
A Recursive do for Haskell: Design and Implementation

Levent Erkök John Launchbury

Oregon Graduate Institute of Science and Technology

Abstract

Certain programs making use of monads need to perform
recursion over the values of monadic actions. Although the
do-notation of Haskell provides a convenient framework for
monadic programming, it lacks the generality to support
such recursive bindings. To remedy this problem, we
propose an extension to Haskell’s do-notation and describe
its translation into the core language.

Computing Review Subject Categories: Formal
definitions and theory (D.3.1), Language constructs and
features (D.3.3).

Keywords: Haskell, monads, recursion, mfix, do-notation.

1 Introduction

Suppose you are designing an interpreter for a language that
has let expressions for introducing local bindings. Opera-
tionally, the expression let v = e in b denotes the same
value as b where e is substituted for all free occurrences of
the variable v. The abstract syntax of your language might
include:

data Exp = ...
| Let Var Exp Exp

Assuming the language is applicative, the natural choice for
implementation would be the environment monad. In this
setting, the section of the interpreter that handles let ex-
pressions might look like:

eval (Let v e b) =
do ev <- eval e

inExtendedEnv (v, ev) (eval b)

where inExtendedEnv is a non-proper morphism of the envi-
ronment monad extending the environment with the binding
{v 7→ ev} before passing it on. This approach yields a very
satisfactory implementation.

Notice that our let bindings are not recursive: The vari-
able v is not known in the expression e. Consider what hap-
pens if we lift this restriction. All we need is a way to extend
the environment with the value of v when we evaluate the
expression e. That is, we want to write:

eval (Let v e b) =
do ev <- inExtendedEnv (v, ev) (eval e)

inExtendedEnv (v, ev) (eval b)

Unfortunately this is not valid Haskell: The variable ev is
undefined when it is referenced in the first generator. The
problem is that do-expressions of Haskell suffer from a simi-
lar problem that we are trying to solve in our toy language:
Just as our tiny language can not express recursive bindings
in let, the do-notation of Haskell can not express recur-
sion over the values of monadic actions. Here, the function
inExtendedEnv performs a monadic action (that of extend-
ing the environment and passing it on to its second argu-
ment), but in doing so it depends on a value that it defines,
i.e. the value of the variable ev.

Having failed in our naive approach, how can we imple-
ment the recursive let? Assuming Val represents the type
of values that our language can produce and the following
declaration for the environments:

data Env a = Env ([(Var, Val)] -> a)

we can write the Let case of our interpreter as:

eval (Let v e b) =
Env (\env ->

let Env f = eval e
ev = f ((v,ev):env)
Env g = eval b

in g ((v,ev):env))

Although it works, this solution is quite annoying. First of
all, we had to reveal how environments are actually imple-
mented. Worse, our code will only work with that partic-
ular implementation: any change in the representation of
environments will require change(s) in the interpreter. The
code is no longer easy to understand or maintain: Almost
all benefits of using a monad based implementation is lost.
The failed approach that used recursive bindings in the do-
notation had none of these problems.

Fortunately there is a way out. Recently, we have shown
that such recursive bindings make sense in a variety of mon-
ads satisfying certain requirements [2]. In particular, a cer-
tain fixed point operator, called mfix, must be available for
the monad in which we want to express recursion over the
results of monadic actions. The research reported in our ear-
lier work mainly concentrated on theoretical issues, such as
axiomatization of the required recursive behavior, and the
demonstration of satisfactory definitions for various mon-
ads. It also described a naive translation for a recursive
do-notation.

The current paper, on the other hand, concentrates on
the issues from a language design point of view. We describe
the translation for the new do-notation that might be em-
ployed in a real Haskell compiler. It turns out that there

are several design choices involved, and we explain why we
prefer the proposed solutions in detail. We hope that this
paper will fulfill two purposes: First of all, it will serve as
a Haskell proposal for a new semantics for do-expressions.
Secondly, it will provide a guideline for Haskell implemen-
tors (or thrill seekers), in case the new translation ever gets
adopted in Haskell.

2 Recursive monads and the new do-notation

We first recall the definition of recursive monads [2]:

Definition 2.1 Recursive Monads. A monad m is recur-
sive if there is a function mfix :: ∀a.(a → m a) → m a
satisfying the axioms given in Figure 1.

From a programming point of view, we will need a new
semantics for the do-notation that will allow recursive bind-
ings. For clarity, we will call the recursive version “the µdo-
notation”, and we will write recursive do-expressions using
the keyword µdo. (In actual program text, we will use mdo.)
Whenever we refer to the do-notation, we will mean the
currently available notation in Haskell that does not allow
recursive bindings.

A µdo-expression is just like an ordinary do-expression,
except the variables being bound in generators are visible
throughout the entire body (rather than the textually fol-
lowing part). A µdo-expression can be can be naively trans-
lated into a do-expression as follows:

mfix (λ~BV . do p1 ← e1

µdo p1 ← e1 ...
... =⇒ pn ← en

pn ← en v ← e
e return BV)

�= λ BV . return v

where BV stands for the k-tuple consisting of all the vari-
ables occurring in all the binding patterns p1 . . . pn plus the
brand new variable v. The variables occurring in these pat-
terns may not be multiply bound: neither in the same pat-
tern, nor in different patterns.

In this translation, we say that a µdo-expression is well-
typed if the underlying monad is recursive and the resulting
code is well-typed. We will refer to this translation as the
naive translation.

As an example, here is the translation for the interpreter
code given in the previous section:

eval (Let v e b) =
mfix (\~(ev, f) ->

do ev <- inExtendedEnv (v, ev) (eval e)
f <- inExtendedEnv (v, ev) (eval b)
return (ev, f))

>>= \(ev, f) -> return f

This translation is well-typed as long as the underlying
environment monad is declared to be recursive with a suit-
able definition of mfix. (Further details for the environment
monad and the definition of mfix can be found in [1].)

3 Let bindings

The do-notation of Haskell allows polymorphic let bindings.
How can we accomodate them within the µdo-notation? An
obvious extension suggests the following translation:

mfix (λ ˜BV . do ...1...
µdo ...1... let p1 = e1

let p1 = e1 ...
... =⇒ pn = en

pn = en ...2...
...2... v ← e
e return BV)

�= λ BV. return v

The translation is similar to what we had before, except now
the variables bound in p1 . . . pn appear in BV as well. The
intuition is that a let bound variable will be visible anywhere
in a µdo-expression.

Unfortunately, this idea leads to unfortunate transla-
tions. Consider the following example:

mdo z <- return (f 2 z)
y <- return (f ’a’ y)
let f x y = x
return ()

which will be translated to:

mfix (\(~(z, y, f, v)) ->
do z <- return (f 2 z)

y <- return (f ’a’ y)
let f x y = x
v <- return ()
return (z, y, f, v))

>>= \(z, y, f, v) -> return v

The translated code will not type-check: The function f ,
which was used polymorphically, has become monomor-
phic. In fact, the situation is even worse: Referring to the
schematic translation above, the let bound variables in pat-
terns p1 . . . pn will be monomorphic in the code section rep-
resented by ...1..., but they will be polymorphic in the
code section ...2... and in expressions e1 . . . en. This is
quite bizarre.

One solution to this problem would be to restrict let-
bound variables to be visible only in the textually following
section of the µdo-expression. This restriction, however, is
not in the spirit of µdo in the first place: any defined variable
should be visible in the entire body.

A second solution would be to lift let-generators to the
top in a µdo-expression. As a concrete example, the above
code can be translated to:

mfix (\(~(z, y, v)) ->
do let f x y = x

z <- return (f 2 z)
y <- return (f ’a’ y)
v <- return ()
return (z, y, v))

>>= \(z, y, v) -> return v

This translation will type-check just fine. But, are we justi-
fied in moving let-generators to the top? Unfortunately not.
Moving let expression to the top might change the termina-
tion behavior. Consider the expression:

t :: Maybe Int
t = mdo x <- f x

let f x = Just 4
return x

If we lift let-generators to top, we get:

t’ :: Maybe Int
t’ = mdo let f x = Just 4

x <- f x
return x

2

mfix (return · h) = return (fix h) (1)

mfix (λx.a�= f x) = a�= λy.mfix (λx.f x y) (2)

mfix (λ˜(x,).mfix (λ˜(, y).f (x, y))) = mfix f (3)

Figure 1: Axioms for mfix. In axiom 2, x is not free in a.

When run, t yields ⊥, while t′ computes to Just 4. The
reason is that the introduction of f before the recursive
binding provides additional information that is used in the
fixed-point computation. Abstractly, moving let-generators
around within a µdo-expression corresponds to the para-
metricity law from [2], namely:

mfix (λx.f x�= return · h)

= mfix (λx.return (h x)�= f)�= return · h

This law requires a strict h for equality. Notice that f is not
strict in our example.

Although moving let-generators to the top can be viewed
as an optimization increasing termination, we refrain from
doing so since we can not guarantee that we can do it all the
time: Consider a situation where we use recursive bindings
and moving let-generators to the top improves termination.
If we ever rearrange the expression so that we cannot move
the let-generators anymore, (by creating a nested µdo or
by just manually converting a let-generator to an equivalent
return form), the expression may no longer terminate as of-
ten as it did before. This is not a particularly desirable sit-
uation: A perfectly valid rearrangement of the code should
not fail to work just because an optimization no longer ap-
plies. For instance, consider t′′, defined as:

t’’ :: Maybe Int
t’’ = mdo x <- f x

f <- return (\x -> Just 4)
return x

Intuitively, both t and t′′ should compute the same value.
If our translation optimizes t to t′, then t would pro-
duce Just 4, but the computation of t′′ will not termi-
nate. Hence, an otherwise correct transformation might
cause non-termination.

The solution we adopt is to require let bindings to be
monomorphic in a µdo-expression. That is, let becomes
just a syntactic sugar within µdo, translated as1:

let p1 = e1 (p1, . . . , pn) ← return (let p1 = e1

... =⇒ ...
pn = en pn = en

in (p1, . . . pn))

A function binding is translated similarly:

let f x y = x =⇒ f ← return (λ x y. x)

This idea easily extends to more complicated forms of func-
tion definitions as well. For instance:

q :: Maybe (Int, Int)
q = mdo let len [] = 0

len (x:xs) = 1 + len xs
return (len [1,2,3], len [1,2])

1Irrefutable and lazy patterns will require special attention in
forming the final tuple, as the result will not be valid Haskell. We
ignore these issues as they are mere syntactic technicalities.

can be treated as:

q :: Maybe (Int, Int)
q = mdo len <- return (let len [] = 0

len (x:xs) = 1 + len xs
in len)

return (len [1,2,3], len [1,2])

Notice that this translation guarantees monomorphic use
of let-generators. For instance, the translated code will be
rejected by the type-checker if the last statement of q is
changed to:

return (len [1,2,3], len "hi")

using the function len polymorphically.
This approach gives us a uniform and simple design.

If a polymorphic let-definition is required, one should use
the standard let-expressions of Haskell, rather than the let-
generator, which will create its own scope with polymorphic
names, as intended. For instance, our very first example
should be written as:

mdo let f x y = x
in mdo z <- return (f 2 z)

y <- return (f ’a’ y)
return ()

which makes the intended use of f much more clear. (The
only syntactic drawback is the need for an extra level of
indentation.)

We expect this restriction to be negligible in practice.
Such let-generators in do-expressions are generally used for
giving a name to a common pure expression in the code to
follow, and such expressions are rarely polymorphic.2 Given
that there is a way to create polymorphic pure values (by us-
ing a usual let-expression), we consider that the simplicity of
this design far outweighs the generality we might obtain by
a much more complicated translation scheme, as we briefly
explore in the next section.

3.1 An excursion into types

The problem we have faced with let-generators is hardly
new. The main issue boils down to the fact that the usual
Hindley-Milner type system is not expressive enough for our
purposes. Although all values are first class and we have
a notion of parametric polymorphism, the combination of
these two ideas is not available: polymorphic values are not
first class [3].

2To see how important polymorphic let-bindings within the do-
notation, we have recently polled the Haskell mailing list, the pri-
mary discussion medium for discussing Haskell-related issues on the
Internet. The consensus was that such polymorphic let-generators
are hardly ever used in practice and even if needed, there is always
an obvious way to rewrite the expression without using them. We
consider this as an indication that the monomorphism restriction is
hardly an issue for let-generators. Also, a quick look at the Nofib
benchmark suite reveals that polymorphism in let-generators is not
an essential tool in practice.

3

In a more expressive typing scheme, such as System F, we
wouldn’t have faced these problems. For instance, consider
the following (admittedly artificial) µdo-expression:

t :: Maybe (Int, Int)
mdo ones <- return (1:ones)

as <- return (’a’:as)
l1 <- return (len (take 5 ones))
l2 <- return (len (take 5 as))
let len [] = 0

len (x:xs) = 1 + len xs
return (l1, l2)

When translated, we’ll have:

mfix (\~(ones, as, l1, l2, len, v) ->
do ones <- return (1:ones)

as <- return (’a’:as)
l1 <- return (len (take 5 ones))
l2 <- return (len (take 5 as))
let len [] = 0

len (x:xs) = 1 + len xs
v <- return (l1, l2)
return (ones, as, l1, l2, len, v))

>>= \(ones, as, l1, l2, len, v) -> return v

When loaded into Hugs, we get:

ERROR: Instance of Num Char required

Since the function len is λ-bound, its first use on the list
ones causes the type-checker to believe that it has type
[Int] -> Int, and the latter use with type [Char] -> Int
is simply rejected. What we wanted to say, of course, is:

mfix (\~(ones, as, l1, l2,
len :: forall a. [a] -> Int, v) ->

do ones <- return (1:ones)
as <- return (’a’:as)
l1 <- return (len (take 5 ones))
l2 <- return (len (take 5 as))
let len [] = 0

len (x:xs) = 1 + len xs
v <- return (l1, l2)
return (ones, as, l1, l2, len, v))

>>= \(ones, as, l1, l2, len, v) -> return v

But this code is not typeable within the current type system
employed by Haskell. (Not even the extensions provided by
Hugs is enough to type this application: a tuple can not
have a forall type element in it.)

Is there a solution within what is currently available in
Haskell implementations? Hugs allows data type declara-
tions with polymorphic fields, using the so-called first-class
polymorphism idea [3]. Using this extension, we can code
the above translation as:

data Args = A { ones :: [Int],
as :: [Char],
l1 :: Int,
l2 :: Int,
len :: forall a. [a] -> Int,
v :: (Int, Int)

}

q :: Monad m => Args -> m Args
q a = do ones <- return (1:(ones a))

as <- return (’a’:(as a))
l1 <- return ((len a) (take 5 ones))
l2 <- return ((len a) (take 5 as))
let len [] = 0

len (x:xs) = 1 + len xs
v <- return (l1, l2)
return (A ones as l1 l2 len v)

Notice that we have created a data type, Args, with poly-
morphic fields, and the original function is altered to process
values from and out of this new data type.

To test mfix on the function q, we must pick a particular
recursive-monad. Here is a little test with the Maybe monad:

t :: Maybe (Int, Int)
t = do a <- mfix q

return (v a)

Here’s the value of t:

Main> t
Just (5, 5)

Just as we expected. Notice that the polymorphic nature of
the fixed-point will be retained. To see this, consider:

r = let Just a = mfix q
f = len a

in (f [1,2,3], f "hi")

When executed, we get:

Main> r
(3,2)

showing that len is polymorphic.
As we have stated, this solution is not standard Haskell.

Even if it was, it is quite questionable whether having poly-
morphic let-generators is worth all this complication and
effort. Notice that we have not described an explicit trans-
lation schema in general. The above example is completely
hand written and it can be quite painful to actually im-
plement it in a real compiler. At this point, we prefer
let-generators within µdo-expressions to be monomorphic,
leaving the door open for further study, possibly using more
exotic type systems.

4 A tour of µdo

In this section, we consider a number of ideas that will refine
our naive translation.

4.1 Recursive variables

The basic idea behind the naive translation is to create
a function of all the variables that are bound in a µdo-
expression, which will then be handed to the function mfix.
If there are k variables that are bound in the µdo-expression,
then the function that is passed to mfix will have a k + 1-
tuple as its argument. For instance, consider the following
µdo-expression, and the function created by the naive trans-
lation for it:

λ~(a, b, c, v).
µdo a ← f a do a ← f a

b ← g a =⇒ b ← g a
c ← h a b c ← h a b
e c v ← e c

return (a, b, c, v)

Intuitively, there is no need to carry around the variables
b and c: They are not used before being bound within the
body of the do-expression. That is, the following function
will work just fine:

4

λ~(a, v). do a ← f a
b ← g a
c ← h a b
v ← e c
return (a, v)

(Notice that we can’t leave the variable v out: its value will
be projected out after the application of mfix.)

This observation yields the first refinement: The k-tuple
BV should only contain those variables that are referenced
before defined in a µdo-expression.

4.2 Segmentation

Consider the following µdo-expression, which creates two
infinite lists (consisting of 1’s and 2’s respectively), and an-
nounces their creation:

µdo putStr "forming a list of 1s"
ones ← return (1:ones)
putStr "forming a list of 2s"
twos ← return (2:twos)
return (ones, twos)

Our translation would produce:

mfix (λ~(ones, twos, v).
do putStr "forming a list of 1s"

ones ← return (1:ones)
putStr "forming a list of 2s"
twos ← return (2:twos)
v ← return (ones, twos)
return (ones, twos, v))

�= λ (ones, twos, v). return v

But this translation is quite unsatisfactory: The only recur-
sion we need is in independently computing the lists ones
and twos. From an intuitive point of view, recursion needs
only be performed over sections of the code that actually
need it. This suggests the following translation:

do putStr "forming a list of 1s"
ones ← µdo ones ← return (1:ones)

return ones
putStr "forming a list of 2s"
twos ← µdo twos ← return (2:twos)

return twos
return (ones, twos)

where the inner µdo-expressions will further be translated
accordingly. This is analogous to an optimization performed
by Haskell compilers for compiling ordinary let expressions,
where the bindings that are mutually dependent are grouped
together. In the case of let, this brings efficiency (no unnec-
essary knots need to be tied) and it enhances the polymor-
phic types of bound variables [5]. In our case, we increase
the number of calls to mfix, but each mfix has a smaller
piece of code to work on, hence, we might expect a gain in
efficiency.

However, there is a deeper reason why we favor this
translation. There are cases when the segmentation based
translation will produce values while the naive version fails
to terminate. As we explained in [2], the segmentation idea
corresponds to the right shrinking law, which tells us when
we are allowed to shrink the scope of an µdo-expression from
the bottom:

mfix (λ˜(x, y).f x�= λz.g z �= λw.return (z, w))

v mfix f �= λz.g z �= λw.return (z, w)

While some monads satisfy right shrinking as an equality,
(identity, state, reader, output, etc.), some monads don’t
(maybe, lists, trees). Hence, performing segmentation will
limit the scope of mfix calls to minimal segments, possibly
improving the termination behavior. As a concrete example,
consider the function:

g :: [Int] -> Maybe Int
g [x] = Nothing
g _ = Nothing

This function will return Nothing if its input can success-
fully be pattern matched against [x]. In particular, it will
produce ⊥ for the input 1 : ⊥. Now consider:

mdo xs <- Just (1:xs)
g xs

We would expect the value of this expression to be
Nothing. Unfortunately, if we do not perform segmentation,
the translation will be:

mfix (\~(xs, v) -> do xs <- Just (1:xs)
v <- g xs
return (xs, v))

>>= \(xs, v) -> return v

which will evaluate to ⊥. As we have discussed in [2], when
the list xs is computed we expect to get the chain {⊥, 1 :
⊥, 1 : 1 : ⊥, . . .}, but applying g to these values before
feeding them back to the list producer will produce ⊥ for
the second element, hence short-circuiting the evaluation to
⊥. If, on the other hand, we perform segmentation, we will
get:

do xs <- mfix (\~(xs, v) -> do xs <- Just (1:xs)
v <- return xs
return (xs, v))

>>= \(xs, v) -> return v
g xs

which will be evaluated to Nothing as expected.
Hence, the segmentation idea serves two purposes. First,

if we have a huge µdo-expression where only small parts of it
have recursive dependencies, the recursive computation will
take place only over those parts, rather than over the entire
body. Secondly, and somewhat unexpectedly, monadic ac-
tions might interfere with values of bindings in unexpected
ways, and segmentation will prevent such problems when
the interference is not intended.

4.3 Exported variables

The final refinement to the translation is about an optimiza-
tion based on the observation that not all variables need to
be known in an enclosing environment when a segment is
formed. For instance, consider:

mdo x <- f x y
y <- g x y
h x

When segments are formed, we get:

do (x, y) <- mdo x <- f x y
y <- g x y
return (x, y)

h x

Obviously, the variable y is not needed to form the result,
i.e. the following would suffice:

5

do x <- mdo x <- f x y
y <- g x y
return x

h x

Although this is not a significant optimization, the produced
code will at least be easier to compile. Furthermore, it re-
veals more of the dependencies in the input code, which
might possibly trigger further optimizations in the later
phases of compilation.

5 Type checking µdo-expressions

In this section, we discuss how we can type check µdo-
expressions. First, we fix the syntax of µdo-expressions for
the purposes of the rest of the paper. We assume the non-
terminal e ranges over all Haskell expressions and we extend
it with µdo expressions: (The meta-variable p ranges over
patterns and mdo is a new keyword)

e ::= µdo
| . . . other expressions in Haskell

µdo ::= mdo bs
bs ::= s∗ e
s ::= p ← e

| e
| let a a∗

a ::= p = e

where x∗ denotes zero or more repetitions of x. The non-
terminal s denotes statements, the building blocks of the
µdo-notation. Furthermore, the variables bound in patterns
within a µdo-expression may not be repeated: neither in
different patterns, nor in the same pattern.

As usual, we will assume that a single expression e in
a generator position in µdo is interpreted as the generator
← e. To further simplify the matters, we will also assume

let-generators are turned into their return equivalents as
described in Section 3. That is, the non-terminal s simply
becomes:

s ::= p ← e

Once the simplifications described above are made, type
checking µdo-expressions is quite straightforward. Let V (p)
be the set of variables that are bound by a pattern p. To
type “µdo {pi ← ei} e” in a typing environment Γ, we
first compute the set BV = ∪iV (pi). Each V (pi) must be
distinct, corresponding to the fact that variables can not be
repeated in bindings. (We will discuss this in more detail in
Section 7.1.) Let

Γ′ = Γ + {vk : τk | vk ∈ BV }

where we introduce a fresh τk for each bound variable vk.
Now, the typing rule simply becomes:

Γ′ ` ei : m τi Γ′ ` pi : τi Γ′ ` e : m τ

Γ ` µdo {pi ← ei} e : m τ

with the side condition that m must belong to the MonadRec
class defined as:

class Monad m => MonadRec m where
mfix :: (a -> m a) -> m a

6 The translation for µdo-expressions

In this section, we try to formalize the ideas and describe
the translation of µdo-expressions into the core language
in detail. We start by giving some definitions regarding
variables and statements in µdo-expressions.

6.1 Some definitions

In these definitions, we assume that the let-generators are
de-sugared into their return forms.

Definition 6.1 Defined variables. The variables defined
by a generator p← e are those variables that appear in the
pattern p. A sequence of bindings define variables that are
defined by any statement in the sequence.

Definition 6.2 Used variables. The variables used by a
generator p← e, are those that appear free in e. A sequence
of statements use those variables used by any statement in
the sequence.

Definition 6.3 Free variables. The free variables of a se-
quence of statements are those that are used but not defined
in the sequence.

Definition 6.4 Recursive variables. The recursive vari-
ables of a sequence of statements are those that are used
before defined in that segment. Notice that being defined is
an essential prerequisite: if the segment does not define that
variable, it’s not recursive.

Definition 6.5 Connected statements. A statement s is
connected to a textually following statement s′, if any of
the following hold:

• s′ defines a variable that is used by s,

• s′ textually appears in between s and s′′, where s is
connected to s′′.

The second condition can be considered as interval clo-
sure. Notice that, unlike a usual let-expression, we cannot
reorder the bindings in a µdo-expression: Order does mat-
ter in performing side effects. Hence, if two statements are
connected, we are to forced package them together with all
other statements that textually appear in between them to
ensure that the order of effects are preserved.

Definition 6.6 Segments. A sequence of statements
within a µdo-expression is maximally connected if no state-
ment following the sequence is connected to any statement in
the sequence. Maximally connected sequences of statements
are called segments. The segments of a µdo-expression can
be computed as follows:

• The first statement in the body of an µdo-expression
belongs to a segment.

• The furthest statement in the µdo-expression that the
first statement is connected to, and all the other state-
ments in between, form the segment. If there is no such
statement, then this first statement forms a segment by
itself.

• Once a segment is found, the next statement in the
body of the µdo-expression (if any) starts a new seg-
ment.

6

Notice that the number of segments are bound by the num-
ber of statements in a µdo-expression.

Definition 6.7 Exported variables of a segment. The ex-
ported variables from a segment are those variables that are
defined in the segment and used in any of the textually fol-
lowing segments.

6.2 Translation algorithm

We describe the algorithm step by step using the following
schematic running example:

µdo <a b> ← <c d> s0

<e> ← <f> s1

<g> ← <h> s2

<f> ← <a> s3

<i j> ← <i e> s4

<j g> s5

where <v1 . . . vn> stands for any pattern binding variables
v1 . . . vn on the left hand side of a generator and for any
expression freely referencing variables v1 . . . vn on the right
hand side. Notice that the actual patterns/expressions are
not important for our purposes.

Segmentation Step: Starting with the first statement,
form the segments as described in Definition 6.6.

To perform this step, we will need the defined and
used variables of each statement. Luckily, for our running
example, these sets are obvious:

D0 = {a, b} U0 = {c, d}
D1 = {e} U1 = {f}
D2 = {g} U2 = {h}
D3 = {f} U3 = {a}
D4 = {i, j} U4 = {i, e}
D5 = ∅ U5 = {j, g}

Applying the computation given in Definition 6.6, we get
four segments: S0 = {s0}, S1 = {s1, s2, s3}, S2 = {s4} and
S3 = {s5}.

Analysis step: For each segment do the following: Com-
pute recursive variables of the segment (definition 6.4), call
this set R. If R is empty, then this segment does not need
fixed-point computation, leave it untouched. If R is not
empty, then we will replace this segment with a single µdo
expression as follows: First determine the exported variables
of this segment (definition 6.7). Let this set be E. Then cre-
ate the expression

return (v1, ..., vk)

where v1 . . . vk’s are the elements of E. (If E is empty, we’ll
have the expression return ().) Attach this expression to
the end of the segment. Mark this segment as RECURSIVE
for future processing.

Returning to our example, here are the sets R and E
for each segment, notice that we need E only when R is
non-empty:

R0 = ∅
R1 = {f} E1 = {e, g}
R2 = {i} E2 = {j}
R3 = ∅

Since only R1 and R2 are non-empty, we need to add a
return statement to them for their exported variables, and

mark them as RECURSIVE. That is, we add the statement
return (e,g) to S1 and return j to S2.

Translation step: At this step, we are left with a number
of segments, some of which are marked RECURSIVE by the
previous step. For each marked segment, do the following:

• Create a brand new variable v,

• Modify the final expression (created by the previous
step), so that its value will be bound to v,

• Create a tuple corresponding to the R set for this seg-
ment, add v to this tuple as well. Call this tuple RT .
Also create the tuple corresponding to the set E, call
it ET .

• Form the expression:

ET ← mfix (λ~RT. do ...
...
v ← return ET
return RT)

�= λ RT. return v

Notice that every segment that was marked RECURSIVE
becomes a single generator. Returning to our example, we
create the following generator for segment S1:

(e,g) ← mfix (λ~(f, v). do <e> ← <f>
<g> ← <h>
<f> ← <a>
v ← return (e, g)
return (f, v))

�= λ(f, v). return v

And for S2, we create:

j ← mfix (λ~(i, v). do <i, j> ← <i, e>
v ← return j
return (i, v))

�= λ(i, v). return v

Notice that, if there are no recursive bindings, each
segment will contain a single statement, and no segment
will be marked RECURSIVE. Furthermore, since every
µdo-expression is required to have a final expression (which
does not bind any variables), the last segment will always
be a singleton non-recursive segment containing this final
expression. In our example, S3 is this final segment.

Finalization step: Now, concatenate all segments and
form a single do-expression out of them. For our example,
we obtain:

do <a b> ← <c d>
(e,g) ← mfix (λ~(f, v). do <e> ← <f>

<g> ← <h>
<f> ← <a>
v ← return (e, g)
return (f, v))

�= λ(f, v). return v
j ← mfix (λ~(i, v). do <i, j> ← <i, e>

v ← return j
return (i, v))

�= λ(i, v). return v
<j g>

7

Again, if no recursive bindings are present, the algorithm
will just leave the input untouched.

De-sugaring step: Now, we are left with nothing but non-
recursive do-expressions. We apply the well known transla-
tion algorithm (described in [5]) to get rid of the do. The
resulting expression is now in the core language.

7 Other issues

In this section, we briefly discuss some issues related to the
integration of µdo-notation in Haskell.

7.1 Unified do-notation

Although we have used a separate keyword mdo, we do not
believe that there is any need for retaining both do and mdo
as distinct constructs. In the same way that Haskell’s let
plays the role of letrec, we believe that the do-notation
should be changed to capture our translation. The com-
piler, upon analyzing the body of the do, should perform
the appropriate translation depending on whether recursion
is indeed used.

Of course, this brings along questions of compatibility:
Will old do-expressions retain their meaning? The second
mfix axiom guarantees us that this is the case [2]. There are
two minor incompatibilities, however. The first is mentioned
above—let-generators become monomorphic. The second
problem is about the current syntax for do-expressions in
Haskell, which allow repeated variables in binding patterns.
A new binding simply shadows the earlier one. If we al-
low repetitions in the µdo-notation, however, the transla-
tion would not treat them as independent. Furthermore, a
repeated variable might change its type in the do-notation,
and this will fail to type check for the µdo-notation. More
importantly, one might expect that repeated variables will
provide a way of constraining the values that they might
take in the µdo-notation, which is not what the translation
implies. Hence, even if the translation goes through, this
might lead to misunderstandings.3 Therefore, the syntax
of the new µdo-notation explicitly prohibits a variable from
being repeated in different patterns (repetition within the
same pattern is disallowed following the usual Haskell con-
vention).

Luckily, it’s not a common practice in the Haskell com-
munity to repeat variable names in bindings, and in most
cases the type-checker should be helpful in locating any
problems. In case the translation goes through, the value
of the do-expression will likely be “wrong enough” to alert
the programmer.

7.2 A new type class

To accommodate for the recursive-monads a MonadRec sub-
class of should be added to the standard prelude:

class Monad m => MonadRec m where
mfix :: (a -> m a) -> m a

with the understanding that the mfix axioms are proof obli-
gations on the user for each MonadRec instance declaration.
In this way, whenever a do-expression is used recursively,

3In a similar vein, it can be argued that repetitions should not
have been allowed in the old do-notation either. List comprehensions
become especially horrible: f x = [x | x <- [x..4], x <- [x..8]] is
a confusing (yet legal) Haskell function.

the translation will place a call to the function mfix, which
places a MonadRec instance requirement on the underlying
monad. The type system will then be able to warn the
users appropriately in case an error is detected. The prelude
can also supply the instance declarations for the Maybe and
List monads [2]. The current IO extension libraries contain
the mfix functions for the internal ST and IO monads (the
functions fixST and fixIO respectively). These definitions
should also be moved into MonadRec instance declarations
for the ST and IO monads.

7.3 Generators as final expressions

Recall that the do-notation of Haskell always requires a final
expression. We keep the same restriction for µdo-notation.
However, it might be argued that we relax this requirement
and allow naming the final expressions value, in case it is
needed in earlier expressions. For instance, the expression:

mdo { x <- Just (take 5 (1:x)) }

would produce Just [1,1,1,1,1]. Although attractive, we
think requiring a final expression is a better choice for two
reasons. First of all, the syntax should be similar to the non-
monadic version, i.e. the usual let expressions of Haskell.
(Notice that let always requires a final expression.) It’s
also not clear what mdo {} means, i.e. we lack a base case.
The other alternative, requiring that there should be at least
one generator in a µdo, is less attractive. The second reason
comes from an observation about commutative monads: In
a commutative monad, it does not matter which order the
bindings are performed. In a µdo, however, moving the
last generator around will change the meaning of the whole
expression, which is not a desirable situation.

On the other hand, if such µdo expressions are found
to be very practical in the Haskell community, the syntax
can be changed to allow for this possibility. Ignoring other
details, our translation for this case will look like:

µdo p1 ← e1 µdo p1 ← e1

... =⇒ ...
pn ← en v@pn ← en

return v

Notice the use of the “as” pattern. The translation algo-
rithm will proceed just as before on this new form.

8 Current Status

We have a implemented the naive version of the translation
by modifying the source code of the Hugs system. The web
page http://www.cse.ogi.edu/PacSoft/projects/muHugs
contains the software and the downloading instructions
along with other research material.

In this simple implementation, no type checking is per-
formed on µdo-expressions, hence occurrences of let expres-
sions are not required to be monomorphic, and the associ-
ated typing problems are ignored. Also, let-generators can-
not define functions whose definitions span multiple lines
(such as the function len we have given in Section 3), each
line will be treated as starting a new definition. Further-
more, one uses the keyword mdo to use the µdo-notation:
The use of keyword do does not trigger any translation.
This implementation also allows naming the final expres-
sions value, as described in the previous section.

8

We have a prototype implementation of the full trans-
lation described in this paper, working on a simple subset
Haskell. We plan to integrate the translation into a future
version of Hugs.

9 Related Work

As far as the implementation is concerned, the only directly
related work we know of took place within the context of
the O’Haskell programming language. O’Haskell is a con-
current, object oriented extension of Haskell designed for
addressing issues in reactive functional programming [4].
One application of O’Haskell is in programming layered net-
work protocols. Each layer interacts with its predecessor
and successor by receiving and passing information in both
directions. In order to connect two protocols that have mu-
tual dependencies, one needs a recursive knot-tying opera-
tion. Since O’Haskell objects are monadic, recursive mon-
ads are employed in establishing connections between ob-
jects. To facilitate for this operation, O’Haskell extends the
do-notation with a keyword fix, whose translation is a sim-
plified version of ours. This extension arose from a practical
need in the O’Haskell work and it was not particularly de-
signed to meet a general need.

10 Conclusions

In this paper, we have described how to extend the do-
notation of Haskell to allow for recursive bindings using the
ideas given in [2]. We have started with a naive translation
and refined it using various ideas to obtain a final translation
strategy. It is our hope that the µdo-notation will replace
the do-notation of Haskell in the future and this work will
serve as a guide for Haskell implementors in integrating the
new translation into their compilers and interpreters.

11 Acknowledgements

We are thankful to Ross Paterson and Mark P Jones for
pointing out the first-class polymorphism idea for handling
let-generators and clarifying the issues involved. We are also
grateful to the members of the OGI PacSoft Research Group
for valuable discussions.

The research reported in this paper is supported by the
National Science Foundation (CCR-9970980).

References

[1] Erkök, L., and Launchbury, J. Recursive monadic
bindings: Technical development and details. Tech. Rep.
CSE-00-011, Department of Computer Science and Engi-
neering, Oregon Graduate Institute of Science and Tech-
nology, June 2000.

[2] Erkök, L., and Launchbury, J. Recursive monadic
bindings. In Proceedings of the ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP
’00) (2000, to appear.).

[3] Jones, M. P. First-class polymorphism with type in-
ference. In Proceedings of the Twenty Fourth ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’97) (1997).

[4] Nordlander, J. Reactive Objects and Functional Pro-
gramming. PhD thesis, Chalmers University of Technol-
ogy, Göteborg, Sweden, 1999.

[5] Peyton Jones, S. L., and Hughes, J. (Editors.) Re-
port on the programming language Haskell 98, a non-
strict purely-functional programming language. Avail-
able at: http://www.haskell.org/onlinereport, Feb.
1999.

9

