
Using Yices as an automated solver in
Isabelle/HOL

Levent Erkök John Matthews
{levent.erkok,matthews}@galois.com

AFM’08: Automated Formal Methods 2008
Princeton, NJ

July 2008



Motivation

Providing strong assurance evidence for certification
Some properties are amenable for automated proof
For others, manual intervention is a must

Strategy:
Use a theorem-proving framework

High-level correctness and “deeper” results
Aided by push-button techniques:

When the subgoal is sufficiently simple
... but usually very tedious ...

Use whatever tool works the best
And combinations thereof
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The ismt tactic

We use Isabelle/HOL
Local expertise counts..

The ismt tactic out-sources proofs to Yices
Directly supports a large chunk of HOL
Uses “uninterpretation” for the rest

Similar to the yices strategy in PVS
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Modes of integration

Proof-replay mode
Trust nothing; translate and replay the proof
High assurance; Runs slow and is expensive to build.

Proof-check mode
Do not replay, but “validate” the proof
Medium (adjustable) assurance; Faster to run; Cheaper to build

Oracle mode
Trust everything!
Lowest assurance; Runs fast and cheapest to build
No proofs required from the external solver

Proof generation for SMT solvers is still active research area
Yices does not produce proofs; so oracle mode is the only choice
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How does ismt work

Grab the top-most goal from the Isabelle goal stack
Translate the types involved to Yices

Might require “monomorphisation”
Introduce uninterpreted types as needed

Negate the subgoal, and translate it to a Yices term
If no matching construct; uninterpret

Pass the script to Yices
If Yices decides the negation is unsatisfiable:

Trigger oracle mechanism to assert the goal proven
A “trust-tag” will be attached.

What do we do if Yices returns a model?
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Interpreting Yices’s models

Recall that the model is for the negation of the goal
..Hence, it is a counter-example to what we were trying to prove
Typically indicates a bug found
Models are translated back to Isabelle/HOL

Provides very valuable feedback!

Not every counter-example is valid, however
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Two kinds of bogus counter-examples

1 Due to “Potential models”
Caused by:

Quantifiers
λ-expressions

These constructs render Yices’s logic incomplete
Clearly marked by Yices and the translator

2 Due to uninterpreted terms and types
Caused by:

Lack of “auxiliary” lemmata
Lack of definitions of the functions used

These are more problematic..
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Basics

Reflexivity
lemma "x = x"
by ismt

Generates
(define-type ’a)
(define x::’a)
(assert (/= x x))

Monomorphisation in action!
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Simple arithmetic

No odd number is a multiple of 2
lemma "a = (2::int) * n + 1 −→ a 6= 2 * m"
by ismt

Generates
(define a::int)
(define n::int)
(define m::int)
(assert (not (=> (= a (+ (* 2 n) 1))

(/= a (* 2 m)))))
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Counter examples

Absolute values
lemma "abs (n::int) = n"
by ismt

Generates
(define n::int)
(assert (/= (if (< n 0)

(- 0 n) n)
n))

Counter example
A counter-example is found:

n = -1
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Quantification and Higher order functions

Quantifiers can render Yices incomplete
Not a problem if in universal prenex form

A trivial lemma
lemma "∀i f g. (f = g −→ f i = g i)"

Generates
(define-type ’a)
(define-type ’b)
(define i::’a)
(define f::(-> ’a ’b))
(define g::(-> ’a ’b))
(assert (not (=> (= f g) (= (f i) (g i)))))

automatically proven by Yices..
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Quantification and Higher order functions (cont’d)

Counter-examples
lemma "∀i f g. (f i = g i −→ f = g)"

Generates
(define-type ’a)
(define-type ’b)
(define i::’a)
(define f::(-> ’a ’b))
(define g::(-> ’a ’b))
(assert (not (=> (= (f i) (g i)) (= f g))))

Not true!
A counter-example is found:
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Quantification and Higher order functions (cont’d)

Counter-examples
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Quantification and Higher order functions (cont’d)

Counter-examples
lemma "∀i f g. (f i = g i −→ f = g)"

Generates
(define-type ’a)
(define-type ’b)
(define i::’a)
(define f::(-> ’a ’b))
(define g::(-> ’a ’b))
(assert (not (=> (= (f i) (g i)) (= f g))))

Not true!
A counter-example is found:

i = ismt_const 1
f (ismt_const 1) = g (ismt_const 1)
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Parameterized datatypes

Monomorphise as we go
datatype (’a, ’b) Either = Left ’a | Right ’b

lemma "Left False 6= Right (4::int)
∧ Left (1::nat) 6= Right x"

Types involved:
(bool × int) Either
(nat × ’a) Either
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Parameterized datatypes (cont’d)

Polymorphic Either
datatype (’a, ’b) Either = Left ’a | Right ’b

(bool × int) and (nat × ’a) instances
(define-type Either-bool-int

(datatype (Left-bool-int bool)
(Right-bool-int int)))

(define-type ’a)
(define-type Either-nat-’a

(datatype (Left-nat-’a nat)
(Right-nat-’a ’a)))

[automatically generated accessor functions not shown for clarity...]
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What’s supported?

Basic strategy:
Translate to native Yices format whenever there is an obvious
corresponding construct.
Otherwise, uninterpret.

Supported types
int, nat, bool
’a list, ’a option
Tuples
Records with polymorphic fields

Excluding extensible records
User defined datatypes, both parameterized and recursive

No mutual recursion

Functions: Both first-order and higher-order
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Supported constants

Equality: =
Booleans: True, False, ≤, <, −→, =⇒, ∨, ∧, ¬, and dvd.
Arithmetic: +, −, ×, /, − (unary minus), div, mod, abs, Suc, min,
max, fst, and snd.
Arithmetic is understood both for nat and int

All other number types remain uninterpreted
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Supported expressions and binding constructs

If-expressions, let bindings, λ-abstractions,
Quantifiers (∀, ∃,

∧
),

Case expressions over
Tuples
Naturals
Internal option type and lists
Arbitrary user defined types

Function and record update expressions
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What’s not supported?

HOL constructs
∃!, Ball, Bex
Hilbert’s choice (ε) and Least
Mutual recursion in datatypes
Extensible records
There are just no good Yices equivalents

Types:
Fixed size bit-vectors and Rationals
We plan to add these as needed
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What’s not supported? (cont’d)

Most importantly
No function definitions
No lemmas

User’s need to insert these manually
Appropriate instances need to be chosen

This is the major source of false alarms
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Uninterpreted functions

Computing the length of boolean-lists
consts len :: "bool list ⇒ nat"
primrec "len [] = 0"

"len (x#xs) = 1 + len xs"

A trivial lemma
lemma "len [True, False] = 2"
by ismt
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The bogus counter-example

Response from ismt
A counter-example is found:

len [True, False] = 3

The translation
(define-type list-bool

(datatype Nil-bool
(Cons-bool hd::bool tl::list-bool)))

(define len::(-> list-bool nat))

(assert (/= (len (Cons-bool true
(Cons-bool false Nil-bool)))

2))
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Solution

Auxiliary Lemmata
lemma len0: "len [] = 0"
lemma len1: "len (x#xs) = 1 + len xs"

insert before calling ismt
lemma "len [True, False] = 2"
apply (insert len0 len1)
by ismt
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The current goal state

The top-most goal now looks like

[[ len [] = 0;
∧
x xs. len (x # xs) = 1 + len xs ]]

=⇒ len [True, False] = 2

In addition, the tactic now generates
(assert (= (len Nil-bool) 0))
(assert

(forall (x::bool)
(forall (xs::list-bool)

(= (len (Cons-bool x xs))
(+ 1 (len xs))))))

The proof is now automatic!
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SeqC: C semantics in HOL

Buffer copy (CIL-like)
int dst[buf_size];
int *s; int *d;
s = src; d = dst;
while(1)

if(*s == 0) break;
else {

*d = *s;
s++;
d++;
continue;

}
*d = 0;

SeqC equivalent
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An Isabelle/HOL model of C

Tactics to generate/propagate VC’s
Strategy: solve VC’s using ismt

A typical VCG (abstracted)
definition vcg :: "addr ⇒ addr ⇒ addr ⇒ int ⇒

(addr ⇒ byte) ⇒ bool" where
"vcg src dst s_ptr n h
= (let s = h s_ptr;

d = dst - src + s;
h’ = h(d := h s, s_ptr := h s_ptr + 1)

in ( src ≤ s ∧ is_str s (src + n - s) h
∧ ¬ s_ptr mem (str_addrs s n h)
∧ ¬ d mem (str_addrs s n h)
∧ h s 6= 0
−→ ¬ s_ptr mem (str_addrs (s+1) n h’)))"
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Experience with discharging VCs

Needed to add lemmas for parameterized verification
Manual instantiations were necessary
Finding required lemmas:

Manual backchaining process
Prove and add extra subgoals as hypotheses as needed

Counter-examples were helpful when they were small
Abstract-counter examples would be nice
Consider the model: x = 3 ∧ y = 3 ∧ P 3
If we know P 3 is false, we still can’t tell:

Did Yices choose x = 3 to make P false?
Or, did it choose y = 3 to falsify P?
We’d like to get “P x” as an abstract counter-example

Completely ground models are not too helpful
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A note on speed

Prove: All solutions of xi+2 = |xi+1| − xi are periodic with period 9

lemma "[[ x3 = |x2|-x1; x4 = |x3|-x2; x5 = |x4|-x3;
x6 = |x5|-x4; x7 = |x6|-x5; x8 = |x7|-x6;
x9 = |x8|-x7; x10 = |x9|-x8; x11 = |x10|-x9 ]]"

=⇒ x1 = x10 & x2 = (x11::int)"

Isabelle’s presburger tactic: 3.5 minutes
Isabelle’s arith tactic: 2.25 minutes.
ismt tactic via Yices: < 1 second.
Yices is blazing fast!

0Example due to John Harrison
31/34



A note on speed

Prove: All solutions of xi+2 = |xi+1| − xi are periodic with period 9

lemma "[[ x3 = |x2|-x1; x4 = |x3|-x2; x5 = |x4|-x3;
x6 = |x5|-x4; x7 = |x6|-x5; x8 = |x7|-x6;
x9 = |x8|-x7; x10 = |x9|-x8; x11 = |x10|-x9 ]]"

=⇒ x1 = x10 & x2 = (x11::int)"

Isabelle’s presburger tactic: 3.5 minutes
Isabelle’s arith tactic: 2.25 minutes.
ismt tactic via Yices: < 1 second.
Yices is blazing fast!

0Example due to John Harrison
31/34



Outline

1 Introduction

2 Connecting Isabelle to Yices

3 Example Translations

4 Dealing with false alarms

5 Application: Verifying C programs

6 Summary

32/34



Summary and Future Work

A practical connection between Yices and Isabelle
Great for “simpler” but tedious goals
Not a sledge-hammer!

Counter-examples translated back to HOL
Extremely valuable even in Oracle mode

Full proofs can be given later
Speeds up development time immensely
Full dumps provided for inspection

Future work
Use counter-example info to identify false alarms
Automatically add needed definitions/lemmas
Support for more HOL constructs and types

Especially bit-vectors

Incrementality (using the programmatic API)
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Thank you!

Download ismt from:
www.galois.com/company/open_source/ismt

Tested to work with Isabelle 2008 and Yices 1.0.13
Free with a permissive BSD-style license
Patches and improvements most welcome!
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