
Using Yices as an automated solver in Isabelle/HOL

Levent Erkök John Matthews

Galois, Inc.
421 SW 6th Ave. Suite 300

Portland, OR 97004
{levent.erkok,matthews}@galois.com

ABSTRACT
We describe our integration of the Yices SMT solver into
the Isabelle theorem prover. This integration allows users
to take advantage of the powerful SMT solving techniques
within the interactive theorem proving environment of Is-
abelle, considerably increasing the automation level for a
significant subset of Isabelle/HOL.

1. INTRODUCTION
This paper describes the Isabelle ismt tactic,1 developed

by Galois to seamlessly integrate the Yices SMT solver within
the interactive theorem proving environment of Isabelle, thus
increasing the automation level considerably as well as pro-
viding counterexample information back to the user when
Yices detects a formula is invalid; similar to PVS’s yices

strategy [6].
The ismt tactic is freely available on the internet with a

permissive BSD-style license [5].

1.1 Yices
Yices is a modern SMT solver that supports uninterpreted

function symbols with equality, linear real and integer arith-
metic, scalar types, recursive datatypes, tuples, records, ex-
tensional arrays, fixed-size bit vectors, λ-expressions, and
quantifiers [7, 11, 16]. Yices’s input language is based on a
LISP like syntax extended with type declarations. Neverthe-
less, Yices’s input language is still significantly more restric-
tive than Isabelle/HOL [25]. For instance, Yices currently
does not support parameterized datatype declarations, mu-
tual or nested recursion in datatypes, or bounded quan-
tification over sets. Most importantly, Isabelle/HOL’s and
Yices’s type systems are substantially different: While the
former has a polymorphic type system, Yices only allows
monomorphic definitions with uninterpreted types. How-
ever, we still consider Yices a suitable target for integration,

1The name ismt was chosen to avoid conflict with an already
existing smt tactic (see Section 2.2), and also to emphasize
our future plans of taking advantage of incrementality.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AFM08: Automated Formal Methods ’08 Princeton, New Jersey, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

and our tactic is able to translate many of Isabelle/HOL’s
extra features into Yices equivalents.

Most SMT solvers support the SMT-Lib language [9],
which is the input format used in the SMT competitions.
However, we chose to avoid translation through this medium
for two reasons. First, SMT-Lib only supports a limited
set of theories [8] which does not include datatypes, tuples,
records, etc. Second, the SMT-Lib language is not incre-
mental. That is, facts cannot be asserted or retracted in
the middle of a proof. While we do not currently make any
significant use of Yices’ native incremental API, our future
plans do include taking full advantage of this functionality.

1.2 Modes of integration
The ismt tactic invokes Yices as an external oracle, mean-

ing that it trusts the soundness of Yices and our translator.
Whenever Isabelle produces a theorem via an external ora-
cle, it attaches a trust tag to it, as well as to any other the-
orem that uses this theorem in its proof. The trust tag says
which tool was invoked, and the formula the tool proved.
Isabelle displays a “[!]” annotation on any theorem con-
taining trust tags, and the list of trust tags associated with
a theorem can also be directly queried.

Assuming Yices supports a mode in the future where ex-
plicit proof objects are returned, then we would also like to
build a proof replay mode for ismt where the proof object
is used to reconstruct a purely Isabelle proof of the theorem
that would not contain any trust tags.

2. RELATED WORK
There have been several attempts at integrating SMT

solvers into theorem proving environments. In this section
we review the most relevant ones to our work.

2.1 Integration of Yices with PVS
The Yices SMT solver can be used as an end-game solver

in PVS [6]. The translation from PVS to Yices is much more
direct than ours, since Yices and PVS share the same type
system. Similar to our work, Yices acts as a trusted solver
in PVS, whose results are not verified independently. Unlike
our tactic, however, the models generated by Yices are not
translated back to PVS notation: A failed proof attempt
by Yices is simply interpreted by PVS as a skip, having no
effect on the proof state.

2.2 The smt tactic
Barsotti et al. describes how to integrate generic SMT

solvers with Isabelle [10, 14]. Similar to our work, their tac-

tic works as an oracle as well, i.e., no proof reconstruction is
done. Unlike our work, however, they target the SMT-Lib
language [9] as their translation medium, allowing them to
use arbitrary SMT solvers that support this common lan-
guage. Due to the limitations of SMT-Lib, however, Bar-
sotti et al. forgo expressive power, not being able to support
datatypes, case-statements, λ-expressions, tuples, records,
etc., which are the basic pillars of the Isabelle/HOL lan-
guage. We consider the expressive power afforded by the
richer internal language of individual SMT solvers well worth
the cost of building custom translators.

2.3 The rv tactic
Fontaine et al. describe how to perform proof reconstruc-

tion using proof generating SMT solvers [18]. In their work,
they use haRVey [3] to generate “proof hints,” that can later
be replayed by Isabelle via the rv tactic. While this is
precisely the technique we would like to use in the future,
currently haRVey only supports propositional logic, unin-
terpreted functions, and linear arithmetic; a rather limited
language compared to what our tactic can handle.

2.4 Integration of CVC-Lite with HOL-Light
The final related work we would like to review is the in-

tegration of CVC-lite SMT solver [1] within HOL-Light [4],
as described by McLaughlin, Barrett, and Ge [24]. In this
work, proofs generated by CVC-Lite are represented as tree-
like data structures [13], which are parsed back and replayed
in the HOL-Light theorem prover. This translation of proof
trees is especially made easy since the CVC-Lite logic is very
close to a subset of the HOL-Light logic.

McLaughlin et al. point out that to integrate the CVC-
Lite proofs about arrays, for instance, they had to extend
HOL-Light to understand CVC-Lite inference rules. While
they note that this was a trivial task in this particular case,
it is not clear how easy it would be to repeat this exercise
to other theories of interest.2

2.5 Integration of UCLID with ACL2
Manolios and Srinivasan [23] modified the ACL2 theorem

prover to provide an oracle-like facility for solving ACL2
subgoals using the UCLID [22] SMT solver. To prove an
ACL2 goal P correct, they first use an untrusted transla-
tion from ACL2 to UCLID, obtaining a UCLID formula P ′.
If UCLID proves P ′ valid, then a trusted translator from
UCLID to ACL2 is applied, obtaining an equivalent ACL2
assertion G. Finally, ACL2 itself is used to prove that G
implies P . If this final proof goes through, then they as-
sert that the original goal P must be a theorem, modulo the
soundness of the translation from UCLID to ACL2.

Note that the soundness of the translation in the other
direction, i.e., from ACL2 to UCLID, is not trusted, which
is the key advantage of their approach. Since UCLID’s logic
is much simpler than ACL2’s, a translator from UCLID to
ACL2 will be significantly simpler than a translator in the
other direction, and therefore more likely to be sound.

Recently ACL2 has added an external oracle and trust
tagging mechanism [21]. This feature could allow for a future

2 An e-mail inquiry to CVC developers revealed that
while their latest SMT solver (named CVC3) has support
for proof-generation facilities, the documentation remains
sparse [2]. Also of question is the continued support for this
feature as CVC itself evolves.

version of the UCLID oracle to be built without having to
modify ACL2’s trusted kernel.

2.6 Alternative to Monomorphisation
As described in Section 4.5, our tool monomorphizes all

occurrences of polymorphic types and constants. Couchot
and Lescuyer [15] describe an alternative encoding where
type variables and type operators are reflected at the term
level, and polymorphic constants are then “tagged” with the
reflected type instances they occur at. This encoding ends
up being significantly more compact than our monomor-
phization approach, and their benchmarks demonstrate that
Yices performs more efficiently on problems translated in
this way. One slight drawback is that the translation re-
quires a pair of quantified lemmas to be inserted into the
subgoal, which will cause Yices to report even concrete coun-
terexamples as being potentially spurious. However, this
could be easily remedied by a separate analysis of the sub-
goal’s decidability that first removes the pair of quantified
lemmas. We may consider this translation approach in a
future version of ismt.

3. HOW THE ISMT TACTIC WORKS
The ismt tactic proves theorems by having Yices prove

their negations unsatisfiable. When invoked, the ismt tactic
performs the following tasks on the topmost subgoal of the
Isabelle goal stack:

• Translate the types occurring in the formula into Yices
type declarations. This process requires monomorphi-
sation of HOL datatypes, records, etc., to map poly-
morphic operators and type variables to corresponding
monomorphic versions supported by Yices. (See Sec-
tion 4 for details.)

• Negate the subgoal and translate it to Yices. If a HOL
constant has no corresponding Yices construct, then
declare it as an uninterpreted constant of the appropri-
ate type. For instance, let isEven :: nat ⇒ bool

be a user defined HOL constant. Then, for the HOL
expression isEven (4::nat), we would generate the
following Yices translation:

(define isEven::(-> nat bool))

(assert (not (isEven 4)))

where no defining equations for isEven are added (how-
ever the user can always first insert the defining equa-
tions into the original subgoal as quantified lemmas).

• Pass the generated script to Yices. If Yices returns a
model (i.e., a set of assignments that satisfies the nega-
tion of the input), we turn that into a refutation of the
original formula. Naturally, the Isabelle proof attempt
fails at this point. (This counterexample might be spu-
rious, due to the presence of uninterpreted constants.
We will discuss this possibility in detail in Section 5.)

• If Yices determines the clauses are unsatisfiable, then
trigger Isabelle’s oracle mechanism and accept the orig-
inal subgoal formula as a (trust-tagged) theorem.

The translator makes no attempt to send existing Isabelle
lemmas to Yices. However, the user can always explicitly in-
sert lemmas into the current subgoal as additional hypothe-
ses. (See Section 5.1 for an example.)

The following HOL entities are properly understood and
translated by the ismt tactic to Yices’s internal language.
Any other construct will be translated as an uninterpreted
constant or type:

• Types. Ground types: int, nat, bool. Basic HOL
types: polymorphic lists, option type, tuples of arbi-
trary arity, including unit. Records with polymor-
phic fields (except extensible records). User defined
datatype declarations: Both parameterized and recur-
sive variants are supported. (However, they cannot
be mutually recursive, either directly or indirectly via
nesting.) Functions: Both first-order and higher-order
functions are supported.

• Constants. Equality: =, supported polymorphically
at all types. Boolean operators: True, False, ≤, <,
−→, =⇒, ∨, ∧, ¬, and dvd. Operators:3 +, −, ×, /,
− (unary minus), div, mod, abs, Suc, min, max, fst,
and snd.

• Expressions and binding constructs: If-expres-
sions, let bindings, λ-abstractions, quantifiers (∀, ∃,V

), case expressions (over tuples, naturals, option type,
lists, and arbitrary user defined types), function and
record update expressions.

4. EXAMPLES
In this section we will walk over a number of example uses

of the ismt tactic, demonstrating its basic capabilities.

4.1 Basics
Consider the classic excluded-middle example:

lemma "a ∨ ¬a"
by ismt

Running Isabelle on this input yields:

lemma ?a ∨ ¬?a [!]

Note that Isabelle tags the free variable a with ?, indicating
it is a schematic variable, i.e., the lemma is proven for all
possible substitutions of the variable a. Furthermore, the
lemma is displayed with a [!] annotation, indicating the
role of the oracle.

Here’s a slightly more interesting example, showing that
an odd number can not be a multiple of 2:

lemma "a = (2::int) * n + 1 −→ a 6= 2 * m"

by ismt

which will be proven by the ismt tactic directly. Note that
the type qualifier on 2, (i.e., 2::int) is necessary. Other-
wise Isabelle’s overloaded numbers would have caused this
statement to have a more polymorphic type than intended,
and the translator would have left the arithmetic operators
uninterpreted.

3The arithmetic operators (+, −, etc.), and comparisons
(<=, <) are supported both at their int and nat instances.
Use of arithmetic operators at other Isabelle numeric types
will remain uninterpreted. Also note that Yices does not
fully support non-linear arithmetic. If a non-linear expres-
sion is given to the translator it will still be translated, but
Yices might reject the input.

If the input to the ismt tactic is not a Yices-theorem, then
a counterexample will be generated. Consider:4

lemma "abs (n::int) = n"

by (ismt model: abort)

Running Isabelle on this input will yield:

*** A counter-example is found:

*** n = -1

Counterexample generation raises an interesting question
in the presence of uninterpreted constants. Consider the
following example, where we do not indicate what specific
type the expression None has.

lemma "n = None"

by (ismt model: abort)

The tactic will respond with:

*** A counter-example is found:

*** Some (ismt_const 1) = n

The counterexample uses the function ismt_const. The fol-
lowing excerpt from the generated Yices code might help
explain the need for this constant:

(define-type ’a)

(define-type option-’a

(datatype None-’a (Some-’a the::’a)))

(define n::option-’a)

(assert (/= n None-’a))

The type assigned to the HOL constant n is ’a option,
which results in a rendering of the option type at the un-
interpreted type ’a. (See Section 4.5 for details on how
datatype declarations are translated.) Yices assumes all
uninterpreted types are integers when generating models.
When the HOL counterexample is generated from the Yices
model, however, we cannot use these integers as the values of
the corresponding variables; doing so would not be type cor-
rect. Hence, we have defined an uninterpreted HOL constant
ismt_const with the type int ⇒ ’a, Such counterexam-
ples should be read such that the arguments to ismt_const

are indices into the right HOL type, where different indices
pick different values in the corresponding domain. (That is,
ismt_const should be considered an injective function.)

4.2 Anonymous functions
HOL’s λ-abstractions are compiled into their Yices coun-

terparts. Here are several examples:5

lemma "(λx::int. x+2) = (λy. 2+y)"

lemma "(λx::int. x+2) = f"

The first lemma generates the following Yices code:

(assert (/= (lambda (x::int) (+ x 2))

(lambda (y::int) (+ 2 y))))

4The model: abort flag instructs ismt to throw an excep-
tion when a model is returned by Yices. The other possi-
ble options are silent, which acts as skip; and the default
notify, which is the same as skip except it also displays the
counterexample in Isabelle’s trace buffer.
5For brevity, we will no longer show the actual call to ismt,
i.e., each lemma line should be followed by the command by
(ismt model: abort).

which is automatically proven.
The second lemma generates the following code:

(define f::(-> int int))

(assert (/= (lambda (x::int) (+ x 2)) f))

which causes the ismt tactic to generate the following coun-
terexample:

*** A counter-example is found:

*** f -1 = 2

Note that the use of λ-expressions can trigger incomplete-
ness, though we have found this to occur rarely in practice.
(See Section 6 for details).

4.3 Tuples
HOL tuples are converted to their Yices counterparts ap-

propriately. Tuples of arbitrary arity are implemented by
right-nested tuples in HOL, and the translator uses the same
technique to represent them in Yices.

The following lemma is automatically proven:

lemma "(x, y, x) = (y, x, y) =⇒ x = y"

It generates the code:

(define-type ’a)

(define x::’a)

(define y::’a)

(assert (= (mk-tuple x (mk-tuple y x))

(mk-tuple y (mk-tuple x y))))

(assert (/= x y))

Projections fst and snd are translated accordingly:

lemma "fst t = snd t =⇒ (snd t, fst t) = t"

This lemma generates the following code:

(define-type ’a)

(define t::(tuple ’a ’a))

(assert (= (select t 1) (select t 2)))

(assert (/= (mk-tuple (select t 2) (select t 1))

t))

and is automatically proven by Yices.
Any models produced by Yices for the negation of the goal

are automatically translated back to HOL. Consider:

lemma "snd (f, f True) = False =⇒ f False = True"

which generates:

(define f::(-> bool bool))

(assert (= (select (mk-tuple f (f true)) 2) false))

(assert (/= (f false) true))

We get the following HOL counterexample:

*** A counter-example is found:

*** f True = False

*** f False = False

Notice that the components of a tuple can contain arbitrary
elements, including functions.

4.4 Let expressions
HOL let-expressions are implemented by the higher order

function Let :: ’a ⇒ (’a ⇒ ’b) ⇒ ’b, so that let x

= 1 in x + x is syntactic sugar for Let 1 (λx. x + x).
We convert these directly to Yices let-expressions. Here is
an example:

lemma "let x = (1::int) in let y = 2 in x+y = 3"

Our tactic generates the following Yices code:

(assert (not (let ((x::int 1))

(let ((y::int 2))

(= (+ x y) 3)))))

which is automatically proven.
Bound variables in a let-expression can be of arbitrary

types; the translator will ensure appropriate eta-expansion
is done to preserve Yices’ stringent function arity require-
ments, as demonstrated below:

lemma "(3::int) = (let f = (op +) 2 in f 1)"

This lemma will be automatically proven by ismt. It gener-
ates the following code:

(assert (/= 3 (let ((f::(-> int int)

(lambda (etav::int)

(+ 2 etav))))

(f 1))))

Note the eta-expansion in the definition of f to make sure
that the Yices constant + is applied to the correct number
of arguments.

4.5 Datatype declarations
One of the ubiquitous aspects of functional programming

(either in HOL or in any other functional language) is the use
of datatype declarations. The ismt tactic translates (most)
datatype declarations to their Yices counterparts. There are
several obstacles, however:

• Yices does not support parameterized or polymorphic
datatype declarations. Our translator “flattens-out”
the use of parameterized datatypes on the fly, gener-
ating individual monomorphised instances.

• Yices does not allow datatype declarations to be mu-
tually recursive, either directly (via the use of two
datatype declarations), or indirectly (via the use of
nested recursion). Such cases are detected by the trans-
lator and rejected.

4.5.1 Datatypes without parameters
Any non-parameterized datatype, recursive or otherwise,

generates an equivalent declaration in Yices.
Simple enumerations are converted to scalar declarations:

datatype Kind = Odd | Even

gets translated to:

(define-type Kind (scalar Odd Even))

Recursive types are translated accordingly:

datatype Nat = Zero | Succ Nat

gets translated to:

(define-type Nat (datatype Zero (Succ aSucc::Nat)))

Unlike HOL, Yices requires all fields in a datatype decla-
ration to have associated accessors. The accessor aSucc ::

Nat ⇒ Nat was automatically generated in the last example
to satisfy this requirement. (The translator also allows users
to register their own custom accessors, see [17] for details.)

4.5.2 Parameterized datatypes
Each use of a parameterized datatype at a different in-

stance causes the translator to generate a new set of decla-
rations. We call this translation the process of monomor-
phisation. To illustrate, consider the following lemma:

datatype (’a, ’b) Either = Left ’a | Right ’b

lemma "Left False 6= Right (4::int)

∧ Left True 6= Right x"

causes the translator to generate the following code:

(define-type ’a)

(define-type

Either-bool-int

(datatype

(Left-bool-int aLeft-bool-int::bool)

(Right-bool-int aRight-bool-int::int)))

(define-type

Either-bool-’a

(datatype (Left-bool-’a aLeft-bool-’a::bool)

(Right-bool-’a aRight-bool-’a::’a)))

(define x::’a)

(assert (not (and (/= (Left-bool-int false)

(Right-bool-int 4))

(/= (Left-bool-’a true)

(Right-bool-’a x)))))

which is successfully proven by Yices. Note that each dis-
tinct use of the Either type caused a new datatype declara-
tion, including the case where there is a free type variable.
The names of types are used with dashes to create unique
constructor names, as in Left-bool-int or Right-bool-’a.

Recursive declarations are translated similarly:

datatype ’a Tree = Leaf ’a

| Branch "’a Tree" "’a Tree"

lemma "Leaf 3 6= Leaf (2::int)"

causes the translator to generate the following:

(define-type

Tree-int

(datatype (Leaf-int aLeaf-int::int)

(Branch-int aBranch-int1::Tree-int

aBranch-int2::Tree-int)))

(assert (= (Leaf-int 3) (Leaf-int 2)))

which is again proven unsatisfiable automatically by Yices.

4.5.3 Direct and nested mutual recursion
Mutually recursive datatypes are not supported by the

translator, due to the fact that Yices has no support for
such constructs and there is no simple translation that can
be applied in such cases. An example of such a declaration
is the following recursive pair of datatypes:

datatype ’a AExp = Var ’a | BExp "’a AExp"

and ’a BExp = And "’a AExp" "’a AExp"

If a lemma involving one of the types AExp or BExp is sent
to ismt, it will throw an exception rejecting the mutually
recursive datatype declaration.

Nested recursion is another source for the same problem:

datatype ’a Term = Variable ’a | App "’a Term list"

In this case, the recursion for the Term datatype happens at
the type ’a Term list instead of the required type ’a Term.
Similar to the above case, nested recursive declarations will
be rejected by ismt as well.

4.6 Case expressions
In HOL, every datatype declaration is accompanied by a

corresponding case-construct to take the constructed terms
apart. Unfortunately, Yices does not support case expres-
sions natively. However, Yices does provide recognizers for
each constructor in a datatype declaration, and we take ad-
vantage of this facility to compile down HOL case-expressions
to a cascaded sequence of if-then-else expressions. Using
this technique, we not only support case expressions over
built-in types such as tuples, booleans, and lists, but also
user-defined datatypes as well. To illustrate, consider the
following lemma:

lemma "fst tp = (case tp of (x, y) ⇒ x)"

which can automatically be proven by ismt. It generates
the following code:

(define-type ’a)

(define-type ’b)

(define tp::(tuple ’a ’b))

(assert (/= (select tp 1)

(((lambda (x::’a) (lambda (y::’b) x))

(select tp 1)) (select tp 2))))

Note that there is no explicit if-statement used in this case,
since there is exactly one way to take a tuple apart.

Case expressions over naturals demonstrates the use of
if-expressions:

lemma "i+1 = (case (i::nat) of

0 ⇒ 1

| Suc m ⇒ m+2)"

Yices can automatically prove the generated assertion for
this case:

(assert

(/= (+ i 1)

(if (= i 0)

1

((lambda (m::nat) (+ m 2)) (- i 1)))))

HOL lists are slightly more interesting. Consider:

lemma "case [True, False] of

[] ⇒ True

| (y#ys) ⇒ y"

This lemma is automatically proven, generating the code:

(define-type

list-bool

(datatype Nil-bool (Cons-bool hd::bool

tl::list-bool)))

(assert

(not

(let

((casev::list-bool

(Cons-bool true (Cons-bool false

Nil-bool))))

(if (Nil-bool? casev) true

(((lambda (y::bool)

(lambda (ys::list-bool) y))

(hd casev))

(tl casev))))))

The translator uses a let-expression to wrap the test ex-
pression around (unless it is already a variable), as demon-
strated above using the variable casev. This aids greatly in
readability as it avoids duplicating the expression later on.

4.7 Records
HOL record types are translated into Yices records. HOL’s

extensible records are not supported, however, since there is
no corresponding Yices construct.6

Consider the HOL lemma:

record pt = pt_x :: int

lemma "pt_x (| pt_x = 3 |) = 3"

We generate the following code:

(define-type pt (record pt_x::int))

(define-type unit (scalar Unity))

(assert (/= (select (mk-record pt_x::3) pt_x) 3))

(Note the appearance of the unit type in the output, which
seems spurious. It, in fact, corresponds to the more field of
the HOL record.)

Parameterized and polymorphic fields are converted as
usual, by monomorphising them appropriately:

record (’a, ’b) pt2 =

pt2_x :: ’a

pt2_y :: ’b

pt2_z :: int

lemma "pt2_x (| pt2_x = v, pt2_y = q,

pt2_z = s |) = v"

The generated Yices code is:

(define-type ’a)

(define-type ’b)

(define-type pt2-’a-’b

(record pt2_x::’a pt2_y::’b pt2_z::int))

(define-type unit (scalar Unity))

(define v::’a)

(define q::’b)

(define s::int)

(assert (/= (select (mk-record pt2_x::v

pt2_y::q pt2_z::s)

pt2_x)

v))

HOL and Yices records are both extensional, allowing us
to prove record equality theorems. Consider the following
lemma that uses the pt2 record as defined above:

6We plan to overcome this limitation in a future version
by “flattening,” i.e., either by compiling HOL’s extensible
records to Yices records that contain all the relevant fields,
or by compiling them into nested records.

lemma "(| pt2_x = a, pt2_y = b, pt2_z = a+b |)

= (| pt2_x = b, pt2_y = a, pt2_z = c |)

=⇒ a = b & c - b = a"

It generates the following additional code:

(define a::int)

(define b::int)

(define c::int)

(assert

(= (mk-record pt2_x::a pt2_y::b pt2_z::(+ a b))

(mk-record pt2_x::b pt2_y::a pt2_z::c)))

(assert (not (and (= a b) (= (- c b) a))))

which is proven automatically by Yices.
Finally, counterexamples will be translated back to their

HOL counterparts:

record fr =

f :: "int => int"

lemma "r1 = (r2 :: fr)"

A call to ismt generates the following counterexample:

*** A counter-example is found:

*** (| f = f r1 |) = r1

*** (| f = f r2 |) = r2

*** f r1 1 = 2

*** f r2 1 = 3

4.8 Function and record updates
HOL’s function and record update notations are fully sup-

ported by the translator. Consider the following trivial func-
tion update theorem:

lemma "(f(i:=n)) i = n"

This lemma is successfully proven. It generates the following
code:

(define-type ’a)

(define-type ’b)

(define f::(-> ’b ’a))

(define i::’b)

(define n::’a)

(assert (/= ((update f (i) n) i) n))

Record updates are similarly translated to their Yices
equivalents.

4.9 Quantifiers
Quantifiers are a soft spot for SMT solvers, as they typi-

cally render the underlying algorithms incomplete. (We will
return back to this point in Section 6 in detail.)

Our ismt tactic translates both meta- and object-level Is-
abelle quantifiers into Yices’ input format. One optimization
is that top-level universally bound variables are skolemized
into top-level Yices uninterpreted constants. To illustrate,
consider the following trivial lemma:

lemma "
V

x. (∀y. (x = x ∧ y = y))"

When ismt is invoked, it generates the following code that
contains no quantifiers at all:

(define x::’a)

(define y::’b)

(assert (not (and (= x x) (= y y))))

Needless to say, Yices deduces unsatisfiability instantly.
When quantifiers are nested, however, the translator can

no longer compile them away. In such cases, we simply trans-
late them to their Yices equivalents. Consider the lemma:

lemma "
V
x. [[(∀y. p y =⇒ q y)]] =⇒ p x −→ q x"

This lemma is proven successfully by Yices. The generated
code is:

(define-type ’a)

(define x::’a)

(define p::(-> ’a bool))

(define q::(-> ’a bool))

(assert (forall (y::’a) (=> (p y) (q y))))

(assert (not (=> (p x) (q x))))

Note, in particular, how the parameter x becomes a top-
level definition, while y remains forall bound in the Yices
translation.

The treatment of the ∃ binder is similar, except that top-
level occurrences cannot be compiled away to top-level def-
initions. Here is a simple example to illustrate:

lemma "∃x. x > (0::nat)"

This lemma is proven automatically by Yices. It generates
the code:

(assert (not (exists (x::nat) (< 0 x))))

The translator does not support the unique-existence quan-
tifier (∃!). The bounded versions of the quantifiers (Ball and
Bex) are not supported either, and neither are the Hilbert’s
choice (ε), and the Least binders. Uses of these constructs
will remain uninterpreted during the translation process. (It
might be possible to support bounded quantifiers through
Yices’ predicate-subtyping. However, we currently refrain
from this since Yices does not ensure type-correctness when
predicate-subtyping is used. In particular, it is possible to
define empty types in Yices, and exploit these to prove bogus
theorems.)

5. DEALING WITH FALSE ALARMS
Due to the fact that certain constants will remain uninter-

preted during the translation, the ismt tactic can come up
with bogus counterexamples. In this section we consider two
particular instances of this problem and discuss mitigations.

5.1 Recursive uninterpreted constants
Although non-recursive uninterpreted functions can be

dealt with by unfolding their definitions before calling ismt,
a different approach is needed when the functions are re-
cursively defined. To illustrate, consider the function len

below, which computes the length of boolean lists:

consts len :: "bool list ⇒ nat"

primrec

"len [] = 0"

"len (x#xs) = 1 + len xs"

Consider the following lemma:

lemma "len [True, False] = 2"

which generates the following code:

(define-type list-bool

(datatype Nil-bool

(Cons-bool hd::bool tl::list-bool)))

(define len::(-> list-bool nat))

(assert (/= (len (Cons-bool true

(Cons-bool false Nil-bool)))

2))

Yices provides the following counterexample:

*** A counter-example is found:

*** len [True, False] = 3

which is clearly bogus. The problem arises since we have
not told Yices anything about the function len, leaving it
uninterpreted.

There are clearly easier ways to prove this lemma in Is-
abelle, (in fact, a simply application of auto would suffice),
but our goal is to show how additional quantified hypothe-
ses can be added so that ismt can prove the lemma success-
fully. In this case, all we need to do is to assert the pattern-
matching rewrite rules for len as extra Isabelle lemmas:

lemma len0: "len [] = 0"

lemma len1: "len (x#xs) = 1 + len xs"

Both of these lemmas can be proven by Isabelle’s auto tactic.
We can now use these additional facts to guide Yices:

lemma "len [True, False] = 2"

apply (insert len0 len1)

The goal state after the insert tactic looks like:

[[len [] = 0;
V
x xs. len (x # xs) = 1 + len xs]]

=⇒ len [True, False] = 2

When we apply ismt at this proof state, the generated Yices
code looks like:

(define-type

list-bool

(datatype Nil-bool (Cons-bool hd::bool

tl::list-bool)))

(define len::(-> list-bool nat))

(assert (= (len Nil-bool) 0))

(assert

(forall (x::bool)

(forall (xs::list-bool)

(= (len (Cons-bool x xs))

(+ 1 (len xs))))))

(assert (/= (len (Cons-bool true

(Cons-bool false Nil-bool)))

2))

which is easily decided by Yices to be unsatisfiable, allowing
us to conclude that the original formula is indeed a theorem.

Unfortunately, not all false alarms can be dealt with us-
ing these techniques. There will invariably be certain con-
structs that will go uninterpreted during the translation.
(Consider, for instance, more complicated recursive defini-
tions where finding such “helper lemmata” would amount to
proving the original theorem. Or HOL constructs such as
Hillbert’s choice operator that has no corresponding “exe-
cutable” counterpart that we can use in the simplification
process.) While these techniques can be helpful, our experi-
ences with the ismt tactic suggest that such cases are best
dealt within the theorem proving framework of Isabelle, in-
stead of relying on a backend SMT solver.

6. INCOMPLETENESS
SMT solvers typically support richer languages/logics than

they can actually decide. For instance, it is well known
that quantifiers (i.e., ∀, ∃), and λ-expressions make logics
incomplete. In such cases, the underlying solver typically
returns a satisfying model as well, but there is a chance that
this model might be bogus. (Such problems are reported by
Yices as “unknown” to indicate this possibility.)

To illustrate, consider:

lemma "((λ(x::bool). f x) = (λx. True)) =⇒ f x"

The generated file contains (excerpt shown below):

(assert (= (lambda (x::bool) (f x))

(lambda (x::bool) true)))

(assert (not (f x)))

We get the following “potential” counterexample from ismt,
which is actually bogus in this particular case:

Potential HOL counterexample:

x = False

f False = False

Notice that incompleteness will never cause ismt to prove
a non-theorem. Rather, it might prevent it from proving a
valid assertion. In other words, soundness is never at risk
due to this limitation.

7. EXPERIMENTS
Having discussed the ismt tactic in detail, we will now

briefly turn to our use cases for it at Galois, providing ex-
amples from various projects, both past and present.

Galois is building several cross-domain web service ap-
plications that provide strong security guarantees about the
confidentiality of data across separate security domains. For
example, our Trusted Services Engine (TSE) is a multi-level
secure filestore providing a single common repository for files
and directories, where each user’s view of the file system is
restricted according to that user’s security level.

Most of the TSE is written in the Haskell functional pro-
gramming language, which provides a number of security
benefits. However, we implemented the most security-critical
cross-domain portion of the TSE as an 800-line C program,
to eliminate any dependency on Haskell’s runtime system.
In order to attain the highest government security certifica-
tions for the TSE, we decided to formally model this compo-
nent in Isabelle and verify its memory safety and information
flow properties [19]. Although the verification was success-
ful, discovering the required inductive safety invariants and
view relations was very labor-intensive.

7.1 C program verification
To speed up proofs for future cross-domain C components

we have prototyped a monadic-style sequential semantics for
a larger subset of C, called SeqC. Although SeqC’s semantics
still only covers a small portion of the C standard, it in-
cludes general while loops, the non-local control flow state-
ments return, break, and continue, access control permis-
sions for each memory byte, the ability to take addresses of C
globals, locals, and malloc’ed memory, nondeterministically-
modeled C functions such as malloc and free, and gen-
eral assume and assert statements. SeqC also contains a
non-recoverable Err state that is transitioned into upon any

memory-safety violation or assertion failure. Memory-safety
is thus defined as unreachability of Err, with assume state-
ments first pruning out all execution paths that don’t satisfy
a program’s environmental assumptions.

We have proved Hoare logic rules for SeqC, built a simple
verification condition generator (VCG) as an Isabelle tactic,
and run some initial experiments verifying memory-safety of
small example C programs. So far we have found the ismt

tactic to be quite helpful not only in proving the verifica-
tion conditions, but also for debugging too-weak precondi-
tions and loop invariants by inspecting the counterexamples
returned. To keep the counterexample sizes tractable, we
initially put small concrete bounds on program parameters
such as array sizes. We then used selected rewrite rules and
a high-level Isabelle tactic to automatically expand away
the (now bounded) quantifiers and recursive functions in
the formula before calling ismt. Once we had found the ap-
propriate rewrites, preconditions, and loop invariants, the
verification of our example programs was completely auto-
matic, thanks to the versatility of our ismt tactic and the
power of Yices.

To discover the necessary rewrite rules, we first had to fig-
ure out which part of the verification condition ismt couldn’t
solve. We wrote an Isabelle proof script that used case-
splitting tactics to eliminate any rigid quantifiers (i.e. quan-
tifiers that didn’t require any witnesses to be invented), as
well as top-level conjunctions and disjunctions in the proof
goal. The result was one or more smaller subgoals that were
jointly equivalent to the original proof goal. Then, we used
the ismt tactic on each subgoal until it found one that failed.

7.2 Parameterized program verification
We have also used the ismt tactic in verifying a string-

copy routine where the source string can either be on the
heap or the C stack, with a precondition that the string
length is not larger than the destination string buffer, nor
aliased to the destination buffer or any of the program’s local
variables.

When we tried to re-run the verification where the source
and destination buffer sizes were not fixed beforehand, the
resulting goals required Yices to reason about quantified as-
sertions. Unfortunately, we have found that Yices’ quantifier
instantiation heuristics were not up to the task. Further-
more, Yices currently does not allow users to specify their
own domain-specific quantifier instantiation term patterns.

To illustrate the issues we encountered, below we have
defined vcg, a simplified version of one of the parameterized
subgoals generated by our case-splitting tactic that Yices
was not able to solve, even with the appropriate quantified
lemmas.7

definition

vcg :: "addr ⇒ addr ⇒ addr ⇒ int ⇒
(addr ⇒ byte) ⇒ bool" where

"vcg src dst s_ptr n h

= (let s = h s_ptr;

d = dst - src + s;

h’ = h(d := h s, s_ptr := h s_ptr + 1)

in (src ≤ s ∧ is_str s (src + n - s) h

∧ ¬ s_ptr mem (str_addrs s n h)

7The combined Isabelle and ismt proof of this formula is
part of a self-contained example file vcg.thy, included in
our ismt release [5].

∧ ¬ d mem (str_addrs s n h)

∧ h s 6= 0

−→ ¬ s_ptr mem (str_addrs (s+1) n h’)))"

Parameter src points to the start of the source string
buffer, dst points to a destination buffer of size n, and s_ptr

is &s, the address of the C variable s, which itself points to
the next byte to copy from the source string. The variable
h is the contents of the memory heap at the top of the loop.
In the formula we have defined d to point to the destination
byte that *s will be copied to, and h’ to be the updated
heap at the bottom of the current loop iteration where *s

has been copied to *d with s incremented.
The function vcg mentions three recursively-defined func-

tions. (i) The predicate is_str has type addr ⇒ int ⇒
(addr ⇒ byte) ⇒ bool; is_str p n h is true whenever p
points to a null-terminated string in heap h that is no more
than n bytes long, including the null byte. (ii) The func-
tion str_addrs has type addr ⇒ int ⇒ (addr ⇒ byte)

⇒ addr list. The call str_addrs a n h returns a max-
length n list of contiguous addresses in h starting at a up
to and including the first address pointing to a null byte (if
any). It represents the set of addresses that can alias the
string. And (iii), the infix binary relation _ mem _ :: ’a

⇒ ’a list ⇒ bool is list membership. The types addr

and byte are synonyms for int.
To make this example easier for ismt, we manually re-

moved from vcg any hypotheses that were irrelevant to the
conclusion. The remaining hypotheses are: At the top of
the while loop s points to a string that fits within the n-byte
source buffer src, &s and d are not aliased to the string, and
*s is not null. The conclusion to verify is that at the end
of the while loop &s is still not aliased to the string now
pointed to by s. (This could happen if the while loop over-
writes the source string’s null byte.)

Discovering quantifier instantiations. We needed to
give ismt four quantified lemmas for it to verify the for-
mula. However we had to manually instantiate the follow-
ing lemma with the substitutions {p’ ← d, x ← h s} and
{p’ ← s_ptr, x ← s + 1}, to keep ismt from timing out.
The lemma variables p, n, and h remained quantified. With
these instantiations, ismt is able to verify vcg in less than a
second.

lemma str_addrs_simp:

"¬(p’ mem str_addrs p n h) ∨ ((h p’=0) = (x=0))

=⇒ str_addrs p n (h(p’ := x)) = str_addrs p n h"

To find the required lemmas and instantiations, we started
a manual backchaining process, where we asserted additional
formulas as new Isabelle subgoals that we believed to be
true. We confirmed this by running ismt on vcg, with the
additional formulas as extra hypotheses. We then recur-
sively followed this debugging process on each new Isabelle
subgoal, until it was clear what extra lemma or instantiation
was needed. (The file vcg.thy included in the distribution
contains the additional formulas we used, specifically in the
proof of detailed_vcg_lemma [5].)

The counterexamples generated by ismt were helpful for
debugging these subgoals if they were small enough. How-
ever, we often found it quicker to ignore the counterexample
and instead inspect the abstract Isabelle subgoal. This was
because Yices would typically assign multiple variables the

same concrete value in the counterexample, e.g., x = 3 ∧
y = 3. If the counterexample also asserted a formula (P 3)
that we knew to be false, we couldn’t then tell whether Yices
had chosen to satisfy (P x) or (P y). But this information
was usually necessary to determine which quantified lemma
would eliminate the counterexample for all possible values of
x or y in the subgoal. It would be very helpful to have either
a Simplify-style label capability that returned which sub-
propositions actually contributed to the counterexample, or
else a command to return an“abstract”counterexample that
displays the occurrences of free variables in formulas and
subterms, rather than substituting in their concrete values.

8. TIPS FOR USING ISMT
The following list summarizes a number of tips reflecting

our experiences with the ismt tactic.

• Avoid nested quantifiers. The translator will generate
separate top-level assert statements for each quanti-
fied hypothesis found in the subgoal. This is preferable
as it seems to enable more of Yices quantifier instan-
tiation heuristics. Try to lift quantified formulas into
top-level hypotheses whenever possible.

• Restrict arithmetic to nat’s and int’s. While Isabelle
allows arithmetic over arbitrary types (using axiomatic
type-classes), the Yices backend is not rich enough to
understand such constructs. When such goals are sent
to ismt, it is very likely that a bogus counterexample
will be returned, since these number types will remain
uninterpreted. Try to restrict arithmetic to nat’s and
int’s only, which are fully supported.

• Watch for “uninterpreted” constants. Pay close atten-
tion to the counterexamples returned by ismt.8 It is
likely that the falsifying model will be bogus due to un-
known facts about these constants. If possible, apply
the techniques described in Section 5 to resolve such
cases.

• Be type-specific, especially when using records. Isabelle
rewrite rules regarding records tend to be too polymor-
phic, applying to a variety of record types. Since the
translator does not support extensible records (see Sec-
tion 4.7), such rewrite rules can create subgoals that
are unnecessarily more general than needed. When-
ever possible, provide sufficient type annotation in the
HOL specification to restrict the record types appro-
priately.

• Dealing with “potential” counterexamples. Heavy use of
quantifiers tend to render the underlying SMT solvers
incomplete. Isabelle’s safe tactic might help in cases
where such quantifiers can be eliminated.

9. CONCLUSIONS
In this paper, we have described our Isabelle ismt tactic.

The tactic provides an automated solver for a subset of HOL,
by translating them appropriately to Yices. As a proof-of-
concept work, the ismt tactic demonstrates that it is quite

8To aid in this process, ismt will always print the list of un-
interpreted constants that are used in the counterexample.

feasible to build highly useful interfaces to modern off-the-
shelf SMT solvers from within interactive theorem proving
assistants.

Not every HOL theorem can be proved by ismt. Logics
of modern SMT solvers are deliberately weaker, trading ex-
pressive power for decidability. Still, we have found that the
use of the “uninterpretation” technique to translate literally
all HOL theorems to such logics pays-off very nicely in prac-
tice. Many tedious theorems can be proven “with the push
of a button.”

We also have several items on our Yices wish-list, as well
as enhancements we would like to make to ismt, as we dis-
cuss below.

Quantifier instantiation term patterns. As described
in Section 7.2, Yices’ in-built quantifier instantiation heuris-
tics did not always work for our use cases. The Simplify
and Z3 SMT solvers support quantifier instantiation term
patterns, where the user can attach a set of instantiation
patterns to any quantified assertion [12]. Each instantiation
pattern contains a set of term patterns, and a substitution
over the term patterns’ free variables. If in its proof search
the SMT solver finds a set of subterms that jointly matches
the term patterns, it will instantiate the quantified asser-
tion according to the substitution and add it to the proof
context.

Instantiation patterns can be used to enable systems of
rewrite rules by inserting each rewrite as a quantified equal-
ity and an instantiation pattern that matches the left-hand-
side of each rule. Instantiation patterns can also implement
forward- or backward-chaining inference rules, by having the
term pattern match either the hypotheses or conclusion of a
quantified implication.

For instance, in Section 7.2, we could have given a single
instantiation pattern for lemma str_addrs_simp that would
have solved the subgoal as well as related subgoals:

term_patterns: "¬(p’ mem str_addrs p h h)",

"str_adders p n (h(p’ := x))"

substitution: p ← p, p’ ← p’, n ← n, x ← x.

which would have simplified the proof significantly.

Abstract counterexamples and call-back tactics. The
ability to generate counterexample information is helpful,
especially when the counterexamples are small enough (i.e.
have only a few free variables and uninterpreted constants).
However, we think it would be much more useful to have a
Yices command to return an abstract counterexample for-
mula, as described in Section 7.2.

Abstract counterexamples would be especially useful in
conjunction with Yices’ incremental API. In particular, in
future work we want to allow the user to attach Isabelle
call-back tactics that are invoked on the abstract counterex-
amples produced by Yices. The call-back tactics would then
analyze each counterexample and return lemmas that either
refute it or infer additional facts such as equalities. These
lemmas would then be incrementally asserted into Yices’
current proof context the proof search would resume.

This process would continue until Yices is either able to
prove the original formula or else produce a counterexample
that the call-back tactics could not infer anything about.
Call-back tactics would thus allow the user to safely write
domain-specific quantifier instantiation heuristics that could

be more powerful than a fixed collection of term patterns.
A further Yices optimization would be to export the E-

graph matching API. Users could then register their own
term patterns. When a pattern matches during the proof
for the first time, Yices would immediately suspend and re-
turn references to the matched subterms. There would also
have to be commands to query the current proof context
(partial model). Exporting the E-graph matcher would also
allow call-back tactics to be triggered early, without having
to wait for a full counterexample to be built.

Modes of integration. The only mode of integration we
have investigated in this work is the oracle mode; where the
backend solver and the bridge code is blindly trusted. In
order to stay within the pure-LCF style, a proof-generating
backend solver, and a proof-replaying (or proof-checking) in-
terface is needed.

Integration with other SMT solvers. The ismt tactic
has been designed such that other solvers can be plugged
in by providing appropriate translators. Currently, we only
have a backend for Yices, however. Having translators for
multiple backends would make our tactic more useful in the
long run, as one can pick the best solver for the task at hand
as appropriate. It would of course simplify matters greatly
if there was a common SMT language that we could target
once and for all. Although SMT-Lib would seem to be a
natural target, it currently does not satisfy our needs. In
particular having support for recursive datatypes is essen-
tial. Also support for an incremental API and a counterex-
ample format would be very helpful. Grundy et al. provides
a nice desiderata for such a specification language [20].

Support for further HOL constants. Currently only a
subset of HOL constants are “interpreted,” (those we found
useful in our own experience). While this subset is fairly
large, supporting more constants would be useful. In par-
ticular, devising a more general scheme to translate all non-
recursive HOL definitions to Yices equivalents would be de-
sirable. Paired with a simple mechanism to allow users to
indicate which constants should be translated, the ismt tac-
tic can act as a powerful tool in custom theory development.

Support for further HOL constructs. The translator
currently does not support extensible records. Also, ratio-
nals and other numeric types (i.e. those other than int

and nat) go uninterpreted during the translation as well.
Adding support for these constructs might prove useful in
certain application areas.

Parallel proof processing. Our ismt implementation
does not support Isabelle’s recent multi-core code architec-
ture changes that support parallel proof processing. Thus
ismt must be called in a single-threaded context. Support-
ing parallel proofs where each thread might call ismt inde-
pendently would be a nice addition.

Acknowledgments
We would like to thank SRI’s Bruno Dutertre and Natarajan
Shankar for answering numerous questions on Yices, Alwen
Tiu of Australian National University for discussions on the
smt tactic, and Lee Pike and anonymous reviewers for com-
ments on an earlier draft of our paper.

Availability
Our ismt tactic, along with a user’s guide and other sup-
porting material is freely available on the internet with a
permissive BSD-style license [5].

10. REFERENCES
[1] CVC Lite web site. www.cs.nyu.edu/acsys/cvcl/.

[2] CVC3 web site. www.cs.nyu.edu/acsys/cvc3.

[3] haRVey web site. harvey.loria.fr/.

[4] HOL Lite web site.
www.cl.cam.ac.uk/~jrh13/hol-light/.

[5] The ismt tactic web site.
www.galois.com/company/open_source/ismt.

[6] PVS: Specification and Verification System site.
pvs.csl.sri.com/.

[7] Satisfiability Modulo Theories Solvers.
combination.cs.uiowa.edu/smtlib/solvers.html.

[8] SMT-LIB logics web site.
combination.cs.uiowa.edu/smtlib/logics.html.

[9] SMT-LIB web site.
combination.cs.uiowa.edu/smtlib/.

[10] SMT oracle web site.
users.rsise.anu.edu.au/~tiu/smt/.

[11] Yices web site. yices.csl.sri.com/.

[12] Z3 web site. http://research.microsoft.com/
projects/z3/index.html.

[13] C. Barrett and S. Berezin. A proof-producing boolean
search engine. In PDPAR’03 Workshop, Miami,
Florida, July 2003.

[14] D. Barsotti, L. P. Nieto, and A. F. Tiu. Verification of
clock synchronization algorithms: Experiments on a
combination of deductive tools. Electr. Notes Theor.
Comput. Sci., 145:63–78, 2006.

[15] J.-F. Couchot and S. Lescuyer. Handling
polymorphism in automated deduction. In 21st
International Conference on Automated Deduction
(CADE-21), volume 4603 of Lecture Notes in
Computer Science, pages 263–278, 2007.

[16] B. Duterte and L. de Moura. The YICES SMT Solver.
Available at: yices.csl.sri.com/tool-paper.pdf.

[17] L. Erkök. Connecting SMT solvers and Isabelle: The
ismt tactic and the yices bridge. Technical Report,
Available upon request from Galois.

[18] P. Fontaine, J.-Y. Marion, S. Merz, L. P. Nieto, and
A. F. Tiu. Expressiveness + automation + soundness:
Towards combining smt solvers and interactive proof
assistants. In TACAS, volume 3920 of Lecture Notes
in Computer Science, pages 167–181. Springer, 2006.

[19] P. Graunke. Verified safety and information flow of a
block device. In Systems Software Verification (SSV
08) Workshop, Sydney, Australia, Feb. 2008.

[20] J. Grundy, T. F. Melham, S. Krstić, and
S. McLaughlin. Tool building requirements for an API
to first-order solvers. Electr. Notes Theor. Comput.
Sci., 144(2):15–26, 2006.

[21] M. Kaufmann, J. S. Moore, S. Ray, and E. Reeber.
Integrating External Deduction Tools with ACL2. In
C. Benzmüller, B. Fischer, and G. Sutcliffe, editors,
Proceedings of the 6th International Workshop on
Implementation of Logics (IWIL 2006), volume 212 of

CEUR Workshop Proceedings, pages 7–26, Phnom
Penh, Cambodia, Nov. 2006.

[22] S. K. Lahiri and S. A. Seshia. The UCLID decision
procedure. In R. Alur and D. Peled, editors, Computer
Aided Verification, 16th International Conference,
volume 3114 of Lecture Notes in Computer Science,
pages 475–478. Springer, 2004.

[23] P. Manolios and S. K. Srinivasan. Verification of
executable pipelined machines with bit-level
interfaces. In ICCAD ’05: Proceedings of the 2005
IEEE/ACM International conference on
Computer-aided design, pages 855–862, Washington,
DC, USA, 2005. IEEE Computer Society.

[24] S. McLaughlin, C. Barrett, and Y. Ge. Cooperating
theorem provers: A case study combining HOL-Light
and CVC Lite. In PDPAR’05 Workshop, volume
144(2) of Electronic Notes in Theoretical Computer
Science, pages 43–51. Elsevier, Jan. 2006.

[25] T. Nipkow, L. C. Paulson, and M. Wenzel.
Isabelle/HOL – A Proof Assistant for Higher-Order
Logic. LNCS 2283. Springer, 2002.

