
Recursive Monadic Bindings

Levent Erkök John Launchbury

Oregon Graduate Institute of
Science and Technology

ABSTRACT
Monads have become a popular tool for dealing with compu-
tational effects in Haskell for two significant reasons: equa-
tional reasoning is retained even in the presence of effects;
and program modularity is enhanced by hiding “plumbing”
issues inside the monadic infrastructure. Unfortunately, not
all the facilities provided by the underlying language are
readily available for monadic computations. In particular,
while recursive monadic computations can be defined di-
rectly using Haskell’s built-in recursion capabilities, there
is no natural way to express recursion over the values of
monadic actions. Using examples, we illustrate why this
is a problem, and we propose an extension to Haskell’s do-
notation to remedy the situation. It turns out that the struc-
ture of monadic value-recursion depends on the structure of
the underlying monad. We propose an axiomatization of
the recursion operation and provide a catalogue of defini-
tions that satisfy our criteria.

1. INTRODUCTION
We begin with a puzzle. Consider the following piece of
almost-Haskell code:

isEven :: Int -> Maybe Int
isEven n = if even n then Just n else Nothing

puzzle :: [Int]
puzzle = do (x, z) <- [(y, 1), (y^2, 2), (y^3, 3)]

Just y <- map isEven [z+1 .. 2*z]
return (x + y)

Notice that variable y appears free in the first line of the do-
expression: for the sake of this puzzle, assume that the do-
notation binds variables recursively, much like let of Haskell
or letrec of Scheme. Under this assumption, what should
the value of puzzle be?

Our goal in this paper is to provide a general answer to this
type of question. We develop a framework for recursion over
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the values resulting from monadic actions. The discussion
is set in the context of Haskell, but the ideas have wider
applicability.

We first motivate the need for recursion in monadic com-
putations, then we propose an extension to the do-notation
supporting recursive bindings. We proceed to argue that
the structure of the underlying monad specifies how the re-
cursion should be performed and axiomatize the required
behavior. The remainder of the paper contains a catalogue
of monads that have recursion operators satisfying our cri-
teria. On the way, of course, we provide an answer to the
puzzle (in Section 6.3).

2. MOTIVATING PROBLEMS
In this section, we present two examples to motivate the
value of having recursive bindings in the do-notation. The
first example is about sorting-networks with traces and is
done in some detail. The second is from modeling circuits.
We cover this much more briefly.

2.1 Sorting networks
A sorting network is a collection of comparators, connected
in such a way that the output of the network is always the
sorted permutation of its input [2]. Figure 1 shows an ex-
ample that can sort four numbers. For each comparator, the
wire to its right carries the maximum of its inputs, while the
lower one carries the minimum.
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Figure 1: A sorting network of capacity 4

In this particular example, a, b, c, and d are the inputs, while
k, l, m, and n are the outputs.



How can we implement a sorting network so that we not only
get the values sorted, but also a transcript of the operations
performed during sorting? We want each comparator unit
to report on the operation it performed while sorting took
place. The output monad springs to mind. We translate
the sorting network in Figure 1 almost literally into Haskell
code of Figure 2.

newtype Out a = Out (a, String)

instance Monad Out where
return x = Out (x, "")
Out ~(x, s) >>= f = let Out (y, s’) = f x

in Out (y, s ++ s’)

instance Show a => Show (Out a) where
show (Out (v, s)) = "Value: " ++ show v

++ "\nTrace:" ++ s

comp :: Int -> (Int, Int) -> Out (Int, Int)
comp i (a, b) = Out ((max a b, min a b), msg)

where c1 = ": swap: " ++ show (a, b)
c2 = ": pass: " ++ show (a, b)
msg = "\nUnit " ++ show i ++

(if a < b then c1 else c2)

type QuadInts = (Int, Int, Int, Int)
sort4 :: QuadInts -> Out QuadInts
sort4 (a, b, c, d) =

do (e, f) <- comp 1 (a, b) -- unit 1
(g, h) <- comp 2 (c, d) -- unit 2
(n, i) <- comp 3 (e, g) -- unit 3
(j, k) <- comp 4 (f, h) -- unit 4
(m, l) <- comp 5 (i, j) -- unit 5
return (k, l, m, n)

Figure 2: Haskell code for the network in Figure 1

Here is a sample run:

Main> sort4 (23, 12, -1, 2)
Value: (-1,2,12,23)
Trace:
Unit 1: pass: (23,12)
Unit 2: swap: (-1,2)
Unit 3: pass: (23,2)
Unit 4: pass: (12,-1)
Unit 5: swap: (2,12)

A quick look at the trace reveals that it is consistent with
the operation of the network for this particular input.

In the definition of sort4, we carefully selected the execution
order of the units such that all values were available before
they were used. What if it was inconvenient to arrange for
this? In our example, for instance, what if we want to see
the output of unit 3 after unit 5? Notice that unit 5 uses
the value i, which is produced by unit 3. Ideally, we would
like to be able to change the function sort4 to:

sort4 (a, b, c, d) =
do (e, f) <- comp 1 (a, b) -- unit 1

(g, h) <- comp 2 (c, d) -- unit 2
(j, k) <- comp 4 (f, h) -- unit 4
(m, l) <- comp 5 (i, j) -- unit 5
(n, i) <- comp 3 (e, g) -- unit 3
return (k, l, m, n)

That is, we move the line corresponding to unit 3 after that
of unit 5. Although this is the most intuitive thing to do,
the resulting code is no longer valid: The variable i is not
in scope when it’s used.

How should we fix this? In this simple case, the obvious
solution would be to postprocess the output of the origi-
nal program to obtain the required ordering. But this is
not a very satisfactory approach. In particular, the failed
attempt of reordering lines in the do-expression is quite ap-
pealing. After all, the value that is computed by sort4 (i.e.
the quadruple representing the sorted permutation) does not
depend on the order we observe the output. The attempt
would have been successful, if only we had a way to bind
variables recursively in the do-notation.

2.2 Resettable counter
The previous example didn’t absolutely require recursive
bindings because the values bound by the do-notation could
be sequentially defined. This is not always the case. Our
second example comes from the hardware-modeling domain.
Microarchitectural design languages have been the target of
programming language research in recent years because of
the complexity of such designs. Lava [1] and Hawk [11,
16] are two recent systems designed to address this need.
Lava uses monads intensively in modeling various circuit
elements. Originally, Hawk used a similar monad-based
approach as well. This technique provides a very flexible
framework for translating specifications to VHDL or Verilog
descriptions that could be used in producing real circuits.
By just “plugging-in” the appropriate monad, the very same
description can be used in simulation or in obtaining descrip-
tions of the circuit in other languages. But this comes at a
certain cost, as we explore here.
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Figure 3: Resettable counter circuit

Hawk uses lazy lists to model signals flowing through cir-
cuits. The early monad-based implementation of Hawk used
a Circuit monad, which is basically a combination of the
state and output monads. Without going into details, we
consider the circuit of Figure 3 as modeled in Hawk. Using
the Circuit monad, we would like to model this circuit by:

counter :: Signal Bool -> Circuit (Signal Int)
counter reset = do next <- delay 0 inc

inc <- lift1 (+1) out
out <- mux reset zero next
zero <- lift0 0
return out

Notice that the description follows the circuit almost liter-
ally, but again, the program presented is not valid Haskell.
The variables inc, out and zero are used before they are de-
fined. Furthermore, because the definitions are cyclic, there



is no way to serialize this program. The feedback present in
the circuit causes the problem. Again, we need to be able to
bind variables recursively in the do-notation. This problem
is the main reason why the current implementation of Hawk
does not use explicit monadic style.

3. RECURSIVE BINDINGS FOR DO
Currently, a do-expression in Haskell behaves like the let*

of Scheme: the bound variables are available only in the
textually following expressions. We need the do-notation to
behave more like the let of Haskell, which allow recursive
bindings. Of course, it is not necessarily the case that all
monads will allow for such recursive bindings. We call a
monad recursive, if there is a “sensible” way to allow for this
kind of recursion. We codify what “sensible” should mean
in Section 4. In this section, we look at a syntactic extension
to Haskell that allows recursive bindings in the do-notation.
This extension is a variant of the do-notation, called the
µdo-notation. Just like the do-notation is available for any
monad, the µdo-notation will be automatically available for
any recursive-monad.

3.1 The new translation
Recall that a do-expression is translated into a series of ap-
plications of �= [10]. Similarly, we need µdo to translate
into more primitive components. We use a fixed-point op-
erator, called mfix, whose type is ∀a. (a → m a) → m a,
where m is the underlying monad. The translation is:

mfix (λ~BV . do p1 ← e1

µdo p1 ← e1 ...

... =⇒ pn ← en

pn ← en v ← e
e return BV )

�= λ BV . return v

where BV stands for the k-tuple consisting of all the vari-
ables occurring in all the binding patterns plus the brand
new variable v. Notice that each one of p1 . . . pn, the binding
patterns, can be any valid Haskell pattern, not just simple
variables. The variables that are bound by these patterns
may appear anywhere in e1 . . . en and e. A variable may
not be multiply bound: neither in the same pattern, nor in
different patterns.

As an example, consider the following µdo expression which
implements a sorting network for three numbers:

mdo (d, e) <- comp 1 (a, b)
(i, h) <- comp 3 (d, f)
(f, g) <- comp 2 (e, c)
return (g, h, i)

After the translation, it becomes:

mfix (\~(d, e, i, h, f, g, v) ->
do (d, e) <- comp 1 (a, b)

(i, h) <- comp 3 (d, f)
(f, g) <- comp 2 (e, c)
v <- return (g, h, i)
return (d, e, i, h, f, g, v))

>>= \(d, e, i, h, f, g, v) -> return v

The instance of mfix used in the translation is automatically
deduced by the Haskell type system to be the instance at
the output monad.

Although the translation of µdo using do is similar to the
translation of letrec using let and the usual fixed-point
operator fix, there is an important issue. Languages such as
Haskell provide a generic definition of fix that works for all
types. But there seems to be no appropriate generic defini-
tion of mfix that will work for all monads. Instead, we have
to find an appropriate definition of mfix for each monad. To
achieve some level of of uniformity, we stipulate some axioms
that mfix must satisfy, and attempt to discover satisfactory
definitions for individual monads. We say that a monad is
recursive when there is a definition of mfix satisfying our
axioms. A µdo-expression is well-typed if the underlying
monad is recursive and the translation is well-typed.

3.2 Repeated variables and let-bindings
In the translation of the µdo-notation, we explicitly prohib-
ited a variable from being repeated in different patterns (rep-
etition within the same pattern is disallowed following the
usual Haskell convention). In the do-notation, a repeated
variable has nothing to do with its previous binding: a new
binding using the same name shadows the earlier one. If we
allow repetitions in the µdo-notation, however, the transla-
tion would not treat them as independent. Furthermore, a
repeated variable might change its type in the do-notation,
but this will fail to type check for the µdo-notation. More
importantly, one might expect that repeated variables will
provide a way of constraining the values that they might
take in the µdo-notation, which is not what the translation
implies. Hence, even if the translation goes through, this
might lead to misunderstandings.1

Allowing let bindings in the µdo-notation is another issue.
In the do-notation, let bindings allow giving names to non-
monadic computations in a convenient manner. Can we al-
low them in the µdo-notation as well? An obvious extension
is to treat them as recursive bindings that are valid through-
out the whole body, suggesting the following translation:

mfix (λ ˜BV . do ...1...

µdo ...1... let p1 = e1

let p1 = e1 ...

... =⇒ pn = en

pn = en ...2...

...2... v ← e
e return BV )

�= λ BV. return v

The translation is similar to what we had before, except now
the variables bound in p1 . . . pn appear in BV as well. How-
ever, this poses some problems. In Haskell, let bound vari-
ables are polymorphic, while λ-bound ones are monomor-
phic. This implies that the variables bound in p1 . . . pn are
monomorphic in the code block marked by ...1... but
polymorphic in e1 . . . en, ...2..., and in e. This is not

1In a similar vein, the usual do-notation should not al-
low repetitions either. List comprehensions become espe-
cially horrible: f x = [x | x <- [x..4], x <- [x..8]] is
a confusing (yet legal) Haskell function.



a desirable situation. As a concrete example consider the
following translation:

mfix (\(~(z, y, f, v)) ->
mdo do z <- return (f 2)
z <- return (f 2) y <- return (f ’a’)
y <- return (f ’a’) let f x = x
let f x = x ===> v <- return ()
return () return (z, y, f, v))

>>= \(z, y, f, v) -> return v

The translation fails to type check for obvious reasons: The
function f is no longer polymorphic.

The solution we adopt is to require let bindings to be mono-
morphic in a µdo. That is, let becomes just a syntactic
sugar within µdo, translated as:2

let p1 = e1 p1 ← return e1

... =⇒ ...

pn = en pn ← return en

This gives us a uniform design. If a polymorphic value defini-
tion is required, one should use the standard let expressions
of Haskell, rather than the let generator, which will create
its own scope with polymorphic names. (The translation
and the related issues are discussed in detail in a companion
implementation paper [4].)

3.3 Implementation
We have a modified version of Hugs supporting the µdo-
notation.3 This implementation acts as a preprocessor, i.e.
it performs the translation at the source level, and hence the
amount of modifications we made in the Hugs source code
is fairly small. We expect the same to hold when the trans-
lation is done inside the compiler. Basically, the required
changes will be localized to type checking and de-sugaring
routines.

The related class declaration for recursive monads is:

class Monad m => MonadRec m where
mfix :: (a -> m a) -> m a

In this simple implementation, occurrences of let expres-
sions are translated blindly, without requiring them to be
monomorphic. The associated typing problems are ignored.

4. RECURSIVE MONADS
The previous section addressed syntax. Now we turn to
the meat of the issue and study mfix directly. We start by
looking for a generic mfix.

2This extends to functions as well, basically let f x y = z
will become f ← return (λx.λy. z).
3More information and downloading instructions are
available at http://www.cse.ogi.edu/PacSoft/projects/
muHugs.

4.1 The generic mfix
The fixed point operator, fix, which has type ∀a. (a→ a)→
a, has a generic definition that works for all types.4 For a
lazy language like Haskell, the definition is just:

fix :: (a→ a)→ a

fix f = f (fix f)

Is there a generic definition for mfix as well? Inspired by
the generic definition of fix, we consider the following (all
equivalent) definitions for mfix:

mfix :: Monad m⇒ (a→ m a)→ m a

mfix f = mfix f �= f

mfix f = do {x← mfix f ; f x}

mfix f = fix (join ·map f )

Unfortunately, this definition is simply not appropriate. To
see why, we should specify what sort of properties we want
mfix to have. First of all, we would expect a constant func-
tion, one that ignores its argument and always returns the
same result, should have that result as its fixed point. This
certainly holds for fix. We illustrate that this property does
not hold for the Maybe monad with this definition. Here is
the simplest test:

Main> mfix (const (Just 3))
ERROR: Control stack overflow

It is not hard to see why this definition fails to satisfy the re-
quired property: Consider the third version of the attempted
definition. Since both join and map f are strict, so is their
composition: Since the least fixed-point of any strict func-
tion is ⊥, the result is ⊥ as well.

Looking closely at the default definition, we see the follow-
ing: To compute the mfix of a function of type a→ m a, we
first construct a function m a → m a5, and then compute
the usual fixed-point of it. In other words, the fixed-point is
computed not only for the values that are manipulated, but
also for the effects that take place during the execution.

Now, recalling the original intuition behind µdo-notation,
we see that this is not what we wanted. We want the
fixed-point computation to take place only over the values of
monadic actions, while the effects and other computations
remain untouched.

4.2 Axiomatizing mfix
So far, we have been using phrases like “a suitable definition
of mfix” somewhat loosely. The time has come to make
“suitable” precise. We give three axioms that mfix must
satisfy, summarized in Figure 4.

Axiom 1 is about pure computations:

mfix (return · h) = return (fix h)

4Technically, the underlying type needs to be a pointed
CPO, but this requirement is vacuously satisfied in Haskell
as all types are pointed, i.e. non-termination can happen at
any type.
5This is the so-called extension of a function from values to
computations to a function from computations to computa-
tions, see [17] for details.



mfix (return · h) = return (fix h) (1)

mfix (λx.a�= f x) = a�= λy.mfix (λx.f x y) (2)

mfix (λ˜(x, ).mfix (λ˜( , y).f (x, y))) = mfix f (3)

Figure 4: Axioms for mfix. In axiom 2, x is not free in a.
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Figure 5: mfix (return · h) = return (fix h)
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Figure 7: mfix (λ˜(x, ).mfix (λ˜( , y).f (x, y))) = mfix f

If the actual computation takes place in the pure world and
the result is lifted into the monad using return, the fixed-
point should be the fixed-point in the pure world lifted into
the monad. Figure 5 is a pictorial representation of this
axiom. The dashed box represents where the mfix compu-
tation takes place. In this figure, the loop on the right hand
side represents fix, while the one on the left corresponds to
mfix. The thin line represents the value being processed
through the computation. The thick line in the lower part
of the diagram represents the computational effect (side ef-
fects, other changes in the monadic data, etc.) Notice that
the fixed-point is computed only over the value part.

Axiom 2 shows how to pull a term that doesn’t contribute
to the fixed-point computation from the left-hand-side of a
�=. Provided x does not appear free in a:

mfix (λx.a�= f x) = a�= λy.mfix (λx.f x y)

Notice that the value of a is constant throughout the com-
putation. Hence, we should be able to compute it only once
(if need be) and put it into the fixed-point loop. Figure 6
is a pictorial representation of this axiom. Notice that both
hand sides are essentially the same.

Axiom 3, depicted in Figure 7, states a useful fact about
fixed-point computations involving more than one variable:

mfix (λ˜(x, ).mfix (λ˜( , y).f (x, y))) = mfix f

The function f has type: ∀a, b. (a, b) → m (a, b). On the
right hand side, we compute the fixed point simultaneously

over both variables. On the left hand side, we perform a
two step computation, where the fixed-point is computed
using only one variable at a time. This axiom corresponds
to Bekić’s theorem for usual fixed-point computations [22].
Notice that, again, both hand sides of Figure 7 are essen-
tially the same. It can be shown that the symmetric law:

mfix (λ˜( , y).mfix (λ˜(x, ).f (x, y))) = mfix f

holds whenever axiom 3 does.

Now, we can precisely define what it means for a monad to
be recursive:

Definition 1. Recursive monads. A monad m is recursive
if there is a function mfix :: ∀a.(a→ m a)→ m a satisfying
the mfix axioms.

4.3 Derived equivalences
A direct corollary to first two mfix axioms guarantees an
expected property of constant functions:

Corollary 1. mfix (λx.a) = a, provided x does not ap-
pear free in a.

We also have:

Corollary 2. f ⊥ v mfix f



Notice that corollary 2 states more than a rudimentary fact:
f ⊥ yields valuable information on the structure of the fixed-
point. (For instance, if f :: a→ [a], and if f ⊥ is a cons-cell,
then so is mfix f . In particular, if f ⊥ is a finite list of
length k, then the length of the fixed-point is k as well.)

The polymorphic nature of mfix provides further properties.
By the parametricity theorem [20], we have:

Theorem 1. ∀s : A → B, f : A → m A, g : B → m B,
if g · s = map s · f then map s (mfix f) = mfix g, provided s
is strict.

As specific instances of this theorem, we obtain the following
two corollaries:

Corollary 3. The following equation holds for any re-
cursive monad:

mfix (λ˜(x, y).f y �= return · sp h id)

= mfix f �= return · sp h id (4)

where

sp h g z = seq z (h z, g z)

Notice that sp is strict in its third argument. Ignoring the
strictness requirement for a moment, equation 4 becomes:

mfix (λ˜(x, y).f y �= λz.return (h z, z))

= mfix f �= λz.return (h z, z) (5)

The function f only refers to y and it is fed back exactly its
own result. However, the fixed-point value also gets acted
upon by a pure function h, whose result is ignored by f .
Figure 8 depicts the situation. (The symmetric case when h
acts on the second component of the pair while f uses only
the first component holds as well.) This equation is impor-
tant because it tells us that “pure” computations that do
not interfere with the fixed point computation can be per-
formed afterwards. The strictness requirement on sp seems
to be an unfortunate artifact of theorem 1; all monads that
we have worked on satisfy equation 5 with no side condi-
tions. (Unfortunately, in a framework where every type has
a ⊥ element, the parametricity theorem is weakened by the
strictness requirement [12].)

Finally, we can move pure computations around:

Corollary 4. Provided h is strict, the following equa-
tion holds for any recursive-monad:

mfix (λx.f x�= return · h)

= mfix (λx.return (h x)�= f)�= return · h (6)

where f :: a→ m b and h : b→ a. Equivalently:

mfix (map h · f ) = map h (mfix (f · h))

Figure 9 depicts the situation. The purity requirement on
h is essential: we cannot reorder any effects, as order does

matter in performing them. The strictness requirement on
h is quite important as well. Intuitively, the fixed-point
computation on the lhs will start of by feeding ⊥ to f , while
the computation on the rhs will start of by feeding h ⊥.
Unless h ⊥ = ⊥, this will provide more information to f on
the rhs. Hence, we might get a ⊥ on the lhs, while a non-⊥
value on the right. (We will see an example in Section 6.2.)
However, there are monads for which the equality holds even
when h is non-strict. The state monad is such an example
(Section 6.4).

The inspiration for corollary 4 comes from a very well known
law for fixed-point computations:

fix (f · g) = f (fix (g · f))

One can see the correspondence more clearly by using Kleisli
composition, defined as: f

�
g = λx.f x�= g, where x does

not occur free in f or g. Now, equation 6 becomes (
�

binds
less tightly than ·):

mfix (f
�

return · h) = mfix (return · h
�

f )�= return · h

4.4 Shrinking from right
Corollary 3 states exactly when we are allowed to pull a pure
computation out from the right-hand-side of a �=. Can
we pull out computations involving effects as well? Con-
sider Figure 10 which depicts the case when g is allowed to
make computational effects. Since the value produced by
g is ignored in the fixed-point computation, one might ex-
pect pulling g out of the loop not to change the value of the
computation. Indeed, our early axiomatization stipulated
this property. However, it turns out that the equality is
too strong for many monads. A problem arises because the
monadic part of the computation in g might interfere with
the fixed-point computation, possibly changing the termina-
tion behavior. Therefore, the best we could hope for is an
inequality in the general case, that is:

mfix (λ˜(x, y).f x�= λz.g z �= λw.return (z, w))

v mfix f �= λz.g z �= λw.return (z, w) (7)

We will note the examples in which the equality holds or
fails in Section 6.

4.5 A reflection on mfix axioms
We have tried to axiomatize how recursion over the values
of monadic actions should behave. All three axioms emerge
from our intuitions for recursive monadic computations. At
this point, however, our approach is more definitive than
explanatory in its nature, and we have felt free to work
within the standard model for Haskell in which all the CPO’s
possess a ⊥ element.

The extent to which our axiomatization is successful will
be determined by practice. Our axioms could be deemed
appropriate if they rule out useless definitions of mfix and
admit only those that are meaningful in practice. Notice
that we do not require a unique definition of mfix (if any)
for a given monad: different applications using the same
monad might conceivably benefit from different definitions
of mfix. Our concern is in trying to specify the common core
of monadic fixed-point computations. The major points are:
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• The fixed-point computation should be performed only
over the values.

• Effects of monadic functions should neither be dupli-
cated nor lost in a fixed-point computation. The usual
laws of “demand driven” evaluation and the structure
of the underlying monad will determine when, if ever,
these effects will be performed.

• In the case when there are no recursively bound vari-
ables, a µdo-expression should behave exactly like an
ordinary do-expression.

Our axioms try to capture these points formally. Some mon-
ads might, of course, satisfy more laws (such as shrinking
from right), and users might exploit these facts in programs.
On the other hand, we believe that our axiomatization cap-
tures the minimal common core that should be satisfied by
any monad in order to perform recursive computations over
the results of monadic actions.

5. EMBEDDING MONADS
Whenever we want to establish that a monad is recursive,
we need to prove that the axioms are satisfied by the pro-
posed definition of mfix. In practice, we have found ourselves
repeating essentially the same proof for many different mon-
ads. Recursive-monad embeddings lets us eliminate much of
the duplicated work. We first recall the definition of monad
homomorphisms and embeddings:

Definition 2. Monad homomorphisms/embeddings. Let m
and n be two monads. A monad homomorphism, ε : m→ n,
is a family of functions (one for each type a, εa : m a→ n a)

such that:

ε · returnm = returnn (8)

εb (p�=m h) = εa p�=n εb · h (9)

where p : m a and h : a → m b. An embedding is a monic
(i.e. injective) monad-homomorphism.

We extend the definition to cover the recursive case:

Definition 3. Recursive-monad homomorphisms and em-
beddings. Let m and n be two recursive-monads and let
ε : m→ n be a monad homomorphism. We call ε a recursive-
monad homomorphism if it also satisfies:

ε (mfixm h) = mfixn (ε · h) (10)

Similarly, a recursive-monad embedding is a monic recursive-
monad homomorphism.

We will see concrete examples of recursive-monad embed-
dings in the next section.

Theorem 2. Let ε : m→ n be an embedding of a monad
m into a recursive-monad n. To conclude that m is recur-
sive, it is sufficient to show that there exists a function mfix

m

such that ε is a recursive-monad embedding.

The proof is by simple equational reasoning. We also note
that equations 4, 5, 6, and 7 are preserved through monad-
embeddings as well. Furthermore, composition of two em-
beddings is still an embedding.



This theorem not only provides a method for obtaining proofs
for mfix axioms automatically for certain monads, but it
also provides additional assurance that the axioms repre-
sent characteristic properties of monadic fixed-points.

6. EXAMPLES OF RECURSIVE MONADS
In this section we examine a number of monads that are
frequently used in programming.

6.1 Identity
The identity monad is the monad of pure values. The Haskell
declarations are:

newtype Id a = Id { unId :: a }

instance Monad Id where
return x = Id x
Id x >>= f = f x

instance MonadRec Id where
mfix f = fix (f . unId)

Notice that we use a newtype declaration rather than a data.
This choice is not arbitrary. Since all Haskell data types
are lifted (i.e. ⊥ and Id ⊥ are different), we would intro-
duce an unwanted element if we had used data. It is a
simple matter to check that mfix axioms are satisfied. One
particular way of doing so is by embedding the Id monad
into another recursive-monad, for instance the State monad
(Section 6.4). In addition, equation 5 is satisfied, equation 6
holds even if h is non-strict, and equation 7 holds as an
equality.

6.2 Maybe
The Maybe monad, the monad of exceptions, has the follow-
ing MonadRec declaration:

instance MonadRec Maybe where
mfix f = fix (f . unJust)

where unJust (Just x) = x

The proof that the Maybe monad is recursive follows from the
fact that it can be embedded into the List monad. Before
studying the List monad, we state a lemma classifying mfix
of functions for the Maybe monad.

Lemma 1. The Maybe instance of mfix satisfies (J abbre-
viates Just, N abbreviates Nothing):

mfix f = ⊥ ←→ f ⊥ = ⊥

mfix f = N ←→ f ⊥ = N

mfix f = J ⊥ ←→ f ⊥ = J ⊥

unJust (mfix f ) = fix (unJust · f)

The first three equivalences exactly determine when the fixed-
point is ⊥, Nothing or Just ⊥. The last equality is a con-
sequence of the definition of mfix. An implication of these
equations is that mfix of a function f of type a→ Maybe a

is f ⊥, whenever a is a flat domain.

Equation 5 will hold for the Maybe monad, but a strict h is
needed for equation 6. To see why, consider the following
example:

f :: [Int] -> Maybe [Int]
f (x:_) = Just [x]

h :: [Int] -> [Int]
h xs = 1:xs

On the lhs of equation 6, we get⊥, while rhs yields Just [1, 1].
This is due to the fact that f performs a case analysis to see
if its argument is a non-empty list. When the fixed-point
computation starts, f first receives ⊥ as the argument and
produces ⊥. Since �= for the Maybe monad is strict in its
first argument, the whole computation fails. On the rhs,
however, f first receives 1 : ⊥, and produces Just [1], and
the computation proceeds.

We also revisit the right shrinking law (Section 4.4) within
the context of the Maybe monad. Consider:

f :: [Int] -> Maybe [Int]
f xs = Just (1:xs)

g :: [Int] -> Maybe Int
g [x] = Nothing
g _ = Nothing

For this example, lhs of inequation 7 yields ⊥, while the
rhs yields Nothing. Looking closely, we see that the right
hand side first produces the fixed point of f , which is of
the form Just xs where xs is the infinite list consisting of
all 1’s. Then, outside the mfix loop, g ignores this value
and returns Nothing. Within the mfix loop, the fixed-point
is constructed as the limit of the chain: {⊥, 1 : ⊥, 1 :
1 : ⊥, . . .}. When we look at the left hand side, we see a
different situation. The function g acts on each value in this
chain, and it yields ⊥ for the second element. (Matching
1 : ⊥ against [x] leads to nontermination.) Now, the fixed
point is computed over and over starting from ⊥, yielding
⊥ as the result. In general, the Maybe monad will satisfy
property 7 as an inequality. If we look more closely, we see
that the problem lies within the fact that �= for the Maybe

monad is strict in its first argument. Unfortunately, there
is no way to alleviate this problem. We conclude that this
property can not be satisfied as long as the�= of the monad
is strict in its first argument. This requirement practically
rules out any data type that has more than one constructor
from satisfying property 7 as an equality.

6.3 List
The MonadRec declaration for the List monad is:

instance MonadRec [] where
mfix f = case fix (f . head) of

[] -> []
(x:_) -> x : mfix (tail . f)

The intuition behind this definition of mfix is the following:
For a function of type a→ [a], the fixed point is of type [a],
i.e. it’s a list. Each element of this fixed-point should be



the fixed point of the function restricted to that particular
position. That is, the ith entry of the fixed point of a func-
tion with type a → [a], say f , should be the fixed point of
the function: head · taili · f . In other words,

mfix (λx.[h1 x, . . . , hn x]) = [fix h1, . . . , fix hn]

or, more generally:

mfix f = fix (head · f) : mfix (tail · f)

This definition will work well as long as the fixed-point is
an infinite list. However, it fails to capture the finite case.
Notice that we are computing the fixed points of the func-
tions of the form head · f . If f ever returns [], we want to
stop the computation, rather than taking the head (which
will yield ⊥). Hence, recalling that

fix (head · f) = head (fix (f · head))

we can compute the fixed points of the functions of the form
f · head (whose results will be lists), and stop when we get
an empty list. Putting these ideas together, we arrive at the
definition we have given above.

Analogous to Lemma 1, we have:

Lemma 2. The List instance of mfix satisfies:

mfix f = ⊥ ←→ f ⊥ = ⊥

mfix f = [ ] ←→ f ⊥ = [ ]

mfix f = [⊥] ←→ f ⊥ = [⊥]

head (mfix f ) = fix (head · f )

tail (mfix f ) = mfix (tail · f)

mfix (λx.f x : g x) = fix f : mfix g

mfix (λx.f x ++ g x) = mfix f ++ mfix g

The first two equivalences imply that when f ⊥ is a cons-cell
(i.e. of the form (x : xs)), then mfix f is also a cons-cell.
Using this lemma, proving that mfix axioms hold is a tedious
but straightforward exercise.

The embedding of the Maybe monad into the List monad
simply takes Nothing to [] and Just x to [x]. By the dis-
cussion on embeddings, we do not expect the List monad
to satisfy equation 6 when h is non-strict and equation 7 as
an equality since we know that the Maybe monad does not
have these properties. In deed, it is possible to construct
counterexamples for the List monad as well. Equation 5,
as with all other cases, holds for the List monad.

We can finally solve the puzzle posed in the introduction.
First, using our intuition for the List monad and recursive
bindings, we try to derive the solution. It is well known
that the do-notation and the usual list comprehensions of
Haskell coincide for the List monad. Hence, we can think
of the puzzle as the following list comprehension:

[x+y | (x, z) <- [(y, 1), (y^2, 2), (y^3, 3)],
Just y <- map isEven [z+1 .. 2*z]]

Notice that this list comprehension is still not valid Haskell:
The variable y is used before its value is generated. Never-
theless, we apply the usual rules for decomposing list com-
prehensions [21]. We obtain:

concat [ [x+y | Just y <- map isEven [z+1 .. 2*z]]
| (x, z) <- [(y, 1), (y^2, 2), (y^3, 3)] ]

Notice that we have a nested comprehension now. At this
point, we can expand the outer comprehension for each as-
signment to (x, z). This step is where we use our intuition
for the recursive bindings for interpreting the free variable
y: We substitute it for x symbolically. This yields:

concat [ [y +y | Just y <- map isEven [2 .. 2]],
[y^2+y | Just y <- map isEven [3 .. 4]],
[y^3+y | Just y <- map isEven [4 .. 6]] ]

Now, routine calculations yield: [4, 20, 68, 222].

When we run the puzzle using the µdo modifed version of
Hugs (after replacing the keyword do with mdo), we get ex-
actly the same answer.

6.4 State
The State monad is used to capture computations that in-
volve mutable variables [13, 14]. Here are the definitions:

newtype State s a = ST { unST :: (s -> (a, s)) }

instance Monad (State s) where
return x = ST (\s -> (x, s))
ST f >>= g = ST (\s -> let (a, s’) = f s

in unST (g a) s’)

instance MonadRec (State s) where
mfix f = ST (\s -> let (a, s’) = unST (f a) s

in (a, s’))

Without tags, the definition of mfix is simply:

mfix f = λs.let (a, s
′) = f a s in (a, s

′)

The State monad satisfies all mfix axioms, hence it is re-
cursive. The definition of mfix clearly shows that the fixed-
point computation is performed only on values, the state
component is left untouched. Furthermore, equation 5 holds,
equation 6 does not require a strict h and property 7 is sat-
isfied as an equality.

6.5 State with exceptions
Often the computations that have side effects fail to yield a
value. This concept is generally modeled with a combination
of the state and exception monads. In this section we look
at two examples.

The first version considers the case when neither a value nor
an updated state might be available after a computation.
The declarations are (again, we drop explicit tags):

newtype STE s a = s -> Maybe (a, s)

instance Monad (STE s) where
return x = \s -> Just (x, s)
f >>= g = \s -> case f s of

Nothing -> Nothing
Just (a, s’) -> g a s’



instance MonadRec (STE s) where
mfix f = \s -> let a = f b s

b = fst (unJust a)
in a

Now we consider when the computation might fail but an
updated state is still available. The declarations are:

newtype STE2 s a = s -> (Maybe a, s)

instance Monad (STE2 s) where
return x = \s -> (Just x, s)
f >>= g = \s -> case f s of

(Nothing, s’) -> (Nothing, s’)
(Just a, s’) -> g a s’

instance MonadRec (STE2 s) where
mfix f = \s -> let a = f b s

b = unJust (fst a)
in a

In both cases, the computation of the fixed-point is similar
to those of State and Maybe monads. We equate the value
part of the result with the input to the function. Notice the
symmetry between the definitions and the newtype declara-
tions.

It turns out both of these monads are recursive. However,
they require strict h for satisfying equation 6 and they don’t
satisfy equation 7 as an equality. This is hardly surprising
since the Maybe monad behaves like this as well. As with all
other cases, both monads satisfy equation 5.

6.6 Other monads
We take a brief look at a couple of other monads without go-
ing into much detail. The Reader (or environment) monad
is a version of the State monad where we only read the state
without ever changing it [9]. The obvious embedding into
the State monad suffices to prove that the Reader monad is
recursive. In fact, the work on implicit parameters [15] pro-
vides an implicit recursive Reader monad in Haskell where
the usual let construct expresses recursive computations,
(implicit parameters provide the mechanism for accessing
values within the monad).

The output monad, as described in Section 2.1, is recursive
also. It also embeds into the State monad. The definition
of mfix is:

instance MonadRec Out where
mfix f = fix (f . unOut)

where unOut (Out (a, _)) = a

The Tree monad [9] is recursive. The definition of mfix
closely mimics that of the List monad. Unlike lists, how-
ever, these trees are never empty and hence the List monad
cannot be embedded into them. It is, however, not clear
what sort of applications can benefit from recursive bind-
ings for the Tree monad.

Two other recursive-monads that are very well known in
the Haskell community are the internal input/output (IO)
and state (ST) monads. The library functions fixIO and

fixST correspond to our mfix for the IO and ST monads,
respectively. These monads are “internal” in the sense that,
unlike others, their implementations use destructive updates
and hence need to be defined as primitives. This prevents
us from constructing explicit proofs, but the Haskell folklore
suggests that they indeed satisfy our axioms.

The details on these monads (along with other technical
development) can be found in [5].

The continuation monad continues to cause us grief. We
have been unable to produce a viable definition for mfix in
this case. Furthermore, in the Scheme case—when state and
continuations coexist—the semantics implied by the defini-
tion of letrec (Scheme’s equivalent of mfix) seems to lack
the appropriate uniformity properties implied by axiom 2
and property 7.

7. AN EXAMPLE: DOUBLY LINKED CIR-
CULAR LISTS

In this section, we give a hands-on example of using monadic
recursive bindings. We will create a doubly linked circular
list which can be traversed forwards or backwards. At each
node, we will store a flag indicating whether the node has
been visited before. Since this flag needs to be mutable, we
will use the internal IO monad to get access to the required
reference cells. Obviously, this example can be generalized
to any problem where we have interlinked stateful objects
with possibly cyclic dependencies.

We first import the MonadRec and IOExts libraries. The
first one declares the MonadRec class. The IOExts library
provides fixIO, as discussed above, along with functions to
create and manipulate mutable variables:

> import MonadRec
> import IOExts

The MonadRec declaration for IO is trivial:

> instance MonadRec IO where
> mfix = fixIO

By this declaration, the µdo-notation becomes available for
the IO monad. Each node in our list will have a mutable
boolean value indicating whether it has been visited, left
and right nodes and a single integer value for the data:

> data N = N (IORef Bool, N, Int, N)

To create a new node with value i in between the nodes b
and f, we use the function newNode:

> newNode :: N -> Int -> N -> IO N
> newNode b i f = do v <- newIORef False
> return (N (v, b, i, f))

Notice that the visited flag is set to False. We will use this
function to create the following structure:



1 2 3

ll

0

Here’s the code for it:

> ll = mdo n0 <- newNode n3 0 n1
> n1 <- newNode n0 1 n2
> n2 <- newNode n1 2 n3
> n3 <- newNode n2 3 n0
> return n0

The use of µdo is essential: the cyclic nature of the con-
struction is not expressible using an ordinary do-expression.
We can test our implementation with a traversal function:

> data Dir = F | B deriving Eq
>
> traverse :: Dir -> N -> IO [Int]
> traverse d (N (v, b, i, f)) =
> do visited <- readIORef v
> if visited
> then return []
> else do writeIORef v True
> let next = if d == F then f else b
> is <- traverse d next
> return (i:is)

Here’s a sample run:

Main> ll >>= traverse F >>= print
[0,1,2,3]
Main> ll >>= traverse B >>= print
[0,3,2,1]

The inverse function that takes a non-empty list and con-
structs a doubly linked circular list out of its elements illus-
trates the use of µdo further:

> l2dll :: [Int] -> IO N
> l2dll (x:xs) = mdo c <- newNode l x f
> (f, l) <- l2dll’ c xs
> return c
>
> l2dll’ :: N -> [Int] -> IO (N, N)
> l2dll’ p [] = return (p, p)
> l2dll’ p (x:xs) = mdo c <- newNode p x f
> (f, l) <- l2dll’ c xs
> return (c, l)

Note in particular the essential use of µdo in the construction
of the linked list.

8. RELATED WORK
There is a major line of research that attempts to charac-
terize fixed points in general [3, 7, 19]. This work has only a
passing relevance to the work here. Haskell already has one
brand of monadic fixed points—those obtained when writ-
ing recursive monadic functions by using Haskell’s built in
recursion—and these are the fixed points picked out by this

general work. As we indicated in Section 4.1, this generic
fixed point is not able to achieve recursive bindings in the
way we want. Instead, we have had to describe a value-
recursion that does not repeat the monadic effect.

Much greater similarity to our work is found in O’Haskell,
which is is a concurrent, object oriented extension of Haskell
designed for addressing issues in reactive functional pro-
gramming [18]. One application of O’Haskell is in program-
ming layered network protocols. Each layer interacts with
its predecessor and successor by receiving and passing infor-
mation in both directions. In order to connect two proto-
cols that have mutual dependencies, one needs a recursive
knot-tying operation. Since O’Haskell objects are monadic,
recursive monads are employed in establishing connections
between objects. O’Haskell adds a keyword fix to the do-
notation whose translation is a simplified version of ours.
The O’Haskell work, however, does not try to axiomatize or
generalize the idea any further.

Although we limited our attention to monadic computa-
tions, recursion makes sense in the more general setting
of arrows as well [8]. Recently, Ross Paterson axiomatized
arrowFix, the arrow version of mfix, which turns out to
be quite similar to our formulation. He echoes aspects of
Hasegawa’s work in traced monoidal categories that provides
a general framework for recursion and cyclic sharing [7].
Again, because a different notion of fixed point is required,
Paterson relaxed some of Hasegawa’s axioms, and replaced
others completely. (Unfortunately, Paterson’s work is not
published yet.)

Recent work by Friedman and Sabry tries to address the
problem from a different angle [6]. Rather than an axioma-
tization, their work suggests combining monads with a state
monad and performing a generic recursion computation in
this combined world. The semantics of recursion is then
defined by this implementation. Since the recursion is per-
formed in the combined monad, it is the users responsibility
to translate original problems and values to and from this
combined world.

Proofs of the claims made in this paper and other techni-
cal details are reported in a technical report [5]. A more
detailed treatment of the translation of µdo-expressions ap-
pear in a companion implementation paper [4]. The web
page http://www.cse.ogi.edu/PacSoft/projects/muHugs

contains the software, papers and other research material
related to this work.

9. CONCLUSIONS
Monads play an important role in functional programming
by providing a clean methodology for expressing computa-
tional effects. Monadic computations use a certain sublan-
guage shaped by the functions that act on monadic objects.
Haskell makes this approach quite convenient by providing
the do-notation. A shortcoming, however, is that recursion
over the results of monadic actions can not be conveniently
expressed. Furthermore, it is not clear how to perform re-
cursion on values in the presence of effects. In order to al-
leviate this problem, we have axiomatized monadic fix and
implemented an extension to the do-notation, which can be
used in expressing such recursive computations in a natural



way. We expect that many applications can benefit from
this work, as monads become more pervasive in functional
programming.

Even though we have proposed a separate µdo construct,
we believe that the usual do-expression of Haskell should be
extended to capture this new style of programming. That
is, there should not be a separate µdo keyword, but rather
the compiler should analyze do-expressions to see if recur-
sive bindings are employed, performing the translations as
appropriate. An ambitious compiler may also perform sim-
plifications based on the mfix axioms.
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