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Abstract. We introduce a lightweight approach for reasoning about programs
involving imperative data structures using the proof assistant Isabelle/HOL. It
is based on shallow embedding of programs, a polymorphic heap model using
enumeration encodings and type classes, and a state-exception monad similar
to known counterparts from Haskell. Existing proof automation tools are eas-
ily adapted to provide a verification environment. The framework immediately
allows for correct code generation to ML and Haskell. Two case studies demon-
strate our approach: An array-based checker for resolution proofs, and a more
efficient bytecode verifier.

1 Introduction

A very common way of verifying programs in a HOL theorem prover is to use a shal-
low embedding and express the program as a set of recursive functions. Properties of
the program can then be proved by induction. Despite some well-known limitations,
shallow embeddings are widely used for verification. This success is due in part to
the simplicity of the approach: A full-blown formal model of the operational or denota-
tional semantics of the language is not required, and many technical difficulties (e.g. the
representation of binders) are avoided altogether. Furthermore, the proof methods used
are just standard induction principles and equational reasoning, and no specialized pro-
gram logic is necessary. The specifactions may be turned into executable code directly
by means of code generation.

Until recently, this approach has been used primarily for purely functional pro-
grams. As the notion of side-effect is alien to the world of HOL functions, programs
with imperative updates of references or arrays cannot be expressed directly. However,
there are many examples where for efficiency’s sake imperative data structures are un-
avoidable to obtain practically usable executable programs.

We aim to permit Haskell’s imperative specification style in Isabelle/HOL [11],
where local state references and mutable arrays can be dynamically allocated without
having to add their types to the enclosing function’s type signature [6]. From such spec-
ifications we then generate efficient imperative functional code. Currently we need to
restrict the contents of references and mutable arrays to first order values, but this is still
sufficient for many applications.

Accordingly, the contributions of this paper are:
? Supported by DFG project NI 491/10-1



1. A purely definitional polymorphic heap allowing to encode dynamic allocation of
polymorphic first-order references and mutable arrays (§2).

2. A Haskell-style heap monad encapsulating the primitive heap operations and sup-
porting abnormal termination through exceptions (§3); an adaption for Isabelle’s
code generator allows to generate monadic Haskell and imperative ML3 code (§4).

3. A set of proof rules that allows to reason about such monadic programs (§5).
4. Two case studies (§6): an imperative MiniSat proof replay oracle and an imperative

Jinja bytecode verifier.

1.1 Related Work

Since the seminal paper by Peyton Jones and Wadler [13], the use of monads to in-
corporate effects in purely functional programs is standard. However, up to now, no
practically usable verification framework for such monadic programs exists.

For imperative programs, there are such tools: The Why/Krakatoa/Caduceus toolset
[3] works by translating the source language into an intermediate language and using a
verification condition generator to generate proof obligations. Schirmer [14] proposes a
similar method, which is closely integrated with Isabelle/HOL, and whose metatheory
is formally verified. These approaches rely on Hoare logic and a verification condition
generator. The actual reasoning then happens on the generated verification conditions
and is often outsourced to automatic provers. The user must provide enough annotations
in the source code that the verification conditions can be solved by the automated prover.
In our approach, reasoning happens on the source code level, which we find better
suited for interactive use. Proof principles are similar to those used for purely functional
programs, i.e. induction and equational reasoning.

Probably closest to our work is the concept of single-threaded objects [1] in the
ACL2 prover. By declaring an object as single-threaded (and obeying rigorous syntactic
restrictions), one instructs the prover to replace non-destructive updates by destructive
ones. The rules ensure that referential transparency is not violated, and thus the code
can be treated as purely functional in the reasoning phase. Our approach is similar in
the sense that our heap can be seen as a single-threaded object. However, we allow the
dynamic allocation of arrays and references, whereas in ACL2 imperative fields must
be statically declared in a single record.

Imperative language features have previously been embedded in higher order logic
via a state monad [8, 15]. As long as the monad primitives do not duplicate the state,
the resulting programs are single threaded and can be safely transformed to monadic
Haskell or imperative ML code. However, just like single-threaded objects, the state
monad approach requires the state record be statically declared as part of the monad
type itself, either fixed or as an explicit type parameter. This makes it difficult to write
specifications that dynamically allocate new references or mutable arrays, or to com-
pose monadic specifications that work over different state types.

Our heap model has some similarities to the one used by Tuch, Klein, and Norrish
[16], especially concerning the use of type classes and phantom types to manage encod-
ings. On the other hand, our model is slightly more abstract, since we are only dealing
with functional languages instead of low level C code.

3 in its two flavors SML and OCaml
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Nanevski et al. [10] describe how Hoare logic can be integrated in dependent type
theory, yielding Hoare Type Theory, with a sophisticated type system and program
logic. However, it seems that this requires significant modifications to the theorem
prover in order to support such a system. In contrast, our approach was developed on
top of standard Isabelle/HOL.

1.2 A trivial example: Array reversal
To illustrate imperative functional programming in monadic HOL, we define two simple
functions, one for swapping two elements in an array, and one for reversing an array:

swap :: (α::hrep) array⇒ nat⇒ nat⇒ unit Heap
swap a i j = do x← a[i];

y← a[j];
a[i] := y;
a[j] := x;
return ()

rev :: (α::hrep) array⇒ nat⇒ nat⇒ unit Heap
rev a i j = (if i < j then do swap a i j;

rev a (i + 1) (j − 1)
else return ())

This idiom is well-known from Haskell: Manipulations of imperative arrays are monadic
actions (of type α Heap), and they can be composed into more complex actions using
the sequencing operation provided by the monad. Other language constructs (condition-
als, recursion, data types) are taken from the functional part of the language.

Let us prove a lemma that describes the behavior of swap:

(h, h ′, r) ∈ [[ swap a i j ]] =⇒
get-array a h ′ ! k =
(if k = i then get-array a h ! j
else if k = j then get-array a h ! i else get-array a h ! k)

The notation [[ c ]] stands for the big-step semantics of a command c, which is a ternary
relation: (h, h ′, r) ∈ [[ c ]] holds iff the computation c started on heap h does not generate
an exception and yields the result r and the updated heap h ′. The lemma expresses how
the entries of the updated array are related to original entries. The function get-array
returns the contents of an array on a given heap as a list, and infix ! denotes list indexing.

The lemma is proved by unfolding the call to swap and applying standard rules for
the semantics of the monad operations and the basic commands, which can easily be
automated using existing Isabelle technology. Now let us turn to the reversal function:

(h, h ′, r) ∈ [[ rev a i j ]] =⇒
get-array a h ′ ! k =
(if k < i then get-array a h ! k
else if j < k then get-array a h ! k else get-array a h ! (j − (k − i)))

Since rev is defined recursively, we proceed by induction. The proof is as one would
expect: In the step case, we distinguish the cases k < i, k = i, i < k < j, k = j and j < k,
and apply the induction hypothesis and the lemma about swap.
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1.3 Dynamic allocation: Linked lists

The ability to explicitly allocate memory is another fundamental technique in impera-
tive programming. To illustrate how this idiom can be coded in HOL, we will show how
to build and traverse a dynamically allocated linked list.

Linked lists are represented by a recursive datatype, where the tail of the list is a
mutable reference.

datatype α node = Empty | Node α (α node ref )

To convert a HOL list of elements to a linked list, we simply recurse over each tail,
allocating the nodes as we go along by calling the ref function:

make-llist :: (α::hrep) list⇒ α node Heap
make-llist [] = return Empty
make-llist (x·xs) = do tl← make-llist xs;

next← ref tl;
return (Node x next)

In the other direction, we can traverse a linked list as follows:

traverse :: (α::hrep) node⇒ α list Heap
traverse Empty = return []
traverse (Node x r) = do tl← !r;

xs← traverse tl;
return (x·xs)

Note that the definitions of make-llist and traverse operationally mimic their equivalents
in Haskell using the state monad, or in ML using imperative features.4

For reference, here is the traverse function as rendered by the code generator of our
framework in ML:5

datatype ’a node = Node of ’a * ’a node ref | Empty;

fun traverse A_ (Node (x, r)) =
(fn a as () =>
let
val tl = (fn () => ! r) ();
val xs = traverse A_ tl ();

in
x :: xs

end)
| traverse A_ Empty = (fn () => []);

4 Technical details on the definition of traverse can be found in §7.3
5 The A argument denotes the dictionary, which is not used in this particular example. See [4]
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2 Modeling a polymorphic heap

In the following two sections we present our definitional model of a typed heap and
the monad we are using. We present the theory in a bottom-up manner, and explain the
most important design decisions.

Essentially, our heap will be a mapping h :: N ⇒ Val from addresses to values.
However, since values can generally have arbitrary types, this is difficult to model in a
simply typed language. Since there is no HOL type that can contain all types, we are
facing the problem what type to choose for Val.

This problem could be solved using dependent types, but we want to stay in the
simply typed framework, so we make a draconian restriction: We decide that functions
cannot be stored on the heap, and use the natural numbers as value type, in which all
first-order data objects will be encoded. We’ll use phantom types (§2.2) to safely omit
these encodings from the generated code.

Obviously this restrictive design decision excludes a fair number of relevant pro-
grams. But even then our model allows for interesting applications. Possibilities for
lifting this restriction are discussed in §7.2.

2.1 Representable Types

Using encodings to circumvent restrictions in the type system seems very awkward at
first, but we can make this transparent to the user by defining an axiomatic type class
countable, with an axiom stating that the type can be encoded into the natural numbers:

axclass countable ⊆ type
∃ (enc :: α⇒ nat). inj enc

Obviously, basic types like nat, int and all finite types are countable, and the well-known
constructions can be used to show that if α and β are countable then so are α× β and α
list. In fact, such instance proofs are straightforward for first-order recursive data types
and could be automated. The overloaded encoding and decoding functions are called
to-nat and from-nat:

to-nat :: (α::countable)⇒ nat
from-nat :: nat⇒ (α::countable)

2.2 Typed References

References are just addresses, i.e. natural numbers

datatype α ref = Ref nat

with the projection addr-of (Ref n) = n. Here, unlike above, the type system is again
a useful tool instead of just a handicap: The phantom type α, which does not occur on
the right hand side of the definition, allows us to view references as typed objects as we
know them from ML, although the underlying representation is untyped.
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Reference equality We will certainly need to reason about reference (in)equality. For
example, we would expect the following simplification rule to hold, where r and s are
references and h is a heap:

r 6= s =⇒ get-ref r (set-ref s x h) = get-ref r h

Indeed, when we write down and prove this lemma, everything seems to work. Only if
we look at the inferred types, there is an unpleasant surprise: Because of the equality in
the premise, the references r and s have the same type, and we have thus only proved a
special case. Of course we want to perform the same simplification if we have references
of different types, and ideally, we want the condition r 6= s to be immediate, when the
references have different types.

The solution is to define a heterogeneous inequality relation for references, which
just strips away the phantom type and compares the bare addresses:

r � s↔ (addr-of r 6= addr-of s) 6

If r and s have the same type, the relation � coincides with 6=.

2.3 Type reflection

Comparing references of different types is a little artificial. In a typed language, aliasing
between e.g. an integer and a boolean reference is not possible, and the above rewrite
rule should be applicable unconditionally. Our model will be built in such a way that
we can automatically derive r � s, whenever r and s have different types:

We define a type typerep and a type class typeable to reflect the syntax of (monomor-
phic) types back into the language of terms:

datatype typerep = Typerep string (typerep list)

class typeable = type +
fixes typerep :: α itself ⇒ typerep

The predefined type α itself comes with a singleton term written TYPE(α) which is
used to embed types into terms. We write RTYPE(α) for typerep (TYPE(α)). The over-
loaded function typerep constructs a concrete syntactic representation of a type name.
Its definition for concrete types is completely schematic (and easily automated):

RTYPE(nat) = Typerep ′′nat ′′ []
RTYPE(bool) = Typerep ′′bool ′′ []
RTYPE(α list) = Typerep ′′list ′′ [RTYPE(α)]

The result of this exercise (which is also common in the Haskell world) is that we can
now compare types for equality explicitly. For example: RTYPE(nat) 6= RTYPE(bool)
and RTYPE(char list) = RTYPE(string) are theorems7, however RTYPE(α) 6= RTYPE(β)
is not, since α and β could later be instantiated to the same type.

Now we can refine the definition of reference inequality as follows:
6 The↔ denotes equality of bool values
7 Note that in Isabelle, string just abbreviates char list on the surface syntax level
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(r :: α ref ) � (s :: β ref )↔ RTYPE(α) 6= RTYPE(β) ∨ addr-of r 6= addr-of s

From this immediately follows that references of different types are always unequal.
Hence, aliasing proof obligations like r � s can be solved automatically, if r and s are
of different types.

2.4 The Heap

The heap is modelled as a mapping from type representations and addresses to nat-
encoded values. We use two separate mappings for references and arrays (which are
mapped to lists of encoded values). Additionally, we use a counter which bounds the
currently used address space. It is incremented when new references are created.

record heap =
refs :: typerep⇒ addr⇒ nat
arrays :: typerep⇒ addr⇒ nat list
lim :: addr

We can now define the basic heap operations, such as allocation, reading and writing
of references. Note how the embeddings and projections are used here to convert the
stored values into their respective encodings and back8:

get-ref :: (α::hrep) ref ⇒ heap⇒ α
get-ref (Ref r) (h(|refs := f |)) = from-nat (f RTYPE(α) r)

set-ref :: (α::hrep) ref ⇒ α⇒ heap⇒ heap
set-ref (Ref r) x (h(|refs := f |)) =
h(|refs := f (RTYPE(α) := (f RTYPE(α))(r := to-nat x))|)

new-ref :: heap⇒ (α::hrep) ref × heap
new-ref (h(|lim := l|)) = (Ref l, h(|lim := Suc l|))

Operations for arrays are analogous. From these definitions, we can now easily prove
the expected lemmas, expressing the interaction of the operations, e.g.:

get-ref r (set-ref r x h) = x
r � s =⇒ get-ref r (set-ref s x h) = get-ref r h

Since arrays and references occupy different heap areas, the corresponding heap opera-
tions always commute:

get-array a (set-ref r x h) = get-array a h
get-ref r (set-array a xs h) = get-ref r h

8 The hrep type class just intersects the classes countable and typeable; also note that the h(|. . .
:= . . . |) syntax denotes component assignment on records and may also be used for pattern
matching.

7



3 The Heap Monad

We now define a monad which characterizes computations affecting the heap. An im-
perative program with return type α will be logically represented as a value of type α
Heap. Essentially, our monad is a state-exception monad, where the state is the heap
from the previous section:

datatype α Heap = Heap (heap⇒ (α + exception) × heap)
heap f = Heap (λh. let (x, h ′) = f h in (Inl x, h ′))
execute (Heap f ) = f

Exceptions are essentially strings generated by error :: string⇒ exception and are not
caught inside the monad; they are a mere device to introduce a notion of abnormal
termination. The monad operations return, (�=) and raise are defined as expected:

return x = heap (λh. (x, h))
f �= g = Heap

(λh. case execute f h of (Inl x, h ′)⇒ execute (g x) h ′

| (Inr e, h ′)⇒ (Inr e, h ′))
raise s = Heap (λh. (Inr (error s), h))

Isabelle’s syntax facilities allow for Haskell-style do-notation. Lifting the heap opera-
tions into the monad is straightforward:

ref x = heap (λh. let (r, h ′) = new-ref h in (r, set-ref r x h ′))
!r = heap (λh. (get-ref r h, h))
r := x = heap (λh. ((), set-ref r x h))

array n x = heap (λh. let (a, h ′) = new-array h in (a, set-array a (replicate n x) h ′))
length a = heap (λh. (|get-array a h|, h))
a[i] = do len← length a;

(if i < len then heap (λh. (get-array a h ! i, h))
else raise ′′array lookup: index out of range ′′)

a[i] := x = do len← length a;
(if i < len then heap (λh. (a, set-array a (get-array a h[i := x]) h))
else raise ′′array update: index out of range ′′)

These are the necessary foundations to write stateful programs like in §1.2.

4 Execution

When we consider some parts of HOL as the shallow embedding of a programming
language, then the inverse of that embedding is called code generation. Isabelle’s code
generator [4] can produce SML, OCaml and Haskell code from executable HOL speci-
fications. In a first approximation, the executable fragment of HOL consists of datatype
and function definitions, which are simply translated to their counterparts. This guaran-
tees partial correctness: if 〈s〉 denotes the generated code from term s, then each abstract
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s 〈s〉

〈t〉= t ′t

code gen.-

code gen.
-

?

equational
rewriting

?
evaluation

(a) Partial correctness

HOL ML Haskell
α Heap unit⇒ α ST ξ α
t �= (λx. f ) λ(). let x = t () in f () end t �= (λx. f )
return t λ(). t return t
α ref α ref STRef ξ α
ref x λ(). ref x newSTRef x
!r λ(). !r readSTRef r
r := t λ(). r := x writeSTRef r x
α array α array STArray ξ Integer α
array n x λ(). Array.array (n, x) newArray (0, n) x
a[i] λ(). Array.sub (a, i) readArray a i
a[i] := x λ(). Array.update (a, i, x) writeArray a i x
length a λ(). Array.length a liftM snd (getBounds a)

raise s λ(). raise Fail s error s

(b) Translating monadic constructs to ML and Haskell

Fig. 1. Code generation

evaluation step from 〈s〉 to some t ′ in the target language corresponds to an equational
rewrite step s = t in HOL, such that 〈t〉 = t ′ (cf. Fig. 1(a)).

The reference and array operations are mapped to the target language as given in
Fig. 1(b). Since ML expressions may already contain side effects, the monad vanishes
and is just replaced by a unit abstraction to ensure the correct evaluation order.

For Haskell we use the built-in ST state monad, together with the corresponding
STRef and STArray types. Recall that our HOL programs only raise exceptions but
never handle them – instead of dealing with them inside the monad, we treat them as
partiality, using the error primitive.

Note that the extended executable fragment of HOL does not include the construc-
tions that were used to define the heap monad: If we break the monad abstraction
(e.g. by writing heap (λh. (h, h))), the results are no longer executable and trying to
generate code for them causes an error, just like for other purely logical notions like
quantifiers.

5 Verification

Having defined the model of execution for our stateful programs, we need verification
tools which can be used to prove an individual program correct. Our model does not
force us to use a particular technique: We can choose any calculus (like e.g. Hoare logic)
that is sound with respect to the semantics we have defined. After a bit of experimenting,
we opted for a very simple method, which seems to fit well with the structured proof
language Isabelle/Isar. A deeper comparison of this relational style with Hoare logic is
beyond the scope of this paper.

We use the relational description of the big-step semantics we have already seen in
§1.2. The relation is defined by:
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(h, h ′, r) ∈ [[ c ]] = ((Inl r, h ′) = execute c h)

We can prove rules which connect this relation to the different basic commands. Here
is the rule for the bind operation.

(h, h ′′, r ′) ∈ [[ f �= g ]] =⇒
(
V

h ′ r. (h, h ′, r) ∈ [[ f ]] =⇒ (h ′, h ′′, r ′) ∈ [[ g r ]] =⇒ P) =⇒ P

Note the elimination rule format. Since the (. . . ) ∈ [[ . . . ]] relation usually lives in
the premise of a statement, we use elimination rules to manipulate it: if our goal has a
premise of the form (h, h ′′, r) ∈ [[ f �= g ]], we can obtain the intermediate heap h ′ and
the new assumptions (h, h ′, a) ∈ [[ f ]] and (h ′, h ′′, r) ∈ [[ g a ]]. These elimination rules
allow us to systematically decompose compound statements into primitive steps. Here
are some other rules:

(h, h ′, r) ∈ [[ return x ]] =⇒ (r = x =⇒ h = h ′ =⇒ P) =⇒ P

(h, h ′, r) ∈ [[ a[i] ]] =⇒
(r = get-array a h ! i =⇒ h = h ′ =⇒ i < length-array a h =⇒ P) =⇒ P

(h, h ′, r) ∈ [[ a[i] := v ]] =⇒ (r = a =⇒ h ′ = Heap.upd a i v h =⇒ P) =⇒ P

By feeding these rules into Isabelle’s auto method, we obtain a reasonable ad-hoc au-
tomation, which makes proofs quite short.

6 Case studies

6.1 A SAT Checker

Our first case study is motivated by the wish to integrate SAT solvers into Isabelle in a
scalable way, such that they can be used to solve large propositional proof obligations.

We aim at a compromise between performing a full replay of the proof within
Isabelle and trusting the SAT solver completely. The first approach was taken by Weber
and Amjad [17] and gives the usual high assurance of the LCF principle, but is com-
putationally expensive. On the other end of the spectrum, trusting the external tool is
obviously cheap but unsatisfactory.

A reasonable compromise is to run the external proof (a standard propositional res-
olution proof) through a checker, which is itself proved correct in Isabelle. This gives
a good balance between assurance and cost, since unlike the SAT solver, the checker
is formally verified, and checking a proof is about an order of magnitude faster than
replaying the inferences in Isabelle.

Usually, for such a reflective approach, the checker would need to be purely func-
tional. Using our framework, we can implement a checker that uses destructive arrays
instead, which gives us another 30% speedup over a purely functional implementation
with balanced trees.

The core of our checker operates on a table that stores the clauses that have al-
ready been derived. Clauses are modeled (purely functionally) as sorted lists of integers,
where a negative number signifies a negated variable:
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types
idx = nat
lit = int
clause = lit list
resolvants = idx × (lit × idx) list

datatype ProofStep =
Root idx clause
| Resolve idx resolvants
| Delete idx

A proof step can either (a) add a new so-called root clause to the array, (b) derive a
new clause from existing clauses and store it in the array, or (c) delete a clause from the
array, to free some memory.

The root clauses are the initial clauses from which a contradiction is derived. It is
a specialty of the MiniSAT [2] proof format that root clauses may be added any time
during the proof, hence our checker must accumulate all root clauses it encounters in a
list. Then, if the checker succeeds in deriving the empty clause, the root clauses it has
collected must be inconsistent.

A Resolve step derives a new clause in a series of resolutions: Resolve i (j, rs) starts
with clause no. j and resolves it with the clause/variable pairs in rs. In the end, the
result is stored at position i. The Delete proof step removes a clause from the array.
This weakening step is simply an optimization to reduce memory usage of the checker
by removing clauses that are no longer needed.

With clauses modeled as sorted lists, resolution is essentially a merge operation and
can be done in just one traversal. However, the operation may fail if the literal does not
occur in the clause. It is convenient to let the monad deal with such failures, even if no
heap access is required. Hence our resolve operation has the following type (for brevity,
we omit the implementation, which does not contain surprises):

resolve :: lit⇒ clause⇒ clause⇒ clause Heap

The function get-clause retrieves a clause from the array. It fails if it sees a None:

get-clause :: clause option array⇒ idx⇒ clause Heap

The heart of our checker is the function step, which processes a single proof step,
collecting root clauses in the accumulator list rcs:

step :: clause option array⇒ ProofStep⇒ clause list⇒ clause list Heap

step a (Root cid clause) rcs = do a[cid] := Some (remdups (sort clause));
return (clause·rcs)

step a (Resolve saveTo (i, rs)) rcs =
do cli← get-clause a i;

result← foldM (λ(l, j) c. get-clause a j �= resolve l c) rs cli;
a[saveTo] := Some result;
return rcs

step a (Delete cid) rcs = do a[cid] := None;
return rcs

Finally, a wrapper function checker just allocates an array of a given size, folds the
step function over a list of proof steps, and finally checks for the empty clause at some
given position. Our main result is the following partial correctness theorem:
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(h, h ′, cs) ∈ [[ checker n p i ]] =⇒ inconsistent cs

Integration Since we have verified our checker, we may now choose to use it to import
proofs into Isabelle. This can be done using a generic monadic evaluation oracle, which
implements the following inference rule:

∧
h h ′. (h, h ′, r) ∈ [[ c ]] =⇒ P r

P r
(if c, when executed in ML, evaluates to r)

Thus we can discharge the premise of a partial correctness theorem by just running the
generated code in ML.

The soundness of this rule relies on the assumption that the semantics of ML is
compatible with our model of monadic programs. At the moment, we have no proof of
this assumption.

However, such a generic reflection mechanism, which provides a clearly defined
way to extend the theorem prover by reflected imperative proof tools, still provides
higher assurance than an ad-hoc extension, since the monadic code is verified, and no
additional “glue code” is required for the integration.

In particular, nothing in our particular development of the SAT checker needs to be
trusted.

6.2 A Jinja Bytecode verifier

Our second case study is a modification of the Jinja bytecode verifier. Jinja [7] is a
complete formal model of a Java-like language, which includes a formal semantics,
type system, virtual machine model, compiler, and bytecode verifier.

Essentially, the bytecode verifier performs an abstract interpretation of the bytecode
instructions, keeping track of the abstract state, that is, the types of values in registers
and on the stack. The central data structure is a mapping that assigns such an abstract
state to every bytecode instruction. Then, this information is propagated to the succes-
sors of the instruction until a fixed point is reached.

In the existing implementation, this mapping is represented by a list of fixed length.
In our modification, we use an imperative array instead, with the obvious advantages:
constant-time access and no garbage.

Fortunately, the bytecode verifier is modeled in a very abstract framework using a
semilattice (type σ), which hides all the technical details of the virtual machine. Later,
the “real thing” can be obtained by instantiation. A bytecode method is modelled by
a function step :: nat ⇒ σ ⇒ (nat × σ) list that maps a given program position and
an abstract machine state to a list of possible successor positions and states. Additional
requirements for the step function (e.g. monotonicity) are detailed in [7].

Figure 2 shows the pure version of the bytecode verifier together with its monadic
counterpart. This side-by-side comparison shows that the differences between the two
versions are small. Consequently, proving partial correctness of kildallM wrt. kildall is
straightforward:
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τs ∈ list n A =⇒ (h, h ′, τs ′) ∈ [[ kildallM τs ]] =⇒ τs ′ = kildall τs

This shows that it is relatively easy to move from a purely functional specification to a
monadic one, which can then be executed efficiently.

propa [] τs w = (τs, w)
propa ((q, τ)·qs) τs w =
(let u = τ t τs ! q;

w ′ = if u = τs ! q then w else {q} ∪ w
in propa qs (τs[q := u]) w ′)

propaM [] τs w = return w
propaM ((q, τ)·qs) τs w =
do τ ′← τs[q];

let u = τ t τ ′;
let w ′ = (if u = τ ′ then w else {q} ∪ w);
τs[q] := u;
propaM qs τs w ′

iter (τs, w) =
(if w = ∅ then τs
else let p = SOME p. p ∈ w

in iter
(propa (step p (τs ! p)) τs (w− {p})))

iterM τs w =
(if w = ∅ then freeze τs
else let p = SOME p. p ∈ w

in do v← τs[p];
w ′← propaM (step p v) τs

(w − {p});
iterM τs w ′)

kildall τs = iter (τs, unstables τs) kildallM τs =
do a← of-list τs;

iterM a (unstables τs)

Fig. 2. Pure vs. monadic versions of the bytecode verifier

7 Problems and Limitations

7.1 No Monad Polymorphism

Of course, one would like to specify a monad as a constructor class, and see our heap
monad just as a particular instance of the general concept. However, for this we would
need type constructor polymorphism, which is not supported in HOL. We must be sat-
isfied with the possibility of defining concrete instances of monads.

Huffman, Matthews, and White [5] describe how to simulate constructor classes in
an extension of HOL, but their embedding does not seem practical for our application.

7.2 Heap model

Our simple heap model prohibits storing any kind of function value in mutable refer-
ences. Although many applications can live with this limitation, it may be painful in
other situations. One can think of different ways to improve this situation:

Encoding types of order n. Just like we now encode all first-order values in N, one
could also encode all functions on such values by N⇒N, and all functions that take
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such arguments by (N⇒ N)⇒ N, and so on. For any given order, we can encode
all “smaller” types in a single type. Again, this can be made transparent using type
classes. Probably, order 3 or 4 would be enough for most practical purposes.

Dependent types In a dependently typed system, one could do without explicit encod-
ings, and represent heap values as a dependent pair of a type and a value. In such a
system, the type heap would live in some higher universe than the types used in a
program.

ZF extension HOLZF [12] is a consistent extension of HOL which declares a set-
theoretic universe Z, in which all HOL types can be embedded. In such a system
we could store the full tower of (pure, monomorphic) higher order functions over
the naturals, since our heap function could take values in Z.

However, even these extensions will not allow us to store monadic functions in the
heap. The collection of heap monad functions has at least the cardinality of heap⇒heap,
which is strictly larger than heap itself in classical HOL.

One avenue of escape would be to limit ourselves to the constructive portion of HOL
and build some kind of impredicative datatype facility to represent the heap. A more
pragmatic option is to store only a representable subset of the full function space in the
heap, for example just the continuous functions as is done in Isabelle/HOLCF[9]. We
would retain the full power of classical HOL while still allowing to store all (partially)
executable functions, which are the only ones we are really interested in.

7.3 Recursive Functions

Monadic functions can be defined recursively just like any other function by using the
available packages in Isabelle. However, proving termination of the functions can some-
times be tricky, as the following example demonstrates:

f :: nat ref ⇒ nat⇒ nat Heap
f r n = do x← !r;

(if x = 0 then return n else do r := x − 1;
f r (Suc n))

Since there is no wellfounded order for which (r, Suc n)≺ (r, n) holds, we cannot hope
to define f by wellfounded recursion on its arguments. Instead, the recursion happens
on the heap itself, which is not an explicit argument of the function. To define f, we
must first break the monad abstraction and define a function f ′ :: nat ref ⇒ nat⇒ heap
⇒ (nat + exception) × heap, which explicitly recurses over the heap. Then f can be
defined in terms of f ′, deriving the above recursion equation.

Another issue is that when building pointer structures on the heap, many functions
are actually partial, since the structures can become cyclic. The attentive reader may
have noticed that the traverse function in §1.3 is in fact such an example.

However, it turns out that even nonterminating recursive functions are definable
if the recursion happens within the heap monad, since such definitions always have a
total model. This argument is similar to the observation that tail-recursive functions
can always be defined in HOL (e.g. using a while combinator). The details are beyond
the scope of this paper, so we just mention that traverse was defined using a monadic
recursion combinator MREC, which satisfies the following recursion equation:
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MREC :: (α⇒ (β + α) Heap)⇒ (α⇒ α⇒ β ⇒ β Heap)⇒ α⇒ β Heap
MREC f g x =
do y← f x;

(case y of Inl r⇒ return r | Inr s⇒ do z← MREC f g s;
g x s z)

In the future, we plan to provide automation for defining such recursive functions.

7.4 External I/O

Another practical limitation is that our heap monad does not support any kind of interac-
tion with the outside world. This means, for example, that the full sequence of MiniSat
proof steps needs to be passed into our SAT checker from the start. This becomes a
problem for long-running proofs where the number of steps may exceed the total size
of Isabelle’s memory.

However, if our monad supported IO actions then we could incrementally ask Min-
iSat to supply us just the next portion of the proof to check, and never have to represent
the entire proof at once. Supporting I/O would require us to extend our heap model to
include relevant aspects of the outside system, plus some kind of nondeterminism for
I/O actions, to take into account that we can never model the world in its entirety.

8 Conclusion

We presented a lightweight approach to reuse our favorite theorem prover for verify-
ing monadic programs that manipulate a state. Our shallow embedding of imperative
constructs in HOL is a continuation of the traditional way of modeling programs and
systems by recursive functions, which can be translated to “real” programs by a code
generator. Although there are still some limitations (see §7), our case studies show that
it is already quite useful in its current form. Equipped with that, we want to tackle
specification, verification and prototypic code generation for compute-intensive appli-
cations like e.g. microprocessor models. Another important application is the extension
of the Isabelle system itself by means of verified monadic proof procedures as we have
sketched it in §6.1.

Future work will also focus on alleviating current limitations, most notably to allow
a broader range of heap-representable types, monadic I/O, and more automation for
defining monadic recursive functions.
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