Using Yices as an automated solver in

Isabelle/HOL

Levent Erkék John Matthews
{levent.erkok,matthews}@galois.com

AFM'08: Automated Formal Methods 2008
Princeton, NJ

July 2008

galois

@ Providing strong assurance evidence for certification
e Some properties are amenable for automated proof
e For others, manual intervention is a must
o Strategy:
e Use a theorem-proving framework
o High-level correctness and “deeper” results
o Aided by push-button techniques:
@ When the subgoal is sufficiently simple
... but usually very tedious ...
@ Use whatever tool works the best
o And combinations thereof

2/34 galois

The ismt tactic

@ We use Isabelle/HOL
o Local expertise counts..
@ The ismt tactic out-sources proofs to Yices

o Directly supports a large chunk of HOL
o Uses “uninterpretation” for the rest

@ Similar to the yices strategy in PVS

53 galois

Modes of integration

@ Proof-replay mode

e Trust nothing; translate and replay the proof
e High assurance; Runs slow and is expensive to build.

4/34 galois

Modes of integration

@ Proof-replay mode

e Trust nothing; translate and replay the proof
e High assurance; Runs slow and is expensive to build.

@ Proof-check mode

e Do not replay, but “validate” the proof
o Medium (adjustable) assurance; Faster to run; Cheaper to build

4/34 galois

Modes of integration

@ Proof-replay mode

e Trust nothing; translate and replay the proof
e High assurance; Runs slow and is expensive to build.

@ Proof-check mode

e Do not replay, but “validate” the proof
o Medium (adjustable) assurance; Faster to run; Cheaper to build

@ Oracle mode

e Trust everything!
o Lowest assurance; Runs fast and cheapest to build
o No proofs required from the external solver

4/34 galois

Modes of integration

Proof-replay mode

e Trust nothing; translate and replay the proof
e High assurance; Runs slow and is expensive to build.

@ Proof-check mode

e Do not replay, but “validate” the proof
o Medium (adjustable) assurance; Faster to run; Cheaper to build

Oracle mode

e Trust everything!
o Lowest assurance; Runs fast and cheapest to build
o No proofs required from the external solver

Proof generation for SMT solvers is still active research area

Yices does not produce proofs; so oracle mode is the only choice

4/34 galois

© Connecting Isabelle to Yices

5/34 galois

How does ismt work

Grab the top-most goal from the Isabelle goal stack

Translate the types involved to Yices

e Might require “monomorphisation”
e Introduce uninterpreted types as needed

Negate the subgoal, and translate it to a Yices term
e If no matching construct; uninterpret

Pass the script to Yices
If Yices decides the negation is unsatisfiable:

o Trigger oracle mechanism to assert the goal proven
o A “trust-tag” will be attached.

6/34 galois

How does ismt work

Grab the top-most goal from the Isabelle goal stack

Translate the types involved to Yices

e Might require “monomorphisation”
e Introduce uninterpreted types as needed

Negate the subgoal, and translate it to a Yices term
e If no matching construct; uninterpret

Pass the script to Yices

If Yices decides the negation is unsatisfiable:

o Trigger oracle mechanism to assert the goal proven
o A “trust-tag” will be attached.

@ What do we do if Yices returns a model?

6/34 galois

Interpreting Yices's models

Recall that the model is for the negation of the goal
..Hence, it is a counter-example to what we were trying to prove

Typically indicates a bug found
Models are translated back to Isabelle/HOL

o Provides very valuable feedback!

7/34 galois

Interpreting Yices's models

Recall that the model is for the negation of the goal
..Hence, it is a counter-example to what we were trying to prove

Typically indicates a bug found
Models are translated back to Isabelle/HOL

o Provides very valuable feedback!

Not every counter-example is valid, however

7/34 galois

Two kinds of bogus counter-examples

@ Due to “Potential models”
o Caused by:

o Quantifiers
@ \-expressions

o These constructs render Yices's logic incomplete
o Clearly marked by Yices and the translator

o/3 galois

Two kinds of bogus counter-examples

@ Due to “Potential models”
o Caused by:

o Quantifiers
@ \-expressions

o These constructs render Yices's logic incomplete
o Clearly marked by Yices and the translator

@ Due to uninterpreted terms and types
o Caused by:

o Lack of “auxiliary” lemmata
o Lack of definitions of the functions used

e These are more problematic..

8/34 galois

© Example Translations

o/34 galois

Basics

Reflexivity

lemma "x = x"
by ismt

10/34 galois

Basics

Reflexivity
lemma "x = x"
by ismt

Generates

| A

(define-type ’a)
(define x::’a)
(assert (/= x x))

@ Monomorphisation in action!

10/34 galois

Simple arithmetic

No odd number is a multiple of 2

lemma "a = (2::int) * n + 1 — a # 2 * m"
by ismt

11/34 galois

Simple arithmetic

No odd number is a multiple of 2

lemma "a = (2::int) * n + 1 — a # 2 * m"

by ismt

| A

Generates
(define a::int)
(define n::int)
(define m: :int)
(assert (not (=> (= a (+ (* 2 n) 1))
(/=a (x2m))))

11/34 galois

Counter examples

Absolute values

lemma "abs (n::int) = n"
by ismt

12/34 galois

Counter examples

Absolute values

lemma "abs (n::int) = n"
by ismt

Generates

(define n::int)
(assert (/= (if (< n 0)
(- 0 n) n)
n))

12/34 galois

Counter examples

Absolute values

lemma "abs (n::int) = n"
by ismt

Generates
(define n::int)
(assert (/= (if (< n 0)
(- 0 n) n)
n))

| A\

Counter example
A counter-example is found:
n=-1

12/34 galois

Quantification and Higher order functions

@ Quantifiers can render Yices incomplete

@ Not a problem if in universal prenex form

13/34 galois

Quantification and Higher order functions

@ Quantifiers can render Yices incomplete

@ Not a problem if in universal prenex form

A trivial lemma

lemma "Vi f g. (f =g — £fi=gi)"

13/34 galois

Quantification and Higher order functions

@ Quantifiers can render Yices incomplete

@ Not a problem if in universal prenex form

A trivial lemma

lemma "Vi f g. (f =g — £fi=gi)"

Generates

(define-type ’a)

(define-type ’b)

(define i::’a)

(define f::(-> ’a ’b))

(define g::(-> ’a ’b))

(assert (not (=> (= f g) (= (£ 1) (g 1))

A\

@ automatically proven by Yices..

13/34 galois

Quantification and Higher order functions (cont'd)

Counter-examples

lemma "Vi f g. (fi=gi— f=g"

14/34 galois

Quantification and Higher order functions (cont'd)

Counter-examples

lemma "Vi f g. (fi=gi— f=g"

Generates

(define-type ’a)

(define-type ’b)

(define i::’a)

(define f::(-> ’a ’b))

(define g::(-> ’a ’b))

(assert (not (=> (= (f 1) (g 1)) (= £ g)))

.

14/34 galois

Quantification and Higher order functions (cont'd)

Counter-examples
lemma "Vi f g. (fi=gi— f=g"

Generates

(define-type ’a)

(define-type ’b)

(define i::’a)

(define f::(-> ’a ’b))

(define g::(-> ’a ’b))

(assert (not (=> (= (f 1) (g 1)) (= £ g)))

| \

Not true!
A counter-example is found:
i=1
f1=g1

\

14/34

galois

Quantification and Higher order functions (cont'd)

Counter-examples

lemma "Vi f g. (fi=gi— f=g"

Generates

(define-type ’a)

(define-type ’b)

(define i::’a)

(define f::(-> ’a ’b))

(define g::(-> ’a ’b))

(assert (not (=> (= (f 1) (g 1)) (= £ g)))

Not true!
A counter-example is found:
i = ismt_const 1
f (ismt_const 1) = g (ismt_const 1)

| \

\

14/34 galois

Parameterized datatypes

Monomorphise as we go
datatype (’a, ’b) Either = Left ’a | Right ’b

15/34 galois

Parameterized datatypes

Monomorphise as we go
datatype (’a, ’b) Either = Left ’a | Right ’b

lemma "Left False # Right (4::int)
A Left (1::nat) # Right x"

15/34 galois

Parameterized datatypes

Monomorphise as we go
datatype (’a, ’b) Either = Left ’a | Right ’b

lemma "Left False # Right (4::int)
A Left (1::nat) # Right x"

@ Types involved:

o (bool x int) Either
e (nat x ’a) Either

15/34 galois

Parameterized datatypes (cont'd)

Polymorphic Either
datatype (’a, ’b) Either = Left ’a | Right ’b

16/34 galois

Parameterized datatypes (cont'd)

Polymorphic Either
datatype (’a, ’b) Either = Left ’a | Right ’b

(bool X int) and (nat X ’a) instances

(define-type Either-bool-int
(datatype (Left-bool-int bool)
(Right-bool-int int)))

16/34 galois

Parameterized datatypes (cont'd)

Polymorphic Either
datatype (’a, ’b) Either = Left ’a | Right ’b

(bool x int) and (nat x ’a) instances
(define-type Either-bool-int
(datatype (Left-bool-int bool)
(Right-bool-int int)))

(define-type ’a)
(define-type Either-nat-’a
(datatype (Left-nat-’a nat)
(Right-nat-’a ’a)))

16/34 galois

Parameterized datatypes (cont'd)

Polymorphic Either
datatype (’a, ’b) Either = Left ’a | Right ’b

(bool X int) and (nat X ’a) instances

(define-type Either-bool-int
(datatype (Left-bool-int bool)
(Right-bool-int int)))

(define-type ’a)
(define-type Either-nat-’a
(datatype (Left-nat-’a nat)
(Right-nat-’a ’a)))

[automatically generated accessor functions not shown for clarity...]

16/34 galois

What's supported?

@ Basic strategy:
e Translate to native Yices format whenever there is an obvious
corresponding construct.
e Otherwise, uninterpret.
@ Supported types
e int, nat, bool
e ’a list, ’a option
o Tuples
o Records with polymorphic fields
@ Excluding extensible records
o User defined datatypes, both parameterized and recursive
@ No mutual recursion

o Functions: Both first-order and higher-order

17/34 galois

Supported constants

e Equality: =

@ Booleans: True, False, <, <, —, =, V, A, —, and dvd.

@ Arithmetic: 4+, —, %, /, — (unary minus), div, mod, abs, Suc, min,
max, fst, and snd.

@ Arithmetic is understood both for nat and int
o All other number types remain uninterpreted

18/34 galois

Supported expressions and binding constructs

If-expressions, let bindings, A-abstractions,
Quantifiers (¥, 3, A),
Case expressions over

o Tuples

o Naturals

o Internal option type and lists
o Arbitrary user defined types

@ Function and record update expressions

19/34 galois

What's not supported?

@ HOL constructs

3!, Ball, Bex

Hilbert's choice (€) and Least

Mutual recursion in datatypes

Extensible records

There are just no good Yices equivalents

20/34 galois

What's not supported?

@ HOL constructs

3!, Ball, Bex

Hilbert's choice (€) and Least

Mutual recursion in datatypes

Extensible records

There are just no good Yices equivalents

o Types:

o Fixed size bit-vectors and Rationals
o We plan to add these as needed

20/34 galois

What's not supported? (cont'd)

@ Most importantly

o No function definitions
e No lemmas

@ User's need to insert these manually

@ Appropriate instances need to be chosen

21/34 galois

What's not supported? (cont'd)

Most importantly

o No function definitions
e No lemmas

User's need to insert these manually

Appropriate instances need to be chosen

This is the major source of false alarms

21/34 galois

@ Dealing with false alarms

22/3a galois

Uninterpreted functions

Computing the length of boolean-lists
consts len :: "bool list = nat"

primrec "len [] = 0"
"len (x#xs) = 1 + len xs"

23/34 galois

Uninterpreted functions

Computing the length of boolean-lists

consts len :: "bool list = nat"
primrec "len [] = 0"
"len (x#xs) = 1 + len xs"

v

A trivial lemma

lemma "len [True, False] = 2"
by ismt

23/34 galois

The bogus counter-example

Response from ismt

A counter-example is found:
len [True, False] = 3

24/34 galois

The bogus counter-example

Response from ismt

A counter-example is found:
len [True, False] = 3

v

The translation

(define-type list-bool
(datatype Nil-bool
(Cons-bool hd::bool tl::list-bool)))

24/34 galois

The bogus counter-example

Response from ismt

A counter-example is found:
len [True, False] = 3

v

The translation

(define-type list-bool
(datatype Nil-bool
(Cons-bool hd::bool tl::list-bool)))

(define len::(-> list-bool nat))

24/34 galois

The bogus counter-example

Response from ismt

A counter-example is found:
len [True, False] = 3

v

The translation

(define-type list-bool
(datatype Nil-bool
(Cons-bool hd::bool tl::list-bool)))

(define len::(-> list-bool nat))

(assert (/= (len (Cons-bool true
(Cons-bool false Nil-bool)))

2))

24/34 galois

Auxiliary Lemmata

lemma lenO: "len [] = O"

lemma lenl: "len (x#xs) = 1 + len xs"

25/34 galois

Auxiliary Lemmata

lemma lenO: "len [] = O"

lemma lenl: "len (x#xs) = 1 + len xs"

insert before calling ismt

lemma "len [True, False] = 2"
apply (insert lenO lenl)
by ismt

25/34 galois

The current goal state

The top-most goal now looks like

[1en [1 = 0; Ax xs. len (x # xs) = 1 + len xs |
— len [True, False] = 2

26/34 galois

The current goal state

The top-most goal now looks like

[1en [1 = 0; Ax xs. len (x # xs) = 1 + len xs |
— len [True, False] = 2

In addition, the tactic now generates

(assert (= (len Nil-bool) 0))
(assert
(forall (x::bool)
(forall (xs::list-bool)
(= (len (Cons-bool x xs))
(+ 1 (len xs))))))

26/34 galois

The current goal state

The top-most goal now looks like

[1en [1 = 0; Ax xs. len (x # xs) = 1 + len xs |
— len [True, False] = 2

In addition, the tactic now generates

(assert (= (len Nil-bool) 0))
(assert
(forall (x::bool)
(forall (xs::list-bool)
(= (len (Cons-bool x xs))
(+ 1 (len xs))))))

@ The proof is now automatic!

26/34 galois

© Application: Verifying C programs

27/34 galois

SeqC: C semantics in HOL

Buffer copy (CIL-like)

int dst[buf_size];
int *s; int *d;
s = src; d = dst;
while(1)
if(*s == 0) break;
else {
*d = *s;
S++;

28/34 galois

SeqC: C semantics in HOL

ivalent
Buffer copy (ClL-like

(doSeqC { with_array buf_sizé (Mpdst :: int Ptr).
int dst [buf SiZe] . with_var (A(pps :: int Ptr Ptr).
- ’ with.var (A(ppd :: int Ptr Ptr). doSeqC {
int *s; int *d; assign_ptr pps psrc;
assign_ptr ppd pdst;
s = src; d = dst; ToopAsrt
. (loopInv False psrc pdst pps ppd buf_size)
Whlle (1) (loopInv True psrc pdst pps ppd buf_size)
3 * == . (A rs. False)
if (& O) break; (doSeqC {ps « deref_ptr pps;
else { ct « deref_ptr ps;
p if (ct = 0)
*d = *s 5 then break
. else doSeqC {pd « deref_ptr ppd;
s++ B assign_ptr pd ct;
d++: assign_ptr pps (ps +p 1);
2 assign_ptr ppd (pd +p 1);
continue ; continue}});
pd « deref_ptr ppd;
} assign_ptr pd 0;
c_return 0
*d = 0;))
e
y.

28/34 galois

An Isabelle/HOL model of C

e Tactics to generate/propagate VC's
@ Strategy: solve VC's using ismt

A typical VCG (abstracted)
definition vcg :: "addr = addr = addr = int =
(addr = byte) = bool" where
"vcg src dst s_ptr n h
= (let s = h s_ptr;
d = dst - src + s;
h> = h(d := h s, s_ptr := h s_ptr + 1)
in (src < s A is_str s (src + n - s) h
A — s_ptr mem (str_addrs s n h)
A = d mem (str_addrs s n h)
Ahs #0
— - s_ptr mem (str_addrs (s+1) n h’)))"

20/34 galois

Experience with discharging VCs

30/34

Needed to add lemmas for parameterized verification

Manual instantiations were necessary
Finding required lemmas:

e Manual backchaining process

e Prove and add extra subgoals as hypotheses as needed
Counter-examples were helpful when they were small

o Abstract-counter examples would be nice
o Consider the model: x=3Ay=3AP3
o If we know P 3 is false, we still can't tell:
o Did Yices choose x = 3 to make P false?
e Or, did it choose y = 3 to falsify P?
o We'd like to get “P x" as an abstract counter-example

Completely ground models are not too helpful

galois

A note on speed

Prove: All solutions of xj1» = |xj+1| — x; are periodic with period 9

lemma "[x3

|x2|-x1; x4 = |x3|-x2; x5 = |x4|-x3;

x6 = |x5|-x4; x7 = |x6|-x5; x8 = |x7|-x6;
x9 = |x8]-x7; x10 = [x9|-x8; x11 = |x10[-x9]"
— x1 =

x10 & x2 = (x11::int)"

%Example due to John Harrison
31/34

galois

A note on speed

Prove: All solutions of xj1» = |xj+1| — x; are periodic with period 9

lemma "[x3 = |x2|-x1; x4 = |x3|-x2; x5 = |x4|-x3;

x6 = |x5|-x4; x7 = |x6|-x5; x8 = |x7|-x6;

x9 = |x8]-x7; x10 = [x9|-x8; x11 = |x10[-x9]"
= x1 = x10 & x2 = (x11::int)"

@ Isabelle’s presburger tactic: 3.5 minutes
o Isabelle's arith tactic: 2.25 minutes.
@ ismt tactic via Yices: < 1 second.

@ Yices is blazing fast!

%Example due to John Harrison .
31/34 gal015

@ Summary

32/34 galois

Summary and Future Work

@ A practical connection between Yices and Isabelle
o Great for “simpler” but tedious goals
o Not a sledge-hammer!
e Counter-examples translated back to HOL
@ Extremely valuable even in Oracle mode
o Full proofs can be given later
e Speeds up development time immensely
o Full dumps provided for inspection
e Future work

e Use counter-example info to identify false alarms
o Automatically add needed definitions/lemmas
Support for more HOL constructs and types

o Especially bit-vectors

Incrementality (using the programmatic API)

33/34 galois

Download ismt from:

www.galois.com/company/open_source/ismt
Tested to work with Isabelle 2008 and Yices 1.0.13

Free with a permissive BSD-style license

Patches and improvements most welcome!

34/34 galois

www.galois.com/company/open_source/ismt

	Introduction
	Connecting Isabelle to Yices
	Example Translations
	Dealing with false alarms
	Application: Verifying C programs
	Summary

