. f a y �= update z
α
−→∗ (ASSUMPTION)

I ′ : (∆, z 7→ •, a 7→ z) : return qv �= λy. f a y �= update z

−→∗ (LUNIT, FUN)

I ′ : (∆, z 7→ •, a 7→ z, b 7→ qv) : f a b �= updatez

Let us look at the right hand side:

I : Γ : q �= λy. fixIO (λx. f x y)
α
−→∗ (ASSUMPTION - LUNIT)

I ′ : (∆, b 7→ qv) : fixIO (λx. f x b)

−→∗ (FIXIO - FUN)

I ′ : (∆, b 7→ qv, z 7→ •, a 7→ z) : f a b �= updatez

Hence, the left shrinking property holds for fixIO. We conclude that, with respect to our

semantics, fixIO is a legitimate value recursion operator for the IO monad.



121

Other properties. As pointed out in Corollary 3.1.7, neither strong sliding nor right

shrinking properties hold for Haskell’s IO monad. Both of them fail with respect to the

semantics we have given in this chapter as well. (Application of our rules to functions used

in Propositions 3.1.5 and 3.1.6 suffices to show the failure in both cases.) We believe that

sliding and nesting properties should hold, both for Haskell’s IO monad and our semantics.

We leave the construction of proofs for these properties for future work.

8.7 Summary

In this chapter, we have described an operational semantics for a non-strict functional

language extended with monadic IO, references, and value recursion, improving on our

earlier work [20]. Our contributions are: (i) we show how a purely functional language

and its semantics can be embedded into a language with monadic I/O primitives and

references, (ii) we model sharing explicitly at all levels, giving an account of call by need

in both the functional and the IO layers, and (iii) we provide a semantics for fixIO and

show that it is a value recursion operator.

Our work can be extended in several ways. Addition of threads and synchronized

variables seems to be fairly easy [67]. The difficulty, however, lies in adding support for

asynchronous exceptions [56]. Although exceptions can be modeled nicely in the IO layer,

we currently do not see a complementary way of capturing them in the functional layer

using our method.

More work is needed in formalizing our arguments. Of the highest importance is the

development of a notion of program equivalence, and tools for reasoning about program

states which may contain symbolic terms. In this direction, program equivalence based

on observational behavior seems to be the right framework [27, 61].

One important issue we have side-stepped in this chapter is that of parametricity. How

do we know that the constants of our language (i.e., return, �=, fixIO, newIORef, etc.)

are parametric? To talk about parametricity, we first need to define what it means for

two program states to be related. Our earlier attempts at stating and establishing para-

metricity failed, mainly due to the lack of an appropriate notion of program equivalence.

Pitts’s work on observational equivalence and parametric polymorphism [71] can be used

as a basis for such a work, although it is not immediately clear how to accommodate for

references and input/output operations. Similarly, Launchbury and Peyton Jones discuss

parametricity of constants for manipulating references in the context of the state monad

of Haskell [52], but their results are not directly applicable in our framework due to dif-

ferences in the notion of reference variables, handling of the heap, and the additional

complexity introduced by input/output.



Chapter 9

Examples

In this chapter, we will consider a number of practical programming examples, illustrating

the use of value recursion operators and the mdo-notation.1

Synopsis. Starting with the famous repmin problem, we consider applications in sorting

networks, screen layout in GUI’s, interpreters, cyclic graphs, and the implementation of

logical variables.

9.1 The repmin problem

The repmin problem is concerned with the replacement of all the numbers in a binary tree

by their minimum. The challenge is to do so in a single pass [6, 16]. In 1984, Richard Bird

devised a beautiful solution to this problem, exploiting laziness and cyclic definitions:

data Tree α = L α | B (Tree α) (Tree α) deriving Show

copy :: Tree Int → Int → (Tree Int , Int)

copy (L a) m = (L m , a)

copy (B l r ) m = let (l ′, ml) = copy l m

(r ′, mr) = copy r m

in (B l ′ r ′, ml ‘min‘ mr)

repmin :: Tree Int → Tree Int

repmin t = let (t ′, m) = copy t m in t ′

Here’s an example run:

Main> repmin (B (L 11) (B (L 2) (L 3)))

B (L 2) (B (L 2) (L 2))

1Before proceeding with the examples in this chapter, the reader may want to review our motivating
circuit modeling example, covered in Sections 1.2 and 7.1.

122



123

The single pass solution is achieved by the clever use of recursion in the let-expression of

the function repmin. By virtue of the recursive binding, the function copy simultaneously

computes and replaces all the leaves with m, the minimum value in the tree.

Benton and Hyland take the problem one step further [5]. What if we also want

to perform an effect, such as printing the values stored in the nodes during this single

traversal as well? It is easy to modify copy to achieve this effect:

copyPrint :: Tree Int → Int → IO (Tree Int , Int)

copyPrint (L a) m = do print a

return (L m, a)

copyPrint (B l r) m = do (l ′, ml) ← copyPrint l m

(r ′, mr) ← copyPrint r m

return (B l ′ r ′, ml ‘min‘ mr)

But, it is not clear at all how to modify repmin accordingly. Obviously, the attempt:

copyPrint t m �= λ(t ′, m). return t ′

is flawed, since m is no longer recursively bound! We need to tie the recursive knot with

an appropriate value recursion operator. In this particular case, the appropriate operator

is the one for the IO monad, i.e., fixIO of Chapter 8:

repminPrint :: Tree Int → IO (Tree Int)

repminPrint t = fixIO (λ˜ (t ′, m). copyPrint t m)

�= λ(t ′, m). return t ′

Or, using the mdo-notation:

repminPrint :: Tree Int → IO (Tree Int)

repminPrint t = mdo (t ′, m) ← copyPrint t m

return t ′

hiding the explicit call to fixIO, considerably improving readability.

Note that we can accommodate arbitrary effects during the traversal of the original

tree, as long as the underlying monad comes equipped with a value recursion operator.

To illustrate, consider the following variation of the repmin problem, demonstrating the

use of value recursion for the list monad (Section 4.3). Consider the data type:

data Exp = C Int | A Exp Exp

representing simple arithmetic expressions formed out of integer constants and additions.

The problem is to find all possible pair-swaps of a given expression. A swapping is defined



124

to be the exchange of any two constants, not necessarily distinct.2 Solving the swap-

pings problem is not a terribly hard task. Here, we present a particularly neat solution,

illustrating the use of value recursion for the list monad:

replace :: Int → Exp → [(Exp,Int)]

replace x (C y) = [(C x , y)]

replace x (A l r ) = [(A l ′ r , y) | (l ′, y) ← replace x l ]

++ [(A l r ′, y) | (r ′, y) ← replace x r ]

pairSwaps :: Exp → [Exp]

pairSwaps e = mdo (e ′, m) ← replace n e

(e ′′, n) ← replace m e ′

return e ′′

The call replace x e creates copies of e, where each copy has one of its constants

replaced by x. Each replaced constant is returned along with the corresponding copy. (If

there are n constants in e, the call to replace will return n copies.) For instance:

replace 1 2 =⇒ [(1, 2)]

replace 1 (2 + 3) =⇒ [(1 + 3, 2), (2 + 1, 3)]

The function pairSwaps makes two successive calls to replace, threading the input

expression through. The first call replaces each constant with n (yet to be computed),

determining the respective values for m. The second call completes the swapping by

substituting m’s, and by computing the values of n needed in the first call. Each pairing

of m and n corresponds to a possible swapping. The cyclic dependence between m and n

achieves the required swapping quite neatly.

Here is an example run for the input (1+2)+3, using appropriate functions for parsing

and printing:

Main> display (pairSwaps (parse "(1 + 2) + 3"))

[(1 + 2) + 3, (2 + 1) + 3, (3 + 2) + 1,

(2 + 1) + 3, (1 + 2) + 3, (1 + 3) + 2,

(3 + 2) + 1, (1 + 3) + 2, (1 + 2) + 3]

The value recursion operator used implicitly in the definition of pairSwaps is the one

given by Equation 4.4. Recall that we have considered an infinite family candidate oper-

ators for the list monad in Section 4.3 (see Equation 4.13). We have argued that these

2For instance, the only possible swapping of 1 is 1, while that of 1 + 2 are 1 + 2, 2 + 1, 2 + 1, and 1 + 2.
The two 2 + 1’s are considered different, corresponding to the swappings of 1–2 and 2–1. It is easy to see
that an expression with n constants will have n2 swappings, one for each pair of constants.



125

candidates behave strangely, violating the mandatory left shrinking property. We take

this opportunity to show that they yield weird results for the swapping problem as well.

For instance, the use of mfix1 yields:

Main> display (pairSwaps1 (parse "(1 + 2) + 3"))

[(1 + 2) + 3, (2 + 1) + 3, (2 + 2) + 1,

(2 + 2) + 3, (1 + 2) + 3, (1 + 2) + 2,

(3 + 2) + 2, (1 + 3) + 2, (1 + 2) + 3]

producing illegal swappings such as (2 + 2) + 1. The failure of the left-shrinking property

causes unwanted interference when the constants are paired.3

9.2 Sorting networks and screen layout in GUI’s

A sorting network is a collection of comparators, connected in such a way that the output

of the network is always the sorted permutation of its input [15]. For instance, the following

network can sort four numbers:

e

f

i

h j

a 

b

c

 d

 k                        l            m     n

2

1

g

3

 4  5

For each comparator, the wire to its right carries the maximum of its inputs, while the

lower one carries the minimum. In this particular example, a, b, c, and d are the inputs,

while k, l,m, and n are the outputs.

How can we implement a sorting network so that we not only get the values sorted, but

also a transcript of the operations performed during sorting? We want each comparator

unit to report on the operation it performed while sorting took place. The output monad

3In certain cases, the operation of the value recursion operator for the list monad can be understood in
terms of the usual translation rules for list-comprehensions [89], using symbolic substitution for variables
that occur recursively [18, Sections 1 and 6.3]. The details, although not terribly important, might be
enjoyable for the curious reader, providing some more insight about the behavior of mfix for the list monad.



126

(Section 4.5) springs to mind. We can translate the sorting network above almost literally

into the following Haskell code:

newtype Out α = Out (α, String)

instance Monad Out where

return x = Out (x , “ ”)
Out ˜ (x , s) �= f = let Out (y , s ′) = f x in Out (y , s ++ s ′)

instance Show α ⇒ Show (Out α) where

show (Out (v , s)) = show v ++ s

comp :: Int → (Int , Int) → Out (Int , Int)
comp i (a, b) = Out ((a ‘max ‘ b, a ‘min‘ b), “\nUnit ” ++ show i ++ msg)

where msg = (if a < b then “: swap: ” else “: pass: ”) ++ show (a, b)

sort4 :: (Int , Int , Int , Int) → Out (Int , Int , Int , Int)
sort4 (a, b, c, d) = do (e, f ) ← comp 1 (a , b) -- unit 1

(g , h) ← comp 2 (c, d) -- unit 2
(n, i) ← comp 3 (e, g) -- unit 3
(j , k) ← comp 4 (f , h) -- unit 4
(m , l) ← comp 5 (i , j ) -- unit 5
return (k , l , m , n)

Here is a sample run:

Main> sort4 (23, 12, -1, 2)

(-1,2,12,23)

Unit 1: pass: (23,12)

Unit 2: swap: (-1,2)

Unit 3: pass: (23,2)

Unit 4: pass: (12,-1)

Unit 5: swap: (2,12)

What happens if we want to observe the output in some different order? For instance,

we might want to see the output of the third unit after the fifth. Intuitively, it must be

sufficient to move the third line after the fifth in the definition of sort4, obtaining:

sort4 (a , b, c, d) = do (e, f ) ← comp 1 (a, b) -- unit 1
(g , h) ← comp 2 (c, d) -- unit 2
(j , k) ← comp 4 (f , h) -- unit 4
(m, l) ← comp 5 (i , j ) -- unit 5
(n, i) ← comp 3 (e, g) -- unit 3
return (k , l , m, n)



127

Alas, this modification is illegal: The variable i is unbound when used in the fourth line.

Luckily, value recursion fits the bill. All we need to say is that the variable i used by the

5th unit is the one that is defined by the 3rd, which can be handled by an mdo-expression.

As we have seen in Section 4.5, the corresponding mfix is given by:

instance MonadFix Out where

mfix f = let Out (a, s) = f a in Out (a, s)

With this declaration and the use of the keyword mdo, sort4 will work as expected,

delivering the output of the third unit after that of the fifth.

A similar phenomenon occurs in GUI based programming, where the order of monadic

actions implicitly determines the screen layout. To illustrate, consider the following simple

example, taken from Thiemann’s work on a CGI library for Haskell [85]:

do f1 ← inputField (fieldSize 10)

f2 ← inputField (fieldSize 10)

submitButton (someAction f1 f2 )

The corresponding GUI will have two input fields side by side, followed by a submit

button. What happens if we want to place the submit button to the left of the input

fields? Since the ordering of the statements in the do-expression determines the position

of the GUI elements, we would like to move the call to submitButton to the first line,

textually preceding the calls to inputField. As Thiemann also points out, such a move

would require the use of an mdo-expression, since the variables f1 and f2 will no longer be

visible when used as arguments to someAction.

9.3 Interpreters

Suppose you are designing an interpreter for a language that has let-bindings for intro-

ducing local bindings. Operationally, the expression let v = e in b denotes the same

expression as b, where e is substituted for all free occurrences of the variable v. The

abstract syntax of your language might include:

data Exp = ... | Let Var Exp Exp

Assuming the language is applicative, the natural choice for implementation would be

the environment monad (Section 4.6). In this setting, the section of the interpreter that

handles the let-expressions might look like:

eval (Let v e b) = do ev ← eval e

inExtendedEnv (v , ev) (eval b)



128

where inExtendedEnv simply extends the environment with the binding v 7→ ev before

passing it on. This approach yields a satisfactory implementation.

Note that, our eval function cannot deal with recursive bindings, i.e., in the expression

Let v e b, v is not visible in e. What happens if we lift this restriction? All we need

is a way to extend the environment with the binding v 7→ ev in the call to eval e,

before we actually know what ev is. The following mdo-expression expresses the required

dependency:

eval (Let v e b) = mdo ev ← inExtendedEnv (v , ev) (eval e)

inExtendedEnv (v , ev) (eval b)

In contrast, consider how we might solve this problem without using value recursion.

Assuming Val denotes the data type for the values our language can process, and the

following declaration of environments:

data Env α = Env ([(Var , Val)] → α)

we are forced to implement recursive let-expressions as follows:

eval (Let v e b) = Env (λenv. let Env f = eval e
ev = f ((v , ev) :env)
Env g = eval b

in g ((v , ev) :env))

Although it will perform the required task, this solution is hardly satisfactory. First

of all, we had to reveal how environments are actually implemented, defeating the whole

point of the monadic abstraction. As a result, our code will only work with that partic-

ular implementation; switching to a different representation will require changes in the

interpreter. The code is no longer easy to understand or maintain.

On the other hand, our first implementation using the mdo-notation is quite simple to

understand, concise, and not tied to any particular representation of environments.

9.4 Doubly linked circular lists with mutable nodes

Consider a simple implementation of doubly linked circular lists in Haskell. For this

example, we will store a mutable boolean flag at each node, a True value indicating that

the node is already visited in a particular traversal. We use the internal state monad to

gain access to mutable variables [52]. The nodes in our circular lists have the following

structure:

newtype Node s α = N (STRef s Bool , Node s α, α, Node s α)



129

consisting of the mutable flag, the pointer to the previous node, the data item, and the

pointer to the next node. Given two nodes b and f , a new node in between is created by

the following function:

newNode :: Node s α → α → Node s α → ST s (Node s α)

newNode b c f = do v ← newSTRef False

return (N (v , b, c, f ))

Here is a simple example of a circular list, and its rendering in Haskell using the

function newNode. Note that the use of the mdo-expression is essential in expressing the

cyclic structure:4

ll

1 2 30

ll :: ST s (Node s Int)

ll = mdo n0 ← newNode n3 0 n1

n1 ← newNode n0 1 n2

n2 ← newNode n1 2 n3

n3 ← newNode n2 3 n0

return n0

Traversing a given doubly linked list simply amounts to following the links until we

reach a node that has been visited before:

data Direction = Forward | Backward deriving Eq

traverse :: Direction → Node s α → ST s [α]

traverse dir (N (v , b, i , f )) =

do visited ← readSTRef v

if visited

then return [ ]

else do writeSTRef v True

let n = if dir == Forward then f else b

is ← traverse dir n

return (i :is)

Here’s a sample run:

4A more traditional technique would rely on creating dummy initial link values for at least one of the
nodes, and explicitly overwriting them when the rest of the structure is created. This “clunky” approach
is often seen in the formation of cyclic objects in imperative languages, such as Java. Perhaps an mdo-like
construct could help there also.



130

Main> runST (ll >>= traverse Forward)

[0,1,2,3]

Main> runST (ll >>= traverse Backward)

[0,3,2,1]

The inverse function that takes a non-empty list and constructs a doubly linked circular

list out of its elements further illustrates the use of value recursion:

encircle :: [α] → ST s (Node s α)

encircle (x :xs) = mdo c ← newNode l x f

(f , l) ← encircle ′ c xs

return c

encircle ′ :: Node s α → [α] → ST s (Node s α, Node s α)

encircle ′ p [ ] = return (p, p)

encircle ′ p (x :xs) = mdo c ← newNode p x f

(f , l) ← encircle ′ c xs

return (c, l)

We have:

Main> runST (encircle "hello world" >>= traverse Backward)

"hdlrow olle"

Main> runST (encircle "hello world" >>= traverse Forward)

"hello world"

Similar techniques might be useful in the functional implementation of graph algo-

rithms as well [45]. In general, programs manipulating stateful objects with cyclic de-

pendencies can benefit from value recursion. For instance, Nordlander shows how to use

value recursion to express layered networking protocols in the context of his O’Haskell

language [65, Section 4.2].

9.5 Logical variables

In a tutorial paper on monads and effects, Benton, Hughes and Moggi suggest the following

exercise on programming with monads [4, Exercise 55]:

Prolog provides so-called logical variables, whose values can be referred to
before they are set. Define a type LVar and a monad Logic in terms of ST,
supporting operations:



131

newLVar :: Logic s (LVar s α)
readLVar :: LVar s α → α
writeLVar :: LVar s α → α → Logic s ()

where s is again a state-thread identifier. The intention is that an LVar should
be written exactly once, but its value maybe read beforehand, between its
creation and the write—lazy evaluation is at work here. Note that readLVar
does not have a monadic type, and so can be used anywhere.

Clearly, we will need to use value recursion in implementing newLVar, allowing us to

access the value of a logical variable before it is actually set. There is a small problem,

however. How do we determine the scope of a logical variable, i.e., how do we make it

available to the rest of the computation? We solve this problem by using the continuation

monad transformer, a clever trick suggested to us by John Hughes.5 Using this idea, the

Logic monad looks like:

data Logic s α = Logic {unL :: forall τ . (α → ST s τ) → ST s τ}

instance Monad (Logic s) where

return a = Logic (λk. k a)
Logic f �= g = Logic (λk. f (λa. unL (g a) k))

A logical variable is nothing but a value and a pointer to it. To read, we simply project

the value. To write, we update the mutable cell:

newtype LVar s α = LVar (STRef s α, α)

readLVar :: LVar s α → α
readLVar (LVar ( , v)) = v

writeLVar :: LVar s α → α → Logic s ()
writeLVar (LVar (r , )) a = Logic (λk. do writeSTRef r a

k ())

The magic that makes logical variables work is hidden in newLVar:

newLVar :: Logic s (LVar s α)
newLVar = Logic (λk. mdo r ← newSTRef (error “unbound LVar!”)

a ← k (LVar (r , v))
v ← readSTRef r
return a)

5An alternative would be to use the type newLVar :: (LVar s a → Logic s b) → Logic s b, requiring
the user to explicitly specify the scope, as in: newLVar (λv. . . .). In that case, the ST monad itself would
serve as the Logic monad, without any need for continuations.



132

Here is how newLVar works. We allocate a new mutable variable, r, and form the pair

(r, v), where v is the value that will eventually be stored in r. This pair is passed to

the continuation k, representing the remainder of the computation, i.e., the scope of the

new logical variable. Before returning the result of this call, we simply read the mutable

variable r, determining the actual value of v. (Note that the computation represented by k

is expected to call writeLVar on the newly created logical variable, setting its final value.)

The mdo-expression implicitly uses the function fixST, the value recursion operator for

Haskell’s internal state monad (see Section 4.4). The final bit of machinery we need is a

simple run method to extract values:

runLogic :: (forall s. Logic s τ) → τ
runLogic f = runST (unL f return)

Here are a some simple examples demonstrating the use of LVar’s:

t1 = do v ← newLVar
let val = readLVar v
return val

t2 = do v ← newLVar
let val = [0, 6 .. readLVar v ]
writeLVar v 42
return val

t3 = do v ← newLVar
let v1 = readLVar v
writeLVar v 43
let v2 = readLVar v
writeLVar v 42
let v3 = readLVar v
return (v1 , v2 , v3 )

t4 = do s ← newLVar
c ← newLVar
let sVal = readLVar s

cVal = readLVar c
writeLVar s “test”
writeLVar c ’l’
return (cVal : sVal)

We have:

Main> runLogic t1 :: Int Main> runLogic t2

Program error: unbound LVar! [0,6,12,18,24,30,36,42]

Main> runLogic t3 Main> runLogic t4

(42,42,42) "ltest"

In t1, we never write to v, hence its value is left undefined. All calls to writeLVar

except the last will be ignored,6 as demonstrated by t3. Finally, t4 shows that we can use

variables with different types in the same computation.

Claessen and Ljunglöf show how one can use logical variables to embed a typed func-

tional logic programming language in Haskell [13]. Similar to our implementation, they

6Of course, every call to writeLVar will be performed when the computation is run, in the given order.
However, all calls to readLVar will return the last value written, regardless of their order. For all practical
purposes, logical variables behave as constants, whose values can be used before they are set.



133

use the ST monad to get access to typed mutable variables. However, they only allow

access to logical variables inside their version of the Logic monad. (In our terms, their read-

LVar function has the type LVar s α → Logic s α.) It might be interesting to combine

their work with ours, allowing logical variables to be used anywhere, and hence providing

a more flexible embedding. We leave the exploration of this idea for future work.

9.6 Summary

In this chapter, we illustrated the use of value recursion operators and of the recursive

do-notation. We admit that some of our examples might seem a little contrived, with

the notable exception of the circuit modeling example of Section 1.2. However, it is our

hope that readers will be able to relate these examples to their own work, spotting further

applications for value recursion. Here are some common cases to watch for:

• Programs dealing with data flow equations. Assuming the underlying model is

monadic, any feedback loop or a cyclic dependency would signal the need for a

value recursion operator to tie the recursive knot. Our circuit modeling example is

an instance of this problem.

• Stateful objects with mutual dependencies. Again, if a monadic interface is used,

mutual dependencies will require the use of value recursion. Our implementation

of doubly linked circular lists, and the network programming example in O’Haskell

(see Section 10.1 for a brief discussion) are examples of this kind.

• Programs that combine several phases and use recursion to eliminate multiple traver-

sals of data structures, similar to the repmin problem of Section 9.1. If any one of

the eliminated phases require monadic effects, value recursion becomes the tool for

expressing the required cyclic dependence.

• Monadic programs where a particular ordering of effects forces us to use variables

that will only become available later, similar to the sorting networks or GUI design

examples of Section 9.2.



Chapter 10

Epilogue

In this thesis, we have studied the interaction between two fundamental notions in pro-

gramming languages: Recursion and effects. As we have seen, cyclic definitions in the

presence of monadic effects can be understood in terms of value recursion operators, whose

behavior can be characterized by means of a number of equational properties. It is our

belief that these properties capture the essence of the interaction satisfactorily. Of course,

the extent to which our axiomatization is successful will only be determined by practice.

Our properties could be deemed appropriate if they rule out useless definitions of value

recursion operators, and admit only those that are meaningful in practical programs. It is

still too early to come to a decisive conclusion in this regard, but we hope that our work

will be useful for both researchers and practitioners, especially as monads become more

and more pervasive in functional programming.

We conclude our exposition of value recursion by briefly reviewing the related work,

and pointing out some future research opportunities.

10.1 Related work

The interaction between recursion and shared computations has been extensively studied

by Hasegawa [32, 33]. Sharing is a commutative effect, i.e., the order of computations does

not matter.1 As we have explored in the first part of Chapter 6, recursion in commutative

monads can be understood in terms of traces in symmetric monoidal categories. Hasegawa

shows that giving a trace over a cartesian closed category is the same as giving a fixed-point

operator for it (see Theorem 6.2.4). This result is remarkable, as it provides an escape

from the usual domain-theoretic view, increasing the level of abstraction considerably. As

Hasegawa himself points out, however, when the underlying effect is non-commutative, we

can no longer stay in the monoidal world.

1Think of a recursive let-expression in Haskell. The order of bindings is irrelevant; equations can be
swapped around without changing the result.

134



135

Paterson introduced loop operators for handling value recursion in arrows [36, 66].

Although Paterson notes that some of the axioms are too strong for many practical cases,

he does not weaken his axiomatization to accommodate accordingly. On the syntactic

side, Paterson’s work introduced a convenient notation for programming with arrows in

Haskell, providing support for recursive bindings as well. However, rather than letting the

translation figure out recursive segments as we do in the mdo-notation, Paterson prefers

using an explicit keyword, rec, asking the programmers to mark recursive blocks explicitly.

(The rec keyword is modeled after O’Haskell’s handling of recursive bindings, reviewed

below.)

Building on our initial paper of monadic fixed-points [18], Benton and Hyland take

Hasegawa’s work one step further by generalizing the notion of trace to premonoidal

categories [5]. (It turns out that Benton and Hyland’s axiomatization and Paterson’s

work on arrows are essentially the same, although developed independently and presented

in slightly different contexts.) Similar to Paterson’s loop axioms, Benton and Hyland’s

axiomatization is too strong for many monads as well. As we have seen in the second half

of Chapter 6, their sliding and right tightening laws are simply not satisfiable in many

practical cases (see also Section 3.1). As a consequence, their work can explain value

recursion for the state monad (and those monads that embed into it, such as output and

environments), but not exceptions, lists, or the I/O monad. In general, any monad that

is based on a sum-like data type will fail to satisfy their requirements. In any case, we

consider Paterson and Benton and Hyland’s work as an important step toward a categorical

account of value recursion.

Friedman and Sabry [25] approach value recursion form an entirely different angle.

Rather than considering individual monads separately, they consider recursion itself as a

computational effect, following an operational definition: Allocate a reference cell, evaluate

the body, and update the cell with the result. (This process is essentially how Scheme

models recursion, as we have briefly covered in Section 5.3.) Since recursion is performed

in the combined monad, it is the users’ responsibility to translate original problems and

values to and from this combined world. That is, to model value recursion in a monad m,

they end up using a function:

mfixM :: (STM s m α → STM s m α) → STM s m α

where STM is the state monad transformer.2 Furthermore, all the morphisms of the

base monad have to be lifted into this “state enriched” world as well, and this is where

2Note that mfixM accepts a function from computations to computations, rather than from values to
computations as in the case for mfix. This change of view is necessary for implementing the allocate-
evaluate-overwrite model.



136

the interaction between particular effects and recursion has to be addressed by the user.

Unlike us, however, they do not postulate any properties, hence it is up to the user to

come up with correct liftings. As Friedman and Sabry observe themselves, their method

is rather inconvenient to use from a programming perspective, compared to our mdo-

expressions and direct handling of recursion in the given monad. Unfortunately, a similar

comparison is not immediately possible from a theoretical point of view, as the approaches

are fundamentally different.

From a practical point of view, much greater similarity to our work is found in Nord-

lander’s O’Haskell language. O’Haskell is an object oriented extension of Haskell, designed

for addressing issues in reactive functional programming [65]. One application of O’Haskell

is in programming layered network protocols. Each layer interacts with its predecessor

and successor by receiving and passing information in both directions. In order to connect

two protocols that have mutual dependencies, one needs a recursive knot-tying opera-

tion. Since O’Haskell objects are monadic, value recursion is employed in establishing

such connections. O’Haskell adds a keyword fix to the do-notation, whose translation is

a simplified version of our mdo-notation. The O’Haskell work, however, does not try to

axiomatize or generalize the idea any further.

Carlsson and Hallgren discuss a variety of loop operators in the context of their work

on stream based programming using fudgets [29]. Although the intended semantics of

their loop operators is quite similar to those of value recursion operators, the types and

the mechanics are somewhat different. For instance, one of their operators has the type:

loopLeftF :: F (Either α β) (Either α γ) → F β γ

which, intuitively, ties the recursive loop over α, resulting in a fudget from β to γ. Carlsson

and Hallgren use loop operators only in the framework of fudgets, without generalizing to

arbitrary monads, or studying their behavior more abstractly.

The circuit modeling example we have seen in Section 1.2 is discussed in detail in

Claessen’s recent dissertation [12]. Although Claessen points out the need for an appro-

priate looping combinator, he does not pursue the monadic approach any further. Instead,

he introduces the notion of observable sharing, which is a non-conservative3 extension to

Haskell [14]. (Briefly, observable sharing allows programmers to determine whether a cir-

cuit component is reached via a feedback loop, solving the infinite unfolding problem.)

Claessen argues that “...loop combinators are unfortunate because they introduce extra

clutter in the code that is hard to motivate” [12]. We believe that our mdo-notation

addresses Claessen’s concerns perfectly, relieving the programmers from error-prone and

3Since the addition of observational sharing violates referential transparency, the resulting language is
no longer pure. That is, the law: let x = M in N ≡ N [fix (λx. M )/x ] no longer holds.



137

cumbersome uses of explicit looping combinators. In addition, the monadic approach has

the obvious advantage of keeping the underlying language pure, providing a nice and clean

semantic framework.

Turbak and Wells introduce the cycamore data type, which is aimed at simplifying

the use of cyclic structures in declarative languages [86]. The basic idea is to associate

each node in a cycamore with a global unique identifier, similar to our doubly linked list

example of Section 9.4. They consider implementations in both ML and Haskell, and the

Haskell version makes use of references in the state monad to implement unique identifiers.

As expected, Turbak and Wells employ value recursion in order to express the required

cyclic structure.

10.2 Future Work

Although we have concentrated on applications in functional programming, value recursion

certainly makes sense in other programming paradigms as well. One future research direc-

tion to explore is the problem of creating cyclic structures in imperative languages. Such

structures arise quite frequently in practice. For instance, the following example presents

an opportunity in IBM’s data manipulation language for its DB2 database system [11]:4

VEmp_t

VPerson_t
VDept_t

mgr

dept

create type VDept_t as

(name Varchar(20)) mode db2sql;

create type VPerson_t as

(name Varchar(40)) mode db2sql;

create type VEmp_t under VPerson_t as

(dept Ref(VDept_t)) mode db2sql;

alter type VDept_t

add attribute mgr Ref(VEmp_t);

In this example, the user creates three types: department, person, and employee. Each

department has a name and a manager. Each person is identified by a name. Finally, each

employee is a VPerson t, which further has a (reference to a) particular department. While

the create type directives for VPerson t and VEmp t reflect the structure correctly, the

VDept t type cannot be created with both of its required attributes. Clearly, the difficulty

arises as the VEmp t type is not yet visible when VDept t is created. The final alter type

directive remedies the situation in a roundabout fashion, adding the missing attribute.

4This example was pointed out to us by David Maier.



138

We see two opportunities with regard to our research. First of all, better syntactic

support (along the lines of our mdo-notation) would help get rid of the final alter type

directive, keeping the declaration of VDept t self-contained, possibly simplifying further

analyses. More importantly, if such declarations are ever given a monadic semantics, value

recursion would be the right tool for modeling the cyclic dependency. Similar opportunities

exist in other languages as well.

On the theoretical side, we would like to see value recursion studied in a more abstract

setting. In this regard, the trace-fixed point correspondence, as we have studied in Chap-

ter 6, seems to be the right direction to proceed. We would like to investigate the reasons

why the axiomatization via traces turns out to be too strong, hopefully augmenting the

theory to capture the practical aspects more precisely. For instance, it would be inter-

esting to pin down the role of the right shrinking property precisely. As we have seen in

Chapter 3, right shrinking property is not satisfiable whenever the �= operator is strict

in its first argument, and hence a weakening of the trace-based axiomatizations seems

inevitable.

Several questions remain to be explored regarding the behavior of value recursion op-

erators. For instance, we lack a reasoning principle along the lines of fixed-point induction.

Recall that the fixed-point induction principle states that P (fix f) can be established by

showing that P ⊥ ∧ ∀d.(P d ⇒ P (f d)) holds, provided P is an admissible predicate.

(The obvious generalization: P ⊥ ∧ ∀d.(P d ⇒ P (d �= f)) ⇒ P (mfix f) is not sound,

as it implicitly assumes an unfolding view of value recursion.) It is probably the case that

one needs to formulate and prove a separate induction principle for each new mfix, rather

than looking for a universal principle that would work for all cases. While our properties

provide a framework for reasoning about terms involving mfix, such an induction principle

might prove essential for reasoning about value recursion in general.

Another question is the automatic construction of value recursion operators for ar-

bitrary monads. Although we have seen many “design patterns,” it is still not clear

how to define an appropriate operator for a given monad that will satisfy our properties.

(The continuation monad seems to be the problem child in this regard.) Although it is

highly unlikely that a magic recipe for automatic construction of such operators exists, it

would be nice to pin down the exact conditions under which their existence (and possibly

uniqueness) can be guaranteed.

The semantics we have presented in Chapter 8 for modeling monadic I/O needs some

improvements to simplify reasoning with symbolic terms. Furthermore, we would like

to extend our language to support more features, such as concurrency and exceptions.

While concurrency seems relatively easy to support, it is not immediately clear how to

extend our system to include Haskell’98 style exceptions. More importantly, it would be



139

interesting to show that the addition of monadic I/O primitives, mutable variables, and

support for value recursion preserves the parametricity principle. Also, we would like to

design an accompanying abstract machine semantics, which might be useful as a basis for

constructing interpreters for similar languages.

Whether the mdo-notation should eventually replace the current do-notation in Haskell

is a question that will have to be answered by the Haskell community. While we believe

that a single construct should handle both recursive and non-recursive cases, such a change

potentially breaks existing programs, and it might be a better idea to make the switch in

a future version of Haskell.



Appendix A

Fixed-point operators

In this appendix, we briefly review fixed-point operators. Our aim is to introduce the

terminology we use, providing pointers to the literature for details as necessary.

In the domain theoretic semantics of programming languages, types are modeled by

domains and functions are modeled by continuous maps. The meaning of a typical recur-

sive declaration of the form let x = M in N is taken to be N [fix (λx.M )/x ], where

fix f =
⊔

i

f i ⊥α (A.1)

assuming M has type α. Note that x need not be a function only, we might define recursive

values this way as well. For instance, we have (using Haskell-like notation):

let ones = 1 : ones in ones ≡ fix (λones. 1 : ones)

The least fixed-point theorem states that fix f is the least fixed-point of f [76, 92].

That is, (i) it satisfies the fixed-point property: f (fix f) = fix f , and (ii) it is the least

such value, i.e., for all x s.t. x = f x, we have fix f v x. We use the name fix only to

mean this particular fixed-point operator over domains.

The theory of fixed points is extensively studied [9, 10, 81]. It is neither possible, nor

necessary for us to summarize this huge body of work here; we will simply state the results

that are most relevant to our work.

Property A.1 (Dinaturality.) Let f :: α → β, g :: β → α. The dinaturality1 property

of fix states that:

fix (f · g) = f (fix (g · f ))

1The term dinaturality refers to the fact that fix can be viewed as a dinatural transformation between
certain functors [55, 80]. We will not need this level of detail in our work, so we skip the details.

140



141

Property A.2 (Bekič.) Let f :: α× α→ α. The Bekič property of fix states that:

fix (λx. fix (λy. f (x , y))) = fix (λx. f (x , x ))

Or, equivalently,

fix (λt. fix (λv. f (π1 t , π2 v))) = fix f

where f :: α× β → α× β. It is easy to generalize to arbitrary number of variables, rather

than just two; see Winskel’s textbook for details [92].2

In Chapter 6, we consider fixed-point operators in more abstract settings, i.e., without

assuming that the underlying structure is domains and continuous maps. We assume a

minimal acquaintance with category theory in the following discussion [2, 70]. The basic

structure we work with is a category C with finite products. We write
�

for the terminal

object. The set of arrows between two objects A and B is denoted C(A, B). We will need

the following basic definitions [33, 79]:

Definition A.3 A fixed-point operator is a family of functions (·)∗A : C(A, A)→ C(
�
, A),

such that for any f : A→ A, f · f ∗ = f∗.

Definition A.4 A parameterized fixed-point operator is a family of functions:

(·)†A,X : C(A×X, X)→ C(A, X)

satisfying:

• Parameterized fixed-point property: For f : A×X → X, f · 〈idA, f †〉 = f†.

• Naturality in A: For f : A×X → X and g : B → A, (f · (g × idX))† = f† · g.

Definition A.5 A Conway operator is a parameterized fixed-point operator that further

satisfies:

• Dinaturality: For f : A×X → Y and g : A×Y → X, (g · 〈πA,X
1 , f〉)† = g · 〈idA, (f ·

〈πA,Y
1 , g〉)†〉.

• Diagonal property: For f : A×X ×X → X, f †† = (f · (idA × 〈idX , idX〉))
†.

The reader need not master these definitions in full, only a basic familiarity is sufficient.

For the most part we will be working with fix, and using the dinaturality and Bekič

properties given before, which are much easier to read and understand.

2Bekič’s property appears in many different but equivalent forms in the literature [3]. The versions we
have given here are the ones that are most suitable for our purposes.



Appendix B

Proofs

In the following proofs, we assume true products. In the case of lifted products, special care

must be taken to ensure that the difference between (⊥,⊥) and ⊥ is not visible. The cases

when the distinction does matter have been pointed out in the text. (See Warning 2.6.7

as well.)

To save space, we will shorten return to η in our proofs. Also note that we use the name

map to refer to Haskell’s fmap, i.e., map :: (α → β) → m α → m β for all monads m,

defined by the equation map f m = m �= η · f.

B.1 Proposition 2.5.2

Given Equation 2.7, establishing 2.8 is easy. We have:

mfix (λ(x , ). mfix (λ( , y). f (x , y)))

= mfix (λt. mfix (λu. f (π1 t , π2 u)))

= mfix (λt. mfix (λu. (λ(x , y). f (π1 x , π2 y)) (t , u)))

= mfix (λt. (λ(x , y). f (π1 x , π2 y)) (t , t)) {Equation 2.7}

= mfix (λt. f (π1 t , π2 t))

= mfix f

In the last step, we used the fact that (π1 t, π2 t) = t, which only holds for true products.

To show the correspondence in the other direction, let ∆ x = (x, x), and note that ∆

is strict (again thanks to true products). We have:

mfix (λx. f (x , x ))

= mfix (f · ∆)

= map (π1 · ∆) (mfix (f · ∆)) {π1 · ∆ = id}

= map π1 (map ∆ (mfix (f · ∆)))

= map π1 (mfix (map ∆ · f )) {slide}

142



143

= map π1 (mfix (λx. mfix (λy. (map ∆ · f ) (π1 x , π2 y)))) {Equation 2.8}

= map π1 (mfix (λx. mfix (map ∆ · (λy. f (π1 x , y)) · π2)))

= map π1 (mfix (λx. map ∆ (mfix (λy. f (π1 x , y))))) {slide}

= map π1 (mfix (map ∆ · (λx. mfix (λy. f (x , y))) · π1))

= (map π1 · map ∆) (mfix (λx. mfix (λy. f (x , y)))) {slide}

= mfix (λx. mfix (λy. f (x , y)))

In case of lifted products (Proposition 2.5.4), the proof proceeds similarly. The last

step in the first proof is not applicable, but in that case we can replace the last line with

mfix (λ˜ (x , y). f (x , y)), which is predicted by Equation 2.10. The second implication

follows similarly.

B.2 Proposition 2.6.8

mfix (λ(x , y). f x �= λz. η (z , h z (x , y)))

= mfix (λt. (f · π1) t �= λz. η (z , h z t))

= mfix (λt. (λ(u, v). (f · π1) u �= λz. η (z , h z v)) (t , t))

= mfix (λx. mfix (λy. (f · π1) x �= λz. η (z , h z y))) {nest}

= mfix (λx. (f · π1) x �= λz. mfix (λy. η (z , h z y))) {left shrink}

= mfix (λx. (f · π1) x �= λz. η (fix (λy. (z , h z y)))) {purity}

= mfix (λx. (f · π1) x �= λz. η (z , fix (λy. h z (z , y)))) {nest (fix )}

= mfix f �= λz. η (z , fix (λy. h z (z , y))) {pure right}

= mfix f �= λz. η (fix (λ(x , y). (z , h z (x , y)))) {nest (fix )}

B.3 Proposition 2.7.1

mfix (λ(x , ). f x �= λy. η (q , y))

= mfix (map (λy. (q , y)) · f · π1)

= map (λy. (q , y)) (mfix (f · π1 · (λy. (q , y)))) {strong sliding}

= map (λy. (q , y)) (mfix (λy. f q))

= map (λy. (q , y)) (f q) {constant functions}

= f q �= λy. η (q , y)

The need for strong sliding is obvious, since otherwise we would have to require f q =

f ⊥ to satisfy the precedent.



144

B.4 Lemma 3.1.4

Recall that η is a natural transformation, that is, it satisfies the equality map h · ηα =

ηβ · h for all h :: α→ β. Assume η is strict at the type α, i.e., ηα ⊥α = ⊥m α, and �= is

strict in its first argument. Pick an arbitrary type β. We will show that ηβ ⊥β = ⊥m β:

ηβ ⊥β

= ηβ (const ⊥β ⊥α)

= (ηβ · const ⊥β) ⊥α

= (map (const ⊥β) · ηα) ⊥α {naturality of η}

= map (const ⊥β) (ηα ⊥α)

= map (const ⊥β) ⊥m α {assumption: ηα ⊥α = ⊥m α}

= ⊥m α �= η · const ⊥β {definition of map }

= ⊥m β {assumption: �= is left-strict}

B.5 Proposition 3.4.2

Given arbitrary f and g, define:

h x 1 = f x

h x 2 = g x

We have:

mfix (λx. f x ⊕ g x )

= mfix (λx. h x 1 ⊕ h x 2)

= mfix (λx. (η 1 �= λy. h x y) ⊕ (η 2 �= λy. h x y))

= mfix (λx. (η 1 ⊕ η 2) �= λy. h x y)

= (η 1 ⊕ η 2) �= λy. mfix (λx. h x y)

= mfix (λx. h x 1) ⊕ mfix (λx. h x 2)

= mfix f ⊕ mfix g

{Eqn. 3.8}

{left shrink}

{Eqn. 3.8}

B.6 Proposition 4.3.1

We consider each case in turn:

4.5: Right to left implication is immediate. From left to right, fix (f · head) must be

⊥, which only happens when f ⊥ = ⊥. (Note that this establishes the strictness property.)

4.6: Similar to the previous case.

4.7: Simple case analysis. If mfix f is ⊥, f is strict by 4.5, and both sides re-

duce to ⊥. If mfix f is [ ], then f ⊥ = [ ] by 4.6, reducing both sides to ⊥ again.



145

Finally, if mfix f is a cons-cell, the case expression must take its second branch, i.e.,

head (mfix f ) = head (fix (f · head)), which is exactly the right hand side by the di-

naturality of fix.

4.8: Similar to the previous case, if mfix f equals ⊥ or [ ], both sides yield⊥. Otherwise,

case must take its second branch, i.e., tail (mfix f ) = mfix (tail · f ).

4.9: Consider the test expression for case. We have:

fix ((λx. f x : g x ) · head) = (λx. f x : g x ) (fix (head · (λx. f x : g x )))

= (λx. f x : g x ) (fix f )

= f (fix f ) : g (fix f )

= fix f : g (fix f )

Hence, the case expression takes its second branch, yielding:

mfix (λx. f x : g x ) = fix f : mfix (tail · (λx. f x : g x ))

= fix f : mfix g

4.10: We will use the approximation lemma [7, 38], which states that:

(∀n. approx n xs = approx n ys) ⇒ xs = ys

for arbitrary lists xs and ys. The function approx is defined as:

approx :: Integer → [α] → [α]
approx 0 xs = ⊥
approx (n+1) ⊥ = ⊥
approx (n+1) [ ] = [ ]
approx (n+1) (x :xs) = x : approx n xs

We will prove:

∀n.∀f, g. approx n (mfix (λx. f x ++ g x )) = approx n (mfix f ++ mfix g)

by induction on n, implying the required result. Base case (n = 0) is trivial. The induction

hypothesis is:

∀f, g. approx k (mfix (λx. f x ++ g x )) = approx k (mfix f ++ mfix g) (B.1)

Note that the hypothesis is assumed for all f and g. This generality will be essential in

establishing the induction step. We need to show:

∀f, g. approx (k+1) (mfix (λx. f x ++ g x )) = approx (k+1) (mfix f ++ mfix g)

Pick two arbitrary functions f ′, g′ :: α→ [α]. It suffices to show that:

approx (k+1) (mfix (λx. f ′ x ++ g ′ x )) = approx (k+1) (mfix f ′ ++ mfix g ′) (B.2)



146

which we establish by case analysis on f ′ ⊥. The cases ⊥ and [ ] are immediate. By 4.5

and 4.6, both sides reduce to ⊥ and approx (k + 1) (mfix g ′), respectively. If f ′ ⊥ is a

cons-cell, it follows that

∀x. f ′ x = (head · f ′) x : (tail · f ′) x (B.3)

Simple inspection of the definition of mfix reveals that mfix f ′ must be a cons-cell in this

case as well. Hence, we have:

mfix f ′ = head (mfix f ′) : tail (mfix f ′) (B.4)

Therefore,

approx (k+1) (mfix (λx. f ′ x ++ g ′ x ))

= approx (k+1) (mfix (λx. ((head · f ′) x : (tail · f ′) x ) ++ g ′ x ))

= approx (k+1) (mfix (λx. (head · f ′) x : ((tail · f ′) x ++ g ′ x )))

= approx (k+1) (fix (head · f ′) : mfix (λx. (tail · f ′) x ++ g ′ x ))

= fix (head · f ′) : (approx k (mfix (λx. (tail · f ′) x ++ g ′ x )))

= fix (head · f ′) : (approx k (mfix (tail · f ′) ++ mfix g ′))

= approx (k+1) ((fix (head · f ′) : mfix (tail · f ′)) ++ mfix g ′)

= approx (k+1) ((head (mfix f ′) : tail (mfix f ′)) ++ mfix g ′)

= approx (k+1) (mfix f ′ ++ mfix g ′)

{Eqn. B.3}

{Eqn. 4.9}

{I.H.}

{Eqns. 4.7, 4.8}

{Eqn. B.4}

completing the proof.

B.7 Proposition 4.9.1

We need to show that the function mfixErrM satisfies strictness, purity and left shrinking

properties. All cases follow from the corresponding properties of mfixM, and simple sym-

bolic manipulation. We will only present the left shrinking case to illustrate the technique.

To avoid confusion due to overloaded operators, we will write returnM and bindM for the

morphisms of m, while returnErrM and bindErrM for those of Err m.

mfixErrM (λx. a ‘bindErrM ‘ λy. f x y)

= {Equation 4.36, expand bindErrM }

mfixM (λx. a ‘bindErrM ‘ λy. f (unErr x ) y)

= {expand bindErrM }

mfixM (λx. a ‘bindM ‘ λy. case y of

Ok q → f (unErr x ) q

Err s → returnM (Err s))



147

= {left shrinking on mfixM }

a ‘bindM ‘ λy. mfixM (λx. case y of

Ok q → f (unErr x ) q

Err s → returnM (Err s))

= {Proposition 2.6.2, case is a shortcut for if}

a ‘bindM ‘ λy. case y of

Ok q → mfixM (λx. f (unErr x ) q)

Err s → mfixM (λx. returnM (Err s))

= {fold down mifxErrM on the first branch , Proposition 2.6.1 on the second}

a ‘bindM ‘ λy. case y of

Ok q → mfixErrM (λx. f x q)

Err s → returnM (Err s)

= {fold down bindErrM }

a ‘bindErrM ‘ λy. mfixErrM (λx. f x y)

B.8 Proposition 6.3.5

We will need the following two lemmas:

Lemma B.8.1 Let T be a monad and mfix be a value recursion operator satisfying the

right shrinking law. Let f : X → T (B ×X) and g : B ×X → T B ′. Then,

mfix (λ( , x ). f x �= λz. g z �= λw. η (w , π2 z ))

= mfix (λ( , x ). f x ) �= λz. g z �= λw. η (w , π2 z )

Proof Note that the first mfix is at instance B ′×X, while the second is at B×X . We

reason as follows:

mfix (λ( , x ). f x �= λz. g z �= λw. η (w , π2 z ))

= mfix (λ( , x ). f x �= λz. g z �= λw. η (w , z ) �= λ(p, q). η (p, π2 q))

= {slide, λ(p, q). (p, π2 q) is strict}

mfix ((λ( , x ). f x �= λz. g z �= λw. η (w , z )) · (λ(p, q). (p, π2 q)))

�= λ(p, q). η (p, π2 q)

= mfix (λ( , t). f (π2 t) �= λz. g z �= λw. η (w , z )) �= λ(p, q). η (p, π2 q)

= {right shrinking}

mfix (λ( , x ). f x ) �= λz. g z �= λw. η (w , π2 z )

�



148

The second lemma states a variant of Equation 3.7:

Lemma B.8.2 Let f :: α→ m (β, τ), g :: τ → m α, where m is a commutative monad.

Then,

mfix (λt. g (π2 t) �= f ) �= η · π1

= mfix (λt. f (π2 t) �= λt ′. g (π2 t ′) �= λa. η (π1 t ′, a)) �= η · π1

provided mfix satisfies strong sliding and nesting.

Proof (Sketch) Note that the first mfix is at instance β × τ , while the second one is

at β × α. The proof first extends the recursion to α × (β × τ), applies commutativity

(Proposition 3.3.2), and then gets rid of the τ argument. �

To establish Proposition 6.3.5, we need to verify that the definition of trace as given

by 6.21 satisfies Equations 6.14- 6.20. We consider each case in turn:

• Left tightening (6.14):

trace (λ(a, x ). g a �= λa ′. f (a ′, x ))

= λa. mfix (λ(b, x ). g a �= λa ′. f (a ′, x )) �= η · π1

= {left shrinking on mfix}

λa. g a �= λa ′. mfix (λ(b, x ). f (a ′, x )) �= η · π1

= λa. g a �= trace f

• Right tightening (6.15):

trace (λ(a, x ). f (a , x ) �= λ(b, x ). g b �= λb ′. η (b′, x ))

= λa. mfix (λ(b, x ). f (a, x ) �= λ(b, x ). g b �= λb ′. η (b′, x )) �= η · π1

= λa. mfix (λ(b, x ). f (a, x ) �= λz.(g · π1) z �= λb ′. η (b′, π2 z )) �= η · π1

= {lemma B.8.1}

λa. mfix (λ(b, x ). f (a, x )) �= λz. (g · π1) z

= λa. mfix (λ(b, x ). f (a, x )) �= λz. η (π1 z ) �= λw. g w

= λa. mfix (λ(b, x ). f (a, x )) �= η · π1 �= g

= λa. trace f a �= g

• Sliding (6.16):

trace (λ(a, x ). g x �= λx ′. f (a, x ′))

= λa. mfix (λ(b, x ). g x �= λx ′. f (a , x ′)) �= η · π1

= λa. mfix (λt. g (π2 t) �= curry f a) �= η · π1

= {Lemma B.8.2}



149

λa. mfix (λt. curry f a (π2 t) �= λt ′. g (π2 t ′)

�= λx ′. η (π1 t ′, x ′)) �= η · π1

= λa. mfix (λ(b, x ′). f (a, x ′) �= λ(b, x ). g x

�= λx ′. η (b, x ′)) �= η · π1

= trace (λ(a , x ′). f (a, x ′) �= λ(b, x ). g x �= λx ′. η (b, x ′))

• Vanishing (6.17):

trace (λ(a, ()). f a �= λb. η (b, ()))

= λa. mfix (λ(b, ()). f a �= λb. η (b, ())) �= η · π1

= {constant functions}

λa. f a �= λb. η (b, ()) �= η · π1

= λa. f a �= λb. b

= f

• Vanishing (6.18): Let

asc (x , (y , z )) = ((x , y), z )

iasc ((x , y), z ) = (x , (y , z ))

Then,

trace (trace (λ((a, x ), y). f (a, (x , y)) �= λ(b, (x , y)). η ((b, x ), y)))

= trace (trace (λt. f (iasc t) �= η · asc))

= trace (trace (map asc · f · iasc))

= trace (λ(a , x ). mfix (λ(( , ), y). (map asc · f · iasc) ((a, x ), y))�= η · π1)

= trace (λ(a , x ). mfix (map asc · (λ(( , ), y). f (a, (x , y)))) �= η · π1)

= {slide, asc is strict }

trace (λ(a , x ). mfix (λ( , ( , y)). f (a , (x , y))) �= η · asc �= η · π1)

= λa. mfix (λ( , x ). mfix (λ( , ( , y)). f (a , (x , y))) �= η · π1 · asc)

�= η · π1

= {slide, π1 · asc is strict }

λa. mfix ((λ( , x ). mfix (λ( , ( , y)). f (a, (x , y)))) · π1 · asc)

�= η · (π1 · π1 · asc)

= {π1 · π1 · asc = π1}

λa. mfix (λ( , (x , )). mfix (λ( , ( , y)). f (a, (x , y)))) �= η · π1

= {unnest triple}

λa. mfix (λ( , (x , y)). f (a, (x , y))) �= η · π1

= trace f



150

• Superposing (6.19): Let asc be defined as above,

trace (λ((c, a), x ). f (a , x ) �= λ(b, x ). η ((c, b), x ))

= λ(c, a). mfix (λ(( , ), x ). f (a , x ) �= λ(b, x ). η ((c, b), x )) �= η · π1

= {slide}

λ(c, a). mfix (λ( , ( , x )). f (a , x ) �= λ(b, x ). η (c, (b, x )))

�= η · π1 · asc

= {pure right shrinking}

λ(c, a). mfix (λ(b, x ). f (a, x )) �= λ(b, x ). η (c, b)

= λ(c, a). mfix (λ(b, x ). f (a, x )) �= λ(b ′, x ). η b′ �= λb. η (c, b)

= λ(c, a). mfix (λ(b, x ). f (a, x )) �= η · π1 �= λb. η (c, b)

= λ(c, a). trace f a �= λb. η (c, b)

• Yanking (6.20):

trace (λ(a, a ′). η (a ′, a))

= λa. mfix (λ(b, a ′). η (a ′, a)) �= η · π1

= {purity}

λa. η (fix (λ(b, a ′). (a ′, a))) �= η · π1

= λa. η (a, a) �= η · π1

= η



Bibliography

(Each entry is followed by a list of page numbers on which the citation appears. All cited
URLs were last accessed in October 2002.)

[1] Achten, P., and Peyton Jones, S. Porting the Clean Object I/O Library to
Haskell. In Proceedings of the 12th International Workshop on Implementation of
Functional Languages (2000), pp. 194–213. (98)

[2] Barr, M., and Wells, C. Category Theory for Computing Science, second ed.
Prentice Hall International Series in Computer Science. Prentice Hall, 1995. (10, 46,
68, 75, 141)

[3] Bekič, H. Programming Languages and their Definition. Selected Papers, vol. 177
of Lecture Notes in Computer Science. Springer Verlag, 1984. (141)

[4] Benton, N., Hughes, J., and Moggi, E. Monads and ef-
fects. Lecture notes from APPSEM’00 Summer School. URL:
www.disi.unige.it/person/MoggiE/APPSEM00/BHM-revised.ps.gz, 2000. (10,
130)

[5] Benton, N., and Hyland, M. Traced premonoidal categories (Extended Abstract).
In Fixed Points in Computer Science Workshop, FICS’02 (2002). (66, 79, 80, 81,
82, 83, 123, 135)

[6] Bird, R. S. Using circular programs to eliminate multiple traversals of data. Acta
Informatica 21 (1984), 239–250. (122)

[7] Bird, R. S. Introduction to Functional Programming using Haskell, second ed. Pren-
tice Hall Europe, London, 1998. (10, 42, 47, 101, 145)

[8] Bjesse, P., Claessen, K., Sheeran, M., and Singh, S. Lava: Hardware design
in Haskell. In International Conference on Functional Programming (Baltimore, July
1998). (2)

[9] Bloom, S. L., and Ésik, Z. Fixed-point operations on ccc’s. Part I. Theoretical
Computer Science 155, 1 (1996), 1–38. (66, 140)

[10] Bloom, S. L., and Ésik, Z. The equational logic of fixed points. Theoretical
Computer Science 179, 1–2 (1997), 1–60. (66, 140)

151

www.disi.unige.it/person/MoggiE/APPSEM00/BHM-revised.ps.gz


BIBLIOGRAPHY 152

[11] Carey, M. J., Chamberlin, D. D., Narayanan, S., Vance, B., Doole, D.,

Rielau, S., Swagerman, R., and Mattos, N. M. O-O, what have they done to
DB2? In VLDB’99, Proceedings of 25th International Conference on Very Large Data
Bases, September 7-10, 1999, Edinburgh, Scotland, UK (1999), M. P. Atkinson, M. E.
Orlowska, P. Valduriez, S. B. Zdonik, and M. L. Brodie, Eds., Morgan Kaufmann,
pp. 542–553. (137)

[12] Claessen, K. Embedded languages for describing and verifying hardware. PhD
thesis, Chalmers University of Technology, Göteborg, Sweden, 2001. (2, 4, 136)

[13] Claessen, K., and Ljunglöf, P. Typed logical variables in Haskell. In Haskell
Workshop 2000 (2000). (132)

[14] Claessen, K., and Sands, D. Observable sharing for functional circuit description.
In Asian Computing Science Conference (1999), pp. 62–73. (136)

[15] Cormen, T., Leiserson, C., Rivest, R., and Stein, C. Introduction to Algo-
rithms, second ed. The MIT Press, Cambridge, MA, 2001. (125)

[16] de Moor, O. An exercise in polytypic program derivation: repmin. Unpublished
manuscript. URL: web.comlab.ox.ac.uk/oucl/work/oege.demoor/pubs.htm,
1996. (122)

[17] Erkök, L., and Launchbury, J. A recursive do for Haskell: Design and imple-
mentation. Tech. Rep. CSE-00-014, Oregon Graduate Institute School of Science and
Engineering, Department of CSE, OHSU, August 2000. (88, 95)

[18] Erkök, L., and Launchbury, J. Recursive monadic bindings. In Proceedings
of the Fifth ACM SIGPLAN International Conference on Functional Programming,
ICFP’00 (September 2000), ACM Press, pp. 174–185. (6, 125, 135)

[19] Erkök, L., and Launchbury, J. A recursive do for Haskell. In Haskell Work-
shop’02, Pittsburgh, Pennsylvania, USA (Oct. 2002), ACM Press, pp. 29–37. (84)

[20] Erkök, L., Launchbury, J., and Moran, A. Semantics of fixIO. In Fixed Points
in Computer Science Workshop, FICS’01 (September 2001). (90, 98, 121)

[21] Erkök, L., Launchbury, J., and Moran, A. Semantics of value recursion for
monadic input/output. Journal of Theoretical Informatics and Applications 36, 2
(2002), 155–180. (98)

[22] Espinosa, D. Semantic Lego. PhD thesis, Columbia University, 1995. (33, 58)

[23] Felleisen, M., and Hieb, R. A revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science 103, 2 (1992), 235–271. (104)

[24] Filinski, A. Representing monads. In Conference Record of POPL ’94: 21ST ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Portland,
Oregon (New York, NY, 1994), pp. 446–457. (58)

web.comlab.ox.ac.uk/oucl/work/oege.demoor/pubs.htm


BIBLIOGRAPHY 153

[25] Friedman, D., and Sabry, A. Recursion is a Computational Effect. Tech. Rep.
TR546, Computer Science Department, Indiana University, Dec. 2000. (135)

[26] GHC web page. URL: www.haskell.org/ghc. (96)

[27] Gordon, A. D. Functional Programming and Input/Output. Distinguished Dis-
sertations in Computer Science. Cambridge University Press, Sept. 1994. (99, 112,
121)

[28] Hallgren, T., and Carlsson, M. Programming with fudgets. In Advanced Func-
tional Programming (1995), vol. 925 of Lecture Notes in Computer Science, Springer.
(51)

[29] Hallgren, T., and Carlsson, M. Fudgets – Purely Functional Processes with
applications to Graphical User Interfaces. PhD thesis, Chalmers University of Tech-
nology, Göteborg, Sweden, 1998. (51, 136)

[30] Hankin, C. Lambda Calculi: A Guide for Computer Scientists, vol. 3 of Graduate
Texts in Computer Science. Clarendon Press, Oxford, 1994. (10)

[31] Harper, R., Duba, B. F., and MacQueen, D. B. Typing first-class continuations
in ML. Journal of Functional Programming 3, 4 (October 1993), 465–484. Also in
ACM POPL 91, pp. 163–173. (58, 62)

[32] Hasegawa, M. Recursion from cyclic sharing: Traced monoidal categories and
models of cyclic lambda calculi. In Typed Lambda Calculus and Applications (1997),
pp. 196–213. (66, 71, 134)

[33] Hasegawa, M. Models of Sharing Graphs, A categorical semantics of let and letrec.
Distinguished Dissertations in Computer Science. Springer Verlag, 1999. (66, 67, 68,
69, 70, 78, 134, 141)

[34] Hughes, J. Global variables in Haskell. Draft paper. URL:
www.cs.chalmers.se/~rjmh/Globals.ps. (89)

[35] Hughes, J. Why functional programming matters. Computer Journal 32, 2 (1989),
98–107. (10)

[36] Hughes, J. Generalising monads to arrows. Science of Computer Programming 37,
1-3 (May 2000), 67–111. (79, 135)

[37] Hugs (Haskell Users Gofer System) web page. URL: www.haskell.org/hugs. (96)

[38] Hutton, G., and Gibbons, J. The generic approximation lemma. Information
Processing Letters 79, 4 (2001), 197–201. (50, 145)

[39] Jeffrey, A. Premonoidal categories and a graphical view of programs. Unpublished
manuscript. URL: fpl.cs.depaul.edu/ajeffrey/premon/paper.html, 1997. (79)

www.haskell.org/ghc
www.cs.chalmers.se/~rjmh/Globals.ps
www.haskell.org/hugs
fpl.cs.depaul.edu/ajeffrey/premon/paper.html


BIBLIOGRAPHY 154

[40] Jones, M. P. First-class polymorphism with type inference. In Proceedings of the
Twenty Fourth ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’97) (1997). (88)

[41] Jones, M. P. Typing Haskell in Haskell. In Proceedings of the 1999 Haskell Workshop
(1999). (95, 101)

[42] Jones, M. P., and Duponcheel, L. Composing monads. Tech. Rep.
YALEU/DCS/RR-1004, Department of Computer Science, Yale University, Dec.
1993. (33, 49)

[43] Joyal, A., Street, R. H., and Verity, D. Traced monoidal categories. Math-
ematical Proceedings of the Cambridge Philosophical Society 119, 3 (1996), 447–468.
(66, 68, 69, 70)

[44] Kelsey, R., Clinger, W., and Rees, J. (Editors.) Revised5 report on the algo-
rithmic language Scheme. ACM SIGPLAN Notices 33, 9 (Sept. 1998), 26–76. (58,
63)

[45] King, D. J., and Launchbury, J. Structuring depth-first search algorithms in
Haskell. In Conference Record of POPL ’95: 22nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (1995), pp. 344–354. (130)

[46] King, D. J., and Wadler, P. Combining monads. In Glasgow Workshop on
Functional Programming (Ayr, July 1992), J. Launchbury and P. M. Sansom, Eds.,
Springer Verlag. (28)

[47] Launchbury, J. Lazy imperative programming. In Proceedings of the ACM SIG-
PLAN Workshop on State in Programming Languages, Copenhagen, DK, SIPL ’92
(1993), pp. 46–56. (2)

[48] Launchbury, J. A natural semantics for lazy evaluation. In Conference record of
the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, Charleston, South Carolina (1993), pp. 144–154. (99, 108,
109)

[49] Launchbury, J., Lewis, J., and Cook, B. On embedding a microarchitectural
design language within Haskell. In Proceedings of the ACM SIGPLAN International
Conference on Functional Programming (ICFP ’99) (1999), pp. 60–69. (2, 4, 85)

[50] Launchbury, J., and Paterson, R. Parametricity and unboxing with unpointed
types. In European Symposium of Programming (Apr. 1996), vol. 1058 of Lecture
Notes in Computer Science, Springer, pp. 204–218. (10, 20)

[51] Launchbury, J., and Peyton Jones, S. L. Lazy functional state threads. ACM
SIGPLAN Notices 29, 6 (June 1994), 24–35. (42)

[52] Launchbury, J., and Peyton Jones, S. L. State in Haskell. Lisp and Symbolic
Computation 8, 4 (Dec. 1995), 293–341. (42, 121, 128)



BIBLIOGRAPHY 155

[53] Liang, S. Modular Monadic Semantics and Compilation. PhD thesis, Yale Univer-
sity, 1998. (1, 31, 33, 53, 54, 55, 61)

[54] Liang, S., Hudak, P., and Jones, M. P. Monad transformers and modular
interpreters. In Conference record of POPL ’95, 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages: San Francisco, California,
January 22–25, 1995 (1995), ACM, Ed., ACM Press, pp. 333–343. (33)

[55] MacLane, S. Categories for the Working Mathematician, second ed., vol. 5 of
Graduate Texts in Mathematics. Springer Verlag, 1997. (10, 28, 68, 74, 140)

[56] Marlow, S., Peyton Jones, S. L., Moran, A., and Reppy, J. Asynchronous
exceptions in Haskell. In ACM SIGPLAN 2001 Conference on Programming Language
Design and Implementation (PLDI) (Snowbird, Utah, June 20–22 2001). (121)

[57] Mason, I. A., and Talcott, C. L. Equivalence in functional languages with
effects. Journal of Functional Programming 1, 3 (1991), 287–327. (112)

[58] Matthews, J. Algebraic Specification and Verification of Processor Microarchitec-
tures. PhD thesis, Oregon Graduate Institute of Science and Technology, Portland,
Oregon, 2000. (2)

[59] Matthews, J., Cook, B., and Launchbury, J. Microprocessor specification in
Hawk. In Proceedings of the 1998 International Conference on Computer Languages
(1998), IEEE Computer Society Press, pp. 90–101. (2)

[60] Meijer, E., Fokkinga, M., and Paterson, R. Functional programming with
bananas, lenses, envelopes and barbed wire. In Proceedings 5th ACM Conf. on Func-
tional Programming Languages and Computer Architecture, FPCA’91, Cambridge,
MA, USA, 26–30 Aug 1991, J. Hughes, Ed., vol. 523 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1991, pp. 124–144. (20)

[61] Milner, R. Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-
versity Press, May 1999. (99, 121)

[62] Moggi, E. An abstract view of programming languages. Tech. Rep. ECS-LFCS-90-
113, Dept. of Computer Science, Edinburgh Univ., 1990. (1)

[63] Moggi, E. Notions of computation and monads. Information and Computation 93,
1 (1991). (1, 8, 10, 67)

[64] Mosses, P. D. Semantics, modularity, and rewriting logic. In Electronic Notes in
Theoretical Computer Science (2000), C. Kirchner and H. Kirchner, Eds., vol. 15,
Elsevier Science Publishers. (1)

[65] Nordlander, J. Reactive Objects and Functional Programming. PhD thesis,
Chalmers University of Technology, Göteborg, Sweden, 1999. (96, 130, 136)



BIBLIOGRAPHY 156

[66] Paterson, R. A new notation for arrows. In Proceedings of the Sixth ACM SIG-
PLAN International Conference on Functional Programming, ICFP’01, Florence,
Italy (September 2001), ACM Press, pp. 229–240. (66, 79, 80, 83, 96, 135)

[67] Peyton Jones, S. L. Tackling the awkward squad: monadic input/output, con-
currency, exceptions, and foreign-language calls in Haskell. In Engineering theories
of software construction (2001), T. Hoare, M. Broy, and R. Steinbruggen, Eds., IOS
Press, pp. 47–96. (98, 99, 108, 121)

[68] Peyton Jones, S. L., and Hughes, J. (Editors.) Report on the programming
language Haskell 98, a non-strict purely-functional programming language. URL:
www.haskell.org/onlinereport, Feb. 1999. (2, 10, 14, 20, 30, 86, 87, 89, 95, 98,
101, 101)

[69] Peyton Jones, S. L., and Wadler, P. Imperative functional programming. In
Conference record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Charleston, South Carolina (1993), pp. 71–84.
(2, 98)

[70] Pierce, B. C. Basic Category Theory for Computer Scientists. MIT Press, Cam-
bridge, MA, 1991. (141)

[71] Pitts, A. M. Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science 10 (2000), 321–359. (112, 121)

[72] Power, J., and Robinson, E. Premonoidal categories and notions of computation.
Mathematical Structures in Computer Science 7, 5 (1997), 453–468. (81)

[73] Power, J., and Thielecke, H. Closed Freyd- and κ-categories. In Automata,
Languages and Programming (1999), pp. 625–634. (79, 82)

[74] Recursive monadic bindings web page. URL:
www.cse.ogi.edu/PacSoft/projects/rmb. (96)

[75] Reynolds, J. C. Types, abstraction, and parametric polymorphism. In Information
Processing’83, R. Mason, Ed. North-Holland, Amsterdam, 1983, pp. 513–523. (10,
20)

[76] Reynolds, J. C. Theories of Programming Languages. Cambridge University Press,
1998. (1, 10, 12, 140)

[77] Schmidt, D. A. Denotational Semantics. Allyn and Bacon, Boston, 1986. (1, 10,
32)

[78] Sestoft, P. Deriving a lazy abstract machine. Journal of Functional Programming
7, 3 (1997), 231–264. (109)

[79] Simpson, A., and Plotkin, G. Complete axioms for categorical fixed-point opera-
tors. In Proceedings of the Fifteenth Annual IEEE Symposium on Logic in Computer
Science (2000), pp. 30–41. (20, 66, 141)

www.haskell.org/onlinereport
www.cse.ogi.edu/PacSoft/projects/rmb


BIBLIOGRAPHY 157

[80] Simpson, A. K. A characterisation of the least-fixed-point operator by dinaturality.
Theoretical Computer Science 118, 2 (1993), 301–314. (140)

[81] Smyth, M., and Plotkin, G. The category-theoretic solution to recursive domain
equations, 1982. (140)

[82] Stoy, J. E. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press, Cambridge, Massachusetts, 1977. (1, 10, 20)

[83] Tennent, R. D. Semantics of Programming Languages. Prentice Hall, New York,
1991. (1, 10, 12)

[84] Thielecke, H. Using a continuation twice and its implications for the expressive
power of call/cc. Higher-Order and Symbolic Computation 12, 1 (1999), 47–74. (58,
62)

[85] Thiemann, P. WASH/CGI: Server-side web scripting with sessions.
compositional forms, and graphics. Unpublished manuscript. URL:
www.informatik.uni-freiburg.de/~thiemann/papers, Mar. 2001. (127)

[86] Turbak, F., and Wells, J. B. Cycle therapy: A prescription for fold and unfold on
regular trees. In Proc. 3rd Int’l Conf. Principles & Practice Declarative Programming,
PPDP’01 (Sept. 2001). (137)

[87] Turner, D. A. A new implementation technique for applicative languages. Software
Practice and Experience 9, 1 (Jan. 1979), 31–49. (10)

[88] Wadler, P. Theorems for free! In FPCA’89, London, England. ACM Press, Sept.
1989, pp. 347–359. (10, 20)

[89] Wadler, P. Comprehending Monads. In LISP’90, Nice, France. ACM Press, 1990,
pp. 61–78. (2, 31, 125)

[90] Wadler, P. Monads and composable continuations. Lisp and Symbolic Computation
7, 1 (Jan. 1994), 39–56. (58)

[91] Wadler, P. Monads for functional programming. In Advanced Functional Program-
ming, J. Jeuring and E. Meijer, Eds., vol. 925 of Lecture Notes in Computer Science.
Springer Verlag, 1995. (2, 10, 42, 47)

[92] Winskel, G. The Formal Semantics of Programming Languages: An Introduction.
Foundations of Computing series. MIT Press, Feb. 1993. (140, 141)

[93] Wright, A. K. Simple imperative polymorphism. Lisp and Symbolic Computation
8, 4 (1995), 343–355. (95, 96)

www.informatik.uni-freiburg.de/~thiemann/papers


INDEX 158

Index

Achten, P., 98
additive monad, 25, 30

list, 30
maybe, 30

arrows, 79, 96, 135, 136

Bekič property, 15, 16, 141
Benton, N., 66, 79–81, 83, 123, 130,

135
black hole, 102, 107–109, 113

Carlsson, M., 51, 61, 136
category

CCC, 73
Freyd, 79, 82
Kleisli, 67, 72, 73, 75, 81
premonoidal, 81, 82, 135
symmetric monoidal, 68, 72, 75,
134
symmetric premonoidal, 81
traced symmetric monoidal, 69
traced symmetric premonoidal, 82

Claessen, K., 4, 132, 136
commutative monad, 15, 72, 74, 134
commutativity, 25, 29

environment, 49
identity, 36
maybe, 37

continuation, 58, 138
callcc, 59, 62, 63
CPS, 58
first-class, 58, 62–65

continuity, 18, 78

derivation, 112
effect of, 112
silent, 114

dinaturality, 14, 140
distributivity, 30

list, 41
maybe, 38

environment monad, 28, 31, 48, 49,
57, 73, 83, 127
commutativity, 49
embedding into state, 49
idempotency, 49
left shrinking, 49
nesting, 49
purity, 49
right shrinking, 49
strictness, 49
strong sliding, 49

Espinosa, D., 58
execution context, 104

empty, 104

Filinski, A., 65
fixIO, 90, 98–100, 113, 118, 123
free theorem, 20
Friedman, D., 135
fudget monad, 51, 100

left shrinking, 53
nesting, 53
purity, 53
right shrinking, 53
sliding, 53
strictness, 53
strong sliding, 53

Gordon, A. D., 99

Hallgren, T., 51, 136
Hasegawa, M., 66, 68–70, 78, 134
heap, 102

slice, 103
Hughes, J., 79, 89, 130, 131
Hyland, M., 66, 70, 79–81, 83, 123,

135



INDEX 159

idempotency, 25, 28
environment, 49
identity, 36
maybe, 37

identity monad, 28, 31, 35, 49, 57, 61,
83
commutativity, 36
idempotency, 36
left shrinking, 35
nesting, 36
purity, 35
right shrinking, 36
strictness, 35
strong sliding, 36

injection, 21
input stream, 102

empty, 103
IO monad, 9, 25, 27, 51, 83, 90, 98,

99, 123
⊥, 114
left shrinking, 120
nesting, 121
purity, 119
right shrinking, 27, 121
sliding, 121
strictness, 118
strong sliding, 121

Jeffrey, A., 79
Joyal, A., 66, 68

Launchbury, J., 4, 85, 99, 108, 109,
121

left shrinking, 14, 17, 18, 23, 24, 30,
31, 94, 99, 120
continuations, 63
environment, 49
fudgets, 53
IO, 120
list, 40
maybe, 37
output, 48
state, 45
tree, 50

Liang, S., 53

list monad, 9, 25, 27, 30, 31, 38, 50,
83, 124
distributivity, 41
left shrinking, 40, 125
nesting, 41
purity, 40
right shrinking, 27, 41
sliding, 41
strictness, 40
strong sliding, 41

Ljunglöf, P., 132
logical variables, 130

Maier, D., 137
maybe monad, 9, 25, 27, 28, 30, 31,

36, 54, 83
commutativity, 37
distributivity, 38
idempotency, 37
left shrinking, 37
nesting, 37
purity, 37
right shrinking, 27, 37
strictness, 37
strong sliding, 37

mdo-notation, 8, 86, 136
defined variables, 91
dependent generators, 91
let bindings, 87
MonadFix class, 7, 95, 97
naive translation, 8, 86
recursive variables, 91
segmentation, 89
segments, 92
shadowing, 90
type checking, 95
used variables, 91

mirror image (of a property), 21
Moggi, E., 1, 2, 8, 10, 130
monad embedding, 31

environment into state, 49
identity into any other, 36
maybe into list, 32, 41
output into state, 47

monad homomorphism, 31



INDEX 160

monad transformers, 33, 53
continuations, 34, 53, 61, 131
environments, 34, 54
error, 34, 53
state, 34, 55

monoid, 46, 75
commutative, 72, 75
representation monad, 46

monotonicity, 18

nesting, 15
environment, 49
fudgets, 53
IO, 121
list, 41
maybe, 37
output, 48
state, 45
tree, 51

Nordlander, J., 96, 130, 136

output monad, 31, 46, 126
embedding into state, 47
left shrinking, 48
nesting, 48
pure right shrinking, 48
purity, 48
right shrinking, 48
strictness, 48

parametricity, 10, 139
of mfix, 20
of the IO language, 121

Paterson, R., 15, 26, 66, 79, 80, 83,
96, 135

Peyton Jones, S. L., 98, 99, 108, 121
Pitts, A. M., 121
Plotkin, G. D., 20
Power, J., 79, 81
program state, 103

closed, 104
divergent, 112
normal, 112
stuck, 112
terminal, 104, 112

type of, 104
pure right shrinking, 18
purity, 13, 17, 18, 23, 24, 31, 80, 99,

119
continuations, 60
environment, 49
fudgets, 53
IO, 119
list, 40
maybe, 37
output, 48
state, 45
tree, 50

right shrinking, 22, 25, 27, 86, 87, 90
environment, 49
fudgets, 53
IO, 121
list, 41
maybe, 37
output, 48
state, 46
tree, 51

Robinson, J., 81

Sabry, A., 62, 135
Sands, D., 136
scope change, 19, 23
segment, 92

exported variables, 92
free variables, 92
recursive, 93

Sestoft, P., 109
Simpson, A., 20
state monad, 9, 27, 31, 42, 83

left shrinking, 45
nesting, 45
purity, 45
right shrinking, 27, 46
sliding, 45
strictness, 44
strong sliding, 46

strictness, 12, 18, 23, 24, 31, 118
environment, 49
fudgets, 53



INDEX 161

IO, 118
list, 40
maybe, 37
output, 48
state, 44
tree, 50

strong sliding, 22, 25–27
environment, 49
fudgets, 53
IO, 121
list, 41
maybe, 37
state, 45, 46
tree, 51

term, 101
IO, 102, 113
pure, 102, 104, 113
state, 103

Thielecke, H., 58, 62, 79
Thiemann, P., 16, 127
tree monad, 49

left shrinking, 50
nesting, 51
purity, 50
right shrinking, 51
sliding, 51
strictness, 50
strong sliding, 51

Turbak, F., 137

uniformity, 20

Wadler, P., 2, 58, 98
Wells, J. B., 137



Biographical Note

Levent Erkök was born in 1972, Merzifon, Turkey. He received a B.S. degree in Computer

Engineering from the Middle East Technical University in Ankara, Turkey, in 1994, and

an M.S. degree in Computer Science from the University of Texas at Austin in 1998.

He started his Ph.D. studies at Oregon Graduate Institute later that year. His research

interests lie in the theory of programming languages, especially the functional paradigm.

162


	Title
	Copyright Page
	Approval Page
	Acknowledgements
	Contents
	Abstract
	Introduction
	Recursion and effects
	A motivating example: Modeling circuits using monads
	Recursive monadic bindings
	A generic mfix?
	The basic framework and notation
	Outline of the thesis

	Properties of value recursion operators
	Strictness (Nothing from nothing)
	Purity (Just like fix)
	Left shrinking (No recursion -- No fix)
	Sliding (Pure mobility)
	Nesting (Two for the price of one)
	Derived properties
	Constant functions
	Approximation property
	Pure right shrinking
	Parametricity: The ``free'' theorem

	Stronger properties
	Strong sliding
	Right shrinking

	Classification and summary

	Structure of monads and value recursion
	Monads with a strict bind operator
	Idempotent monads
	Commutative monads
	Monads with addition
	Embeddings
	Monad transformers
	Summary

	A catalog of value recursion operators
	Identity
	Exceptions: The maybe monad
	Lists
	State
	Output monad and monads based on monoids
	Environments
	Tree monad
	Fudgets
	Monad transformers
	Summary

	Continuations and value recursion
	A monad for continuations
	The continuation monad transformer
	First-class continuations and value recursion
	Summary

	Traces and value recursion
	Parameterized value recursion
	Preliminaries
	Symmetric monoidal categories
	Traced symmetric monoidal categories
	Traces and Conway operators

	Traces and value recursion
	Commutative monads and traces
	Monads arising from commutative monoids
	The correspondence

	Dropping the monoidal requirement
	Arrows and loop
	Traced premonoidal categories

	Summary

	A recursive do-notation
	Introduction
	The basic translation and design guidelines
	Let generators
	Segmentation
	Shadowing

	Translation of mdo-expressions
	Preliminaries
	The translation algorithm
	Type checking mdo-expressions

	Current status and related work
	Summary

	The IO monad and fixIO
	Introduction
	Motivating examples
	The language
	Semantics
	IO layer
	Functional layer
	The marriage
	Structural rules
	Meaning of program states

	Examples
	Properties of fixIO
	Summary

	Examples
	The repmin problem
	Sorting networks and screen layout in GUI's
	Interpreters
	Doubly linked circular lists with mutable nodes
	Logical variables
	Summary

	Epilogue
	Related work
	Future Work

	Fixed-point operators
	Proofs
	Proposition 2.5.2
	Proposition 2.6.8
	Proposition 2.7.1
	Lemma 3.1.4
	Proposition 3.4.2
	Proposition 4.3.1
	Proposition 4.9.1
	Proposition 6.3.5

	Bibliography
	Index
	Biographical Note

