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Abstract

Monads have become a popular tool for dealing with computational effects in Haskell for two signifi-
cant reasons: equational reasoning is retained even in the presence of effects; and program modularity is
enhanced by hiding “plumbing” issues inside the monadic infrastructure. Unfortunately, not all the facil-
ities provided by the underlying language are readily available for monadic computations. In particular,
while recursive monadic computations can be defined directly using Haskell’s built-in recursion capabil-
ities, there is no natural way to express recursion over the values of monadic actions. Using examples,
we illustrate why this is a problem, and we propose an extension to Haskell’s do-notation to remedy the
situation. It turns out that the structure of monadic value-recursion depends on the structure of the
underlying monad. We propose an axiomatization of the recursion operation and provide a catalogue of
definitions that satisfy our criteria. The proofs of the claims we make throughout the report, along with
other technical development, is presented in the appendices.

Computing Review Subject Categories: Formal definitions and theory (D.3.1), Language constructs
and features (D.3.3).

Keywords: Haskell, monads, recursion, mfix, fixed-point operators.

1 Introduction

We begin with a puzzle. Consider the following piece of almost-Haskell code:

isEven :: Int -> Maybe Int

isEven n = if even n then Just n else Nothing

puzzle :: [Int]

puzzle = do (x, z) <- [(y, 1), (y^2, 2), (y^3, 3)]

Just y <- map isEven [z+1 .. 2*z]

return (x + y)

∗A version of this paper, without the appendices, is going to appear in the Proceedings of the ACM SIGPLAN International
Conference on Functional Programming (ICFP ’00), 2000.
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Notice that variable y appears free in the first line of the do-expression: for the sake of this puzzle, assume
that the do-notation binds variables recursively, much like let of Haskell or letrec of Scheme. Under this
assumption, what should the value of puzzle be?

Our goal in this paper is to provide a general answer to this type of question. We develop a framework for
recursion over the values resulting from monadic action. The discussion is set in the context of Haskell, but
the ideas have wider applicability.

We first motivate the need for recursion in monadic computations, then we propose an extension to the
do-notation supporting recursive bindings. We proceed to argue that the structure of the underlying monad
specifies how the recursion should be performed and axiomatize the required behavior. The remainder of the
paper contains a catalogue of monads that have recursion operators that satisfy our criteria. On the way, of
course, we provide an answer to the puzzle (in Section 6.3).

2 Motivating problems

In this section, we present two examples to motivate the value of having recursive bindings in the do-
notation. The first example is about sorting-networks with traces and is done in some detail. The second is
from modeling circuits. We cover this much more briefly.

2.1 Sorting networks

A sorting network is a collection of comparators, connected in such a way that the output of the network
is always the sorted permutation of its input [2]. Figure 1 shows an example that can sort four numbers.
For each comparator, the wire to its right carries the maximum of its inputs, while the lower one carries the
minimum.
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Figure 1: A sorting network of capacity 4

In this particular example, a, b, c, and d are the inputs, while k, l, m, and n are the outputs. A moment of
thought confirms that this network will correctly sort its input.
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How can we implement a sorting network so that we not only get the values sorted, but also a transcript
of the operations performed during sorting? We want each comparator unit to report on the operation it
performed while sorting took place. The output monad springs to mind. We translate the sorting network
in Figure 1 almost literally into Haskell code of Figure 2.

newtype Out a = Out (a, String)

instance Monad Out where

return x = Out (x, "")

Out ~(x, s) >>= f = let Out (y, s’) = f x

in Out (y, s ++ s’)

instance Show a => Show (Out a) where

show (Out (v, s)) = "Value: " ++ show v

++ "\nTrace:" ++ s

comp :: Int -> (Int, Int) -> Out (Int, Int)

comp i (a, b) = Out ((max a b, min a b), msg)

where c1 = ": swap: " ++ show (a, b)

c2 = ": pass: " ++ show (a, b)

msg = "\nUnit " ++ show i ++

(if a < b then c1 else c2)

type QuadInts = (Int, Int, Int, Int)

sort4 :: QuadInts -> Out QuadInts

sort4 (a, b, c, d) =

do (e, f) <- comp 1 (a, b) -- unit 1

(g, h) <- comp 2 (c, d) -- unit 2

(n, i) <- comp 3 (e, g) -- unit 3

(j, k) <- comp 4 (f, h) -- unit 4

(m, l) <- comp 5 (i, j) -- unit 5

return (k, l, m, n)

Figure 2: Haskell code implementing network of Figure 1

Here is a sample run:

Main> sort4 (23, 12, -1, 2)

Value: (-1,2,12,23)

Trace:

Unit 1: pass: (23,12)

Unit 2: swap: (-1,2)

Unit 3: pass: (23,2)

Unit 4: pass: (12,-1)

Unit 5: swap: (2,12)

A quick look at the trace reveals that it is consistent with the operation of the network for this input.

In the definition of sort4, we carefully selected the execution order of the units such that all values were
available before they were used. What if it was inconvenient to arrange for this? In our example, for instance,
what if we want to observe the action of unit 3 after unit 5 in the sorting network problem? Notice that
unit 5 uses the value i, which is produced by unit 3. Ideally, we would like to be able to change the function
sort4 to:
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sort4 (a, b, c, d) =

do (e, f) <- comp 1 (a, b) -- unit 1

(g, h) <- comp 2 (c, d) -- unit 2

(j, k) <- comp 4 (f, h) -- unit 4

(m, l) <- comp 5 (i, j) -- unit 5

(n, i) <- comp 3 (e, g) -- unit 3

return (k, l, m, n)

That is, we replace the lines corresponding to units 3 and 5. Although this is the most intuitive thing to do,
it is no longer valid in Haskell. The problem is that the variable i is not in scope when it’s used.

How should we fix this? Obviously, in this simple case, the easiest solution would be to postprocess the
output of the original circuit to obtain the required ordering. But this is not a very satisfactory solution in
general. In particular, the failed attempt of reordering lines in the do-expression is very appealing. After
all, the value that is computed by sort4 (i.e. the quadruple representing the sorted permutation) doesn’t
depend on which order we observe the output. The attempt would have been successful, if only we had a
way to bind variables recursively.

2.2 Resettable counter

The previous example didn’t absolutely require recursive bindings because the values bound by the do-
notation could be sequentially defined. This is not always the case. Our second example comes from
the hardware-modeling domain. Microarchitectural design languages have been the target of programming
language research in recent years because of the complexity of such designs. Lava [1] and Hawk [10, 15] are
two recent systems designed to address this need. Lava uses monads intensively in modeling various circuit
elements, and originally, Hawk used a similar monad-based approach as well. This approach is very flexible
in translating specifications to VHDL or Verilog descriptions that could be used in producing real circuits.
By just “plugging-in” the appropriate monad, the very same description can be used in simulation or in
obtaining descriptions of the circuit in other languages. But this comes at a certain cost, as we explore here.

zero

inc
DELAY 0

0

+1

out

next

MUX

reset

Figure 3: Resettable counter circuit

Hawk uses lazy lists to model signals flowing through circuits. The early monad-based implementation of
Hawk used a Circuit monad, which is basically a combination of the state and output monads. Without
going into details, we consider the circuit of Figure 3 as modeled in Hawk. Using the Circuit monad, we
would like to model this circuit by:

counter :: Signal Bool -> Circuit (Signal Int)

counter reset = do next <- delay 0 inc

inc <- lift1 (+1) out

out <- mux reset zero next

zero <- lift0 0

return out
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Notice that the description follows the circuit almost literally, but again, the program presented is not
valid Haskell. The variables inc, out and zero are used before they are defined. Furthermore, because the
definitions are cyclic, there is no way to serialize this program. The feedback present in the circuit causes
the problem. Again, we need to be able to bind variables recursively in the do-notation. This problem is the
main reason why the current implementation of Hawk does not use explicit monadic style.

3 Recursive bindings for the do-notation

Currently, a do-expression in Haskell behaves like the let* of Scheme: the bound variables are available only
in the textually following expressions. We need the do-notation to behave more like the let of Haskell, which
allow recursive bindings. Of course, it is not necessarily the case that all monads will allow for such recursive
bindings. We call a monad recursive, if there is a “sensible” way to allow for this kind of recursion. We
codify what “sensible” should mean in Section 4. In this section, we look at a syntactic extension to Haskell
that allows recursive bindings in the do-notation. This extension is a variant of the do-notation, called the
µdo-notation. Just like the do-notation is available for any monad, the µdo-notation will be automatically
available for any recursive-monad.

3.1 µdo: The details

Recall that a do-expression is translated into a series of applications of �= [9]. Similarly, we need µdo
to translate into more primitive components. We use a fixed-point operator, called mfix, whose type is
∀a. (a→ m a)→ m a, where m is the underlying monad. The translation is:

mfix (λ~BV . do p1 ← e1

µdo p1 ← e1 ...

... =⇒ pn ← en

pn ← en v ← e
e return BV )

�= λ BV . return v

where BV stands for the k-tuple consisting of all the variables occurring in all the binding patterns plus
the brand new variable v. Notice that each one of p1 . . . pn, the binding patterns, can be any valid Haskell
pattern, not just simple variables. The variables that are bound by these patterns may appear anywhere in
e1 . . . en and e. A variable may not be multiply bound: neither in the same pattern, nor in different patterns.

As an example, consider the following µdo expression, which implements a sorting network for three numbers:

mdo (d, e) <- comp 1 (a, b)

(i, h) <- comp 3 (d, f)

(f, g) <- comp 2 (e, c)

return (g, h, i)

After the translation, it becomes:

mfix (\~(d, e, i, h, f, g, v) ->

do (d, e) <- comp 1 (a, b)

(i, h) <- comp 3 (d, f)

(f, g) <- comp 2 (e, c)

v <- return (g, h, i)

return (d, e, i, h, f, g, v))

>>= \(d, e, i, h, f, g, v) -> return v
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The instance of mfix used in the translation is automatically deduced by the Haskell type system to be the
instance at the output monad.

Although the translation of µdo using do is similar to the translation of letrec using let, there is a difference:
languages such as Haskell provide a generic definition of fix that works for all types. But there seems to be no
appropriate generic definition of mfix that will work for all monads. Instead, we have to find an appropriate
definition of mfix for each monad. To achieve some level of of uniformity, we stipulate some axioms that
mfix must satisfy, and attempt to discover satisfactory definitions for each of the monads. We say that a
monad is recursive when there is a definition of mfix satisfying our axioms. A µdo-expression is well-typed
if the underlying monad is recursive and the translation is well-typed.

3.2 Repeated pattern variables and let bindings

In the translation of the µdo-notation, we explicitly prohibited a variable from being repeated in different
patterns (repetition within the same pattern is disallowed following the usual Haskell convention). In the
do-notation, a repeated variable has nothing to do with its previous binding: a new binding using the same
name shadows the earlier one. If we allow repetitions in the µdo-notation, however, the translation would not
treat them as independent. Furthermore, a repeated variable might change its type in the do-notation, but
this will fail to type check for the µdo-notation. More importantly, one might expect that repeated variables
will provide a way of constraining the values that they might take in the µdo-notation, which is not what
the translation implies. Hence, even if the translation goes through, this might lead to misunderstandings.1

Allowing let bindings in the µdo-notation is another issue. In the do-notation, let bindings allow giving
names to non-monadic computations in a convenient manner. Can we allow them in the µdo-notation as
well? An obvious extension is to treat them as recursive bindings that are valid throughout the whole body,
suggesting the following translation:

mfix (λ ˜BV . do ...1...

µdo ...1... let p1 = e1

let p1 = e1 ...

... =⇒ pn = en

pn = en ...2...

...2... v ← e
e return BV )

�= λ BV. return v

The translation is similar to what we had before, except now the variables bound in p1 . . . pn appear in BV
as well. However, this poses some problems. In Haskell, let bound variables are polymorphic, while λ bound
ones are monomorphic. This implies that the variables bound in p1 . . . pn are monomorphic in the code block
marked by ...1... but polymorphic in e1 . . . eN , ...2... and in e. This is not a desirable situation. As a
concrete example consider the following translation:

mfix (\(~(z, y, f, v)) ->

mdo do z <- return (f 2)

z <- return (f 2) y <- return (f ’a’)

y <- return (f ’a’) let f x = x

let f x = x ===> v <- return ()

return () return (z, y, f, v))

>>= \(z, y, f, v) -> return v

1In a similar vein, it can be argued that the usual do-notation should not allow repetitions either. List comprehensions
become especially horrible: f x = [x | x <- [x..4], x <- [x..8]] is a confusing (yet legal) Haskell function.
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The translation fails to type check for obvious reasons: The function f is no longer polymorphic.

The solution we adopt is to require let bindings to be monomorphic in a µdo. That is, let becomes just a
syntactic sugar within µdo, translated as:2

let p1 = e1 p1 ← return e1

... =⇒ ...

pn = en pn ← return en

This gives us a uniform design. If a polymorphic value definition is required, one should use the standard
let expressions of Haskell, rather than the let generator, which will create its own scope with poymorphic
names. The translation and the related issues are detailed in [4].

3.3 Implementation

We have a straightforward implementation available obtained by modifying the source code for the Hugs
system.3 This implementation acts as a preprocessor, i.e. it performs the translation at the source level, and
hence the amount of changes required in the Hugs source code is fairly small. We expect the same to hold
when the translation is done inside the compiler. The required changes will be localized to type checking
and desugaring routines.

The related class declaration for recursive monads is:

class Monad m => MonadRec m where

mfix :: (a -> m a) -> m a

In this simple implementation, occurrences of let expressions are translated blindly, without requiring them
to be monomorphic.

4 Recursive monads

The previous section addressed syntax. Now we turn to the meat of the issue and study mfix directly. We
start by looking for a generic mfix.

4.1 The generic mfix

The fixed point operator, fix, which has type ∀a. (a → a) → a, has a generic definition that works for all
cases.4 For a lazy language like Haskell, the definition is just:

fix :: (a -> a) -> a

fix f = f (fix f)

2This extends to functions as well, basically let f x y = z will become f <- return (\x y -> z).
3More information and downloading instructions are available online at URL: http://www.cse.ogi.edu/PacSoft/projects/

muHugs.
4Technically, the underlying type needs to be a pointed CPO, but this requirement is vacuously satisfied in Haskell as all

types are pointed, i.e. non-termination can happen at any type.

7



Is there a generic definition for mfix as well? Inspired by the generic definition of fix, we consider the
following (equivalent) definitions for mfix:

mfix :: Monad m => (a -> m a) -> m a

mfix f = mfix f >>= f

mfix f = do { x <- mfix f; f x }

mfix f = fix (join . map f)

Unfortunately, this definition is simply not appropriate. To see why not, we should specify what sort of
properties we want mfix to have. First of all, we would expect a constant function, one that ignores its
argument and always returns the same result, should have that result as its fixed point. This certainly holds
for fix. We illustrate that this property does not hold for the Maybe monad with this definition. Here is the
simplest test:

Main> mfix (const (Just 3))

ERROR: Control stack overflow

It is not hard to see why this definition fails to satisfy the required property: Consider the third version
of the attempted definition. Since both join and map f are strict, so is their composition: Since the least
fixed-point of any strict function is ⊥, the result is ⊥ as well.

Looking closely at the default definition, we see the following: To compute the mfix of a function of type
a→ m a, we first construct a function m a→ m a5, and then compute the usual fixed-point of it. In other
words, the fixed-point is computed not only for the values that the monad manipulates, but also for the
effects of the execution that the monad generates.

Now, recalling the original intuition behind µdo-notation, we see that this is not what we wanted. We want
the fixed-point computation to take place only on the values manipulated by the monad, while the effects
and other computations remain untouched.

4.2 Axiomatizing mfix

So far, we have been using phrases like “a suitable definition of mfix” somewhat loosely. The time has come
to make “suitable” precise. We give three axioms that mfix must satisfy, summarized in Figure 4.

mfix (return · h) = return (fix h) (1)

mfix (λx.a�= f x) = a�= λy.mfix (λx.f x y) (2)

mfix (λ˜(x, ).mfix (λ˜( , y).f (x, y))) = mfix f (3)

Figure 4: Axioms for mfix. In axiom 2, x is not free in a.

Axiom 1 is about pure computations:

mfix (return · h) = return (fix h)

If the actual computation takes place in the pure world and the result is lifted using return, the fixed-point
should be the fixed-point in the pure world lifted into the monad. Figure 5 is a pictorial representation of
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=return
h

return
h

Figure 5: Interpreting axiom 1

this axiom. The dashed box represents where the mfix computation takes place. In this figure, the loop on
the right hand side represents fix, while the one on the left corresponds to mfix. The thin line represents the
value being processed through the computation. The thick line in the lower part of the diagram represents
the computational effect (side effects, other changes in the monadic data, etc.) The fixed-point is computed
only over the value part.

Axiom 2 shows how to pull a term that doesn’t contribute to the fixed-point computation from the left-
hand-side of a �=, provided x does not appear free in a:

mfix (λx.a�= f x) = a�= λy.mfix (λx.f x y)

Notice that the value of a is constant throughout the computation. Hence, we should be able to compute
it only once (if need be) and put it into the fixed-point loop. Figure 6 is a pictorial representation of this
axiom. Notice that both hand sides of the diagram are essentially the same.

=y

x

y

x

a
f

a
f

Figure 6: Interpreting axiom 2

Axiom 3, depicted in Figure 7, states a useful fact about fixed-point computations involving more than one
variable:

mfix (λ˜(x, ).mfix (λ˜( , y).f (x, y))) = mfix f

The function f has type: ∀a, b. (a, b) → m (a, b). On the right hand side, we compute the fixed point
simultaneously over both variables. On the left hand side, we perform a two step computation, where the
fixed-point is computed using only one variable at a time.

=f f
y
x

y
x

Figure 7: Interpreting axiom 3

5This is the so-called extension of a function from values to computations to a function from computations to computations,
see [16].
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This axiom corresponds to Bekić’s theorem for the usual fixed-point computations [21]. Notice that, again,
both hand sides of Figure 7 are essentially the same. It can be shown that the symmetric law:

mfix (λ˜( , y).mfix (λ˜(x, ).f (x, y))) = mfix f

holds whenever equation 3 does.

Now, we can precisely define what it means for a monad to be recursive:

Definition 4.1 Recursive Monads. A monad m is recursive if there is a function mfix :: ∀a.(a → m a) →
m a satisfying the mfix axioms.

4.3 Derived equivalences

A direct corollary to first two mfix axioms guarantees an expected property of constant functions:

Corollary 4.2 mfix (λx.a) = a, provided x does not appear free in a.

We also have:

Corollary 4.3 f ⊥ v mfix f

Notice that the Corollary 4.3 states more than a rudimentary fact: f ⊥ yields valuable information on the
structure of the fixed-point. (For instance, if f :: a → [a], and if f ⊥ is a cons-cell, then so is mfix f . In
particular, if f ⊥ is a finite list of length k, then the length of its fixed-point is k as well.)

Furthermore, the polymorphic nature of mfix provides further properties. By the parametricity theorem [19],
we have:

Theorem 4.4 ∀s : A→ B, f : A→ m A, g : B → m B, if g·s = map s·f then map s (mfixA f) = mfixB g,
provided s is strict.

As specific instances of this theorem, we obtain the following two corollaries:

Corollary 4.5 The following equation holds for any recursive-monad:

mfix (λ˜(x, y).f y �= return · sp h id) = mfix f �= return · sp h id (4)

where
sp h g z = strict (λz.(h z, g z)) z

Ignoring the strictness requirement on sp, equation 4 becomes:

mfix (λ˜(x, y).f y �= λz.return (h z, z)) = mfix f �= return (h z, z) (5)

The function f only refers to y and it is fed back exactly its own result. However, the fixed-point value also
gets acted upon by a pure function h, whose result is ignored by f . (The symmetric case when h acts on
the second component of the pair while f uses only the first component holds as well.) This equation is
important because it tells us that “pure” computations that do not interfere with the fixed point computation
can be performed afterwards. Figure 8 depicts the situation. The strictness requirement on sp seems to be
an unfortunate artifact of theorem 4.4; all monads that we have worked on satisfy equation 5 with no side
conditions. (Unfortunately, in a framework where every type has a ⊥ element, the parametricity theorem is
weakened by the strictness requirement [11].)

Finally, we can move pure computations around:
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Figure 8: Interpreting equation 4

Corollary 4.6 Provided h is strict, the following equation holds for any recursive-monad:

mfix (λx.f x�= return · h) = mfix (λx.return (h x)�= f)�= return · h (6)

where f :: a→ m b and h : b→ a. Equivalently:

mfix (map h · f) = map h (mfix (f · h))

Figure 9 depicts the situation. The purity requirement on h is essential: we cannot reorder any effects,
as order does matter in performing them. The strictness requirement on h is quite important as well.

f
h h

f
h

Figure 9: Interpreting equation 6

zx

y z 

z

ww x

f g f g

Figure 10: Interpreting equation 7

Intuitively, the fixed-point computation on the lhs will start of by feeding ⊥ to f , while the computation
on the rhs will start of by feeding h ⊥. Unless h ⊥ = ⊥, this will provide more information to f on the
rhs. Hence, we might get a ⊥ on the lhs, while a non-⊥ value on the right. (We will see an example in
Section 6.2.) However, there are monads for which the equality holds even when h is non-strict. The state
monad is such an example (Section 6.4).

The inspiration for Corollary 4.6 comes from a a very well known law for the ordinary fixed-point computa-
tions. We have:

fix (f · g) = f (fix (g · f))

One can see the correspondence more clearly by using Kleisli composition, defined as: f ♦ g = λx.f x�= g,
where x does not occur free in f or g. Now, equation 6 becomes (♦ binds less tightly than ·):

mfix (f ♦ return · h) = mfix (return · h ♦ f)�= return · h
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4.4 Shrinking from right

Corollary 4.5 states exactly when we are allowed to pull a pure computation out from the right-hand-side
of a �=. Can we pull out impure computations as well? Consider Figure 10 which depicts the case when
g is allowed to make computational effects. Since the value produced by g is ignored in the fixed-point
computation, one might expect pulling g out of the loop wouldn’t change the value of the computation.
Indeed, our early axiomatization stipulated this property. However, it turns out that the equality is too
strong for many monads. A problem arises because the monadic part of the computation in g might interfere
with the fixed-point computation, possibly changing the termination behavior. Therefore, the best we could
hope for is an inequality in the general case, that is:

mfix (λ˜(x, y).f x�= λz.g z �= λw.return (z, w)) v mfix f �= λz.g z �= λw.return (z, w) (7)

We will note the examples in which the equality holds or fails in Section 6.

4.5 A reflection on mfix axioms

We have tried to axiomatize how recursion over the values of monadic actions should behave. All three axioms
emerge from our intuitions for recursive monadic computations. At this point, however, our approach is more
definitive than explanatory in its nature, and we have felt free to work within the standard model for Haskell
in which all the CPO’s possess a ⊥ element.

The extent to which our axiomatization is successful will be determined by practice. Our axioms could be
deemed appropriate if they rule out useless definitions of mfix and admit only those that are meaningful
in practice. Notice that we do not require a unique definition of mfix (if any) for a given monad: different
applications using the same monad conceivably might benefit from different definitions of mfix. Our concern
is in trying to specify the common core of monadic fixed-point computations. The major points are:

• The fixed-point computation should be performed only over the values.

• Effects of monadic functions should neither be duplicated nor lost in a fixed-point computation. The
usual laws of “demand driven” evaluation and the structure of the underlying monad will determine
when, if ever, these effects will be performed.

• In the case when recursive bindings are not present, a µdo-expression should behave exactly like a
do-expression.

Our axioms try to capture these points formally. Some monads might, of course, satisfy more laws (such as
shrinking from right), and users might exploit these facts in programs. On the other hand, we believe that
our axiomatization captures the minimal common core that should be satisfied by any monad in order to
perform recursive computations over the results of monadic actions.

5 Embedding monads

Whenever we want to establish that a monad is recursive, we need to prove that the axioms are satisfied by
the proposed definition of mfix. In practice, we have found ourselves repeating essentially the same proof for
many different monads. Recursive-monad embeddings lets us eliminate much of the duplicated work. We
first recall the definition of monad-homomorphisms and embeddings:
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Definition 5.1 Monad homomorphisms and embeddings. Let (m, returnm,�=m) and (n, returnn,�=n)
be two monads. A monad homomorphism, ε : m → n, is a family of functions (one for each type a,
εa : m a→ n a) such that:

ε · returnm = returnn (8)

εb (p�=m h) = εa p�=n εb · h (9)

where p : m a and h : a→ m b. An embedding is a monic (i.e. injective) monad-homomorphism.

We extend the definition to cover the recursive case:

Definition 5.2 Recursive-monad homomorphisms and embeddings. Let m and n be two recursive-monads
and let ε : m→ n be a monad homomorphism. We call ε a recursive-monad homomorphism if it also satisfies:

ε (mfixmh) = mfixn (ε · h) (10)

Similarly, a recursive-monad embedding is a monic recursive-monad homomorphism.

We will see concrete examples of recursive-monad embeddings in the next section.

Theorem 5.3 Let ε : m→ n be an embedding of a monad m into a recursive-monad n. To conclude that
m is recursive, it’s sufficient to show that there exists a function mfixm such that ε is a recursive-monad
embedding.

The proof is by simple equational reasoning. We also note that equations 4, 6 and 7 are preserved through
monad-embeddings as well. Furthermore, composition of two embeddings is still an embedding.

This theorem not only provides a method for obtaining proofs for mfix axioms automatically for certain
monads, but it also provides additional assurance that the axioms represent characteristic properties of
monadic fixed-points.

6 A catalogue of recursive-monads

In this section we examine a number of monads that are frequently used in programming.

6.1 Identity

The identity monad is the monad of pure values. The Haskell declaration is:

newtype Id a = Id { unId :: a }

instance Monad Id where

return x = Id x

Id x >>= f = f x

instance MonadRec Id where

mfix f = fix (f . unId)

Notice that we use a newtype declaration rather than a data. This choice is not arbitrary. Since all Haskell
data types are lifted (i.e. ⊥ and Id ⊥ are different), we would introduce an unwanted element if we had
used data. It is a simple matter to check that mfix axioms are satisfied. One particular way of doing so is
by embedding the Id monad into another recursive-monad, for instance the State monad (Section 6.4). In
addition, equation 5 is satisfied, equation 6 holds even if h is non-strict, and equation 7 holds as an equality.
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6.2 Maybe

The Maybe monad, the monad of exceptions, has the following MonadRec declaration:

instance MonadRec Maybe where

mfix f = fix (f . unJust)

where unJust (Just x) = x

The proof that the Maybe monad is recursive follows from the fact that it can be embedded into the List

monad, as described in Section 5. Before studying the List monad, we state a lemma classifying mfix of
functions for the Maybe monad.

Lemma 6.1 The Maybe instance of mfix satisfies (J abbreviates Just, N abbreviates Nothing):

mfix f = ⊥ ←→ f ⊥ = ⊥

mfix f = N ←→ f ⊥ = N

mfix f = J ⊥ ←→ f ⊥ = J ⊥

unJust (mfix f) = fix (unJust · f)

The first three equivalences exactly determine when the fixed-point is ⊥, Nothing or Just ⊥. The last
equality is a consequence of the definition of mfix. An implication of these equations is that mfix of a
function f of type a→ Maybe a is f ⊥, whenever a is a flat domain.

Equation 5 will hold for the Maybe monad, but a strict h is needed for equation 6. Consider the following
example:

f :: [Int] -> Maybe [Int]

f (x:_) = Just [x]

h :: [Int] -> [Int]

h xs = 1:xs

On the lhs, we get ⊥, while rhs yields Just [1, 1]. This is due to the fact that f performs a case analysis
to see if its argument is a non-empty list. When the fixed-point computation starts, f first receives ⊥ as
the argument and produces ⊥. Since �= for the Maybe monad is strict in its first argument, the whole
computation fails. On the rhs, however, f first receives 1 : ⊥, and produces Just [1], and the computation
proceeds.

Similarly, we revisit equation 7 of Section 4.4 in the context of the Maybe monad. Consider the following
example:

f :: [Int] -> Maybe [Int]

f xs = Just (1:xs)

g :: [Int] -> Maybe Int

g [x] = Nothing

g _ = Nothing
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For this example, lhs of equation 7 yields ⊥, while the rhs yields Nothing. Looking closely, we see that
the right hand side first produces the fixed point of f , which is the infinite list [1 . . .]. Then, outside the
mfix loop, g ignores this value and returns Nothing. Within the mfix loop, the fixed-point is constructed
as the limit of the chain: {⊥, 1 : ⊥, 1 : 1 : ⊥, . . .}. When we look at the left hand side, we see a different
situation. The function g acts on each value in this chain, and it yields ⊥ for the second element. (Matching
1 : ⊥ against [x] leads to nontermination.) Now, the fixed point is computed over and over starting from ⊥,
yielding ⊥ as the result. In general, the Maybe monad will satisfy property 7 as an inequality. If we look
more closely, we see that the problem lies within the fact that �= for the Maybe monad is strict in its first
argument, resulting in the failure. Unfortunately, there is no way to alleviate this problem. We conclude
that this equation can not be satisfied as long as the �= of the monad is strict in its first argument. This
requirement practically rules out any datatype that has more than one constructor from satisfying property 7
as an equality.

6.3 List

Apart from List’s normal use as a convenient data structure, it is also used as a monad for capturing
backtracking computations. The MonadRec declaration is:

instance MonadRec [] where

mfix f = case fix (f . head) of

[] -> []

(x:_) -> x : mfix (tail . f)

The intuition behind this definition of mfix is the following: For a function of type a→ [a], the fixed point is
of type [a], i.e. it’s a list. Each element of this fixed-point should be the fixed point of the function restricted
to that particular position. That is, the ith entry of the fixed point of a function with type a → [a], say f ,
should be the fixed point of the function: head · taili · f . In other words,

mfix (λx.[h1 x, . . . , hn x]) = [fix h1, . . . , fix hn]

or, more generally:
mfix f = fix (head · f) : mfix (tail · f)

This definition would work well if the fixed-point were an infinite list. However, it fails to capture the finite
case. Notice that we are computing the fixed points of the functions of the form head · f . If f ever returns
[], we want to stop the computation, rather than taking the head (which will yield ⊥). Hence, recalling
that

fix (head · f) = head (fix (f · head))

we can compute the fixed points of the functions of the form f ·head (whose results will be a lists), and stop
when we get an empty list. Putting these ideas together, we arrive at the definition we have given above.

Analogous to Lemma 6.1, we have:

Lemma 6.2 The List instance of mfix satisfies:

mfix f = ⊥ ←→ f ⊥ = ⊥

mfix f = [ ] ←→ f ⊥ = [ ]

mfix f = [⊥] ←→ f ⊥ = [⊥]

head (mfix f) = fix (head · f)

tail (mfix f) = mfix (tail · f)

mfix (λx.f x : g x) = fix f : mfix g

mfix (λx.f x ++ g x) = mfix f ++ mfix g
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The first two equivalences imply that when f ⊥ is a cons-cell (i.e. of the form (x : xs)), then mfix f is also
a cons-cell. Using this lemma, proving that mfix axioms hold is a tedious but straightforward exercise.

The embedding of the Maybe monad into the List monad simply takes Nothing to [] and Just x to [x].
By theorem 5.3, we do not expect the List monad to satisfy equation 6 when h is non-strict and equation 7
as an equality since we know that the Maybe monad does not have these properties. In deed, it is possible to
construct counterexamples for the List monad as well. Equation 5, on the other hand, holds for the List

monad.

We can finally solve the puzzle posed in the introduction. First, using our intuition for the List monad and
recursive bindings, we try to derive the solution. It is well known that the do-notation and the usual list
comprehensions of Haskell coincide for the List monad. Hence, we can think of the puzzle as the following
list comprehension:

[x+y | (x, z) <- [(y, 1), (y^2, 2), (y^3, 3)],

Just y <- map isEven [z+1 .. 2*z]]

Notice that this list comprehension is still not valid Haskell: The variable y is used before its value is
generated. Nevertheless, we apply the usual rules for decomposing list comprehensions [20]. We obtain:

concat [ [x+y | Just y <- map isEven [z+1 .. 2*z]]

| (x, z) <- [(y, 1), (y^2, 2), (y^3, 3)] ]

Notice that we have a nested comprehension now. At this point, we can expand the outer comprehension for
each assignment to (x, z). This step is where we use our intuition for the recursive bindings for interpreting
the free variable y: We substitute it for x symbolically. This yields:

concat [ [y +y | Just y <- map isEven [2 .. 2]],

[y^2+y | Just y <- map isEven [3 .. 4]],

[y^3+y | Just y <- map isEven [4 .. 6]] ]

Now, routine calculations yield: [4, 20, 68, 222].

When we run the puzzle using the µdo modifed version of Hugs (after replacing the keyword do with mdo),
we get exactly the same answer.

6.4 State

The State monad is used to capture computations that involve mutable variables [12, 13]. Here are the
definitions:

newtype State s a = ST { unST :: (s -> (a, s)) }

instance Monad (State s) where

return x = ST (\s -> (x, s))

ST f >>= g = ST (\s -> let (a, s’) = f s

in unST (g a) s’)

instance MonadRec (State s) where

mfix f = ST (\s -> let (a, s’) = unST (f a) s

in (a, s’))
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Without tags, the definition of mfix is simply:

mfix f = λs.let (a, s′) = f a s in (a, s′)

The State monad satisfies all mfix axioms, hence it is recursive. The definition of mfix clearly shows that
the fixed-point computation is performed only on values, not on the other parts of the monad. Furthermore,
equation 5 holds, equation 6 does not require a strict h and equation 7 is satisfied as an equality.

6.5 State with exceptions

Often the computations that have side effects fail to yield a value. This concept is generally modeled with
a combination of the state and exception monads. In this section we look at two examples.

The first version considers the case when neither a value nor an updated state is available after a computation.
The declarations are (again, we drop explicit tags):

newtype STE s a = s -> Maybe (a, s)

instance Monad (STE s) where

return x = \s -> Just (x, s)

f >>= g = \s -> case f s of

Nothing -> Nothing

Just (a, s’) -> g a s’

instance MonadRec (STE s) where

mfix f = \s -> let a = f b s

b = fst (unJust a)

in a

Now we consider when the computation might fail but an updated state is still available. The declarations
are:

newtype STE2 s a = s -> (Maybe a, s)

instance Monad (STE2 s) where

return x = \s -> (Just x, s)

f >>= g = \s -> case f s of

(Nothing, s’) -> (Nothing, s’)

(Just a, s’) -> g a s’

instance MonadRec (STE2 s) where

mfix f = \s -> let a = f b s

b = unJust (fst a)

in a

In both cases, the computation of the fixed-point is similar to those of State and Maybe monads. We equate
the value part of the result with the input to the function. Notice the symmetry between the definitions and
the newtype declarations.

It turns out both of these monads are recursive. However, they require strict h for satisfying equation 6 and
they don’t satisfy equation 7 as an equality. This is hardly surprising since the Maybe monad behaves like
this as well. As with all other cases, both monads satisfy equation 5.
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6.6 Other monads

We take a brief look at a couple of other monads without going into much detail. The Reader (or environment)
monad is a version of the State monad where we only read the state without ever changing it [8]. The obvious
embedding into the State monad suffices to prove that the Reader monad is recursive. In fact, the work
on implicit parameters [14] provides an implicit recursive Reader monad in Haskell where the usual let
construct expresses recursive computations, (implicit parameters provide the mechanism for accessing values
within the monad).

The output monad, as described in Section 2.1, is recursive also. It also embeds into the State monad. The
definition of mfix is:

instance MonadRec Out where

mfix f = fix (f . unOut)

where unOut (Out (a, _)) = a

The Tree monad [8] is recursive. The definition of mfix closely mimics that of the List monad. Unlike
lists, however, these trees are never empty and hence the List monad cannot be embedded into them. It is,
however, not clear what sort of applications can benefit from recursive bindings for the Tree monad.

Two other recursive-monads that are very well known in the Haskell community are the internal input/output
(IO) and state (ST) monads. The library functions fixIO and fixST correspond to our mfix for the IO and ST

monads, respectively. These monads are “internal” in the sense that, unlike others, their implementations
use destructive updates and hence need to be defined as primitives. This prevents us from constructing
explicit proofs, but the Haskell folklore suggests that they indeed satisfy our axioms.

The continuation monad continues to cause us grief. We have been unable to produce a viable definition for
mfix in this case. Furthermore, in the Scheme case—when state and continuations coexist—the standard
definition of letrec (Scheme’s equivalent of mfix) seems to lack the appropriate uniformity properties implied
by axiom 2 and property 7.

7 An Example: Doubly linked circular lists

In this section, we give a hands-on example of using monadic recursive bindings. We will create a doubly
linked circular list which can be traversed forwards or backwards. At each node, we will store a flag indicating
whether the node has been visited before. Since this flag needs to be mutable, we will use the internal IO
monad to get access to the required reference cells. Obviously, this example can be generalized to any
problem where we have interlinked stateful objects with possibly cyclic dependencies.

We first import the MonadRec and IOExts libraries. The first one declares the MonadRec class. The IOExts

library provides fixIO, as discussed above, along with functions to create and manipulate mutable variables:

> import MonadRec

> import IOExts

The MonadRec declaration for IO is trivial:

> instance MonadRec IO where

> mfix = fixIO
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By this declaration, the µdo-notation becomes available for the IO monad. Each node in our list will have a
mutable boolean value indicating whether it has been visited, left and right nodes and a single integer value
for the data:

> data N = N (IORef Bool, N, Int, N)

To create a new node with value i in between the nodes b and f, we use the function newNode:

> newNode :: N -> Int -> N -> IO N

> newNode b i f = do v <- newIORef False

> return (N (v, b, i, f))

Notice that the visited flag is set to False. We will use this function to create the following structure:

1 2 3

ll

0

Here’s the code for it:

> ll = mdo n0 <- newNode n3 0 n1

> n1 <- newNode n0 1 n2

> n2 <- newNode n1 2 n3

> n3 <- newNode n2 3 n0

> return n0

The use of µdo is essential: the cyclic nature of the construction is not expressible using an ordinary do-
expression. We can test our implementation with a traversal function:

> data Dir = F | B deriving Eq

>

> traverse :: Dir -> N -> IO [Int]

> traverse d (N (v, b, i, f)) =

> do visited <- readIORef v

> if visited

> then return []

> else do writeIORef v True

> let next = if d == F then f else b

> is <- traverse d next

> return (i:is)

Here’s a sample run:

Main> ll >>= traverse F >>= print

[0,1,2,3]

Main> ll >>= traverse B >>= print

[0,3,2,1]
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The inverse function that takes a non-empty list and constructs a doubly linked circular list out of its
elements illustrates the use of µdo further:

> l2dll :: [Int] -> IO N

> l2dll (x:xs) = mdo c <- newNode l x f

> (f, l) <- l2dll’ c xs

> return c

>

> l2dll’ :: N -> [Int] -> IO (N, N)

> l2dll’ p [] = return (p, p)

> l2dll’ p (x:xs) = mdo c <- newNode p x f

> (f, l) <- l2dll’ c xs

> return (c, l)

Note in particular the essential use of µdo in the construction of the linked list.

8 Related work

There is a major line of research that attempts to characterize fixed points in general [3, 6, 18]. This work
has only a passing relevance to the work here. Haskell already has one brand of monadic fixed points—those
obtained when writing recursive monadic functions by using Haskell’s built in recursion—and these are the
fixed points picked out by this general work. As we indicated in Section 4.1, this generic fixed point is not
able to achieve recursive bindings in the way we want. Instead, we have had to describe a value-recursion
that does not repeat the monadic effect.

Much greater similarity to our work is found in O’Haskell, which is is a concurrent, object oriented ex-
tension of Haskell designed for addressing issues in reactive functional programming [17]. One application
of O’Haskell is in programming layered network protocols. Each layer interacts with its predecessor and
successor by receiving and passing information in both directions. In order to connect two protocols that
have mutual dependencies, one needs a recursive knot-tying operation. Since O’Haskell objects are monadic,
recursive monads are employed in establishing connections between objects. O’Haskell adds a keyword fix

to the do-notation whose translation is a simplified version of ours. The O’Haskell work, however, does not
try to axiomatize or generalize the idea any further.

Although we limited our attention to monadic computations, recursion makes sense in the more general
setting of arrows as well [7]. Recently, Ross Paterson axiomatized arrowFix, the arrow version of mfix,
which turns out to be quite similar to our formulation. He echoes aspects of Hasegawa’s work in traced
monoidal categories that provides a general framework for recursion and cyclic sharing [6]. Again, because
a different notion of fixed point is required, Paterson has to relax some of Hasagawa’s axioms, and replace
others completely. (Unfortunately, Paterson’s work is not published yet.)

Recent work by Friedman and Sabry tries to address the problem from a different angle [5]. Rather than an
axiomatization, their work suggests combining monads with a state monad and performing a generic recursion
computation in this combined world. The semantics of recursion is then defined by this implementation.
Since the recursion is performed in the combined monad, it is the users responsibility to translate original
problems and values to and from this combined world.

A more detailed treatment of the translation of µdo-expressions appears in a companion implementation pa-
per [4]. The web page http://www.cse.ogi.edu/PacSoft/projects/muHugs contains the software, papers
and other research material related to this work.
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9 Conclusions

Monads play an important role in functional programming by providing a clean methodology for expressing
computational effects. Monadic computations use a certain sublanguage shaped by the functions that act on
monadic objects. Haskell makes this approach quite convenient by providing the do-notation. A shortcoming,
however, is that recursion over the results of monadic actions can not be conveniently expressed. Furthermore,
it is not clear how to perform recursion on values in the presence of effects. In order to alleviate this problem,
we have axiomatized monadic fix and implemented an extension to the do-notation, which can be used in
expressing such recursive computations in a natural way. We expect that many applications can benefit from
this work, as monads become more pervasive in functional programming.

Even though we have proposed a separate µdo construct, we believe that the usual do-expression of Haskell
should be extended to capture this new style of programming. That is, there should not be a separate µdo
keyword, but rather the compiler should analyze do-expressions to see if recursive bindings are employed,
performing the translations as appropriate. An ambitious compiler may also perform simplifications based
on the mfix axioms.
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Appendices

In this appendix, we provide the proofs of the claims we have made, along with other technical details.

A Corollary 4.2

Corollary Provided x does not appear free in a, mfix (λx.a) = a.

Proof

mfix (λx.a)
= mfix (λx.a�= λy.return y) {f �= return = f}
= a�= λy.mfix (λx.return y) {axiom 2}
= a�= λy.mfix (λx.(return · const y) x) {const y x = y}
= a�= λy.mfix (return · const y) {eta-conversion}
= a�= λy.return (fix (const y)) {axiom 1}
= a�= λy.return y {fix · const = id}
= a {f �= return = f}�

B Corollary 4.3

Corollary f ⊥ v mfix f

Proof Notice that
(λx.f ⊥) v f

For any argument x, lhs yields f ⊥ while the rhs yields f x, satisfying the inequality trivially by the
monotonicity of f . Since mfix is monotonic, we have:

mfix (λx.f ⊥) v mfix f

By the previous corollary lhs is exactly f ⊥, concluding the proof. �

C Theorem 4.4

Theorem ∀s : A → B, f : A → m A, g : B → m B, if g · s = map s · f then map s (mfixA f) = mfixB g,
provided s is strict.

Proof Recall the type of mfix: ∀X.(X → mX) → mX, where m is a recursive-monad. We derive the
free theorem as follows: By parametricity: (mfix, mfix) ∈ ∀X .(X → mX ) → mX . This implies that, for all
relations s : A ⇔ B, (mfixA, mfixB) ∈ (s → m s) → m s. As usual, we will restrict to a function instance,
i.e. we’ll consider the case where s is a function of type A → B. Now, for all (f, g) ∈ s → m s, we have
(mfixA f, mfixB g) ∈ m s. Notice that f : A → m A and g : B → m B. The condition (f, g) ∈ s → m s
implies that for all (x, y) ∈ s we should have (f x, g y) ∈ m s. Since s is a function, this is the same as
saying: y = s x implies g y = map s (f x), or equivalently: g · s = map s · f . Now we look at the result:
(mfixA f, mfixB g) ∈ m s, which is equivalent to: map s (mfixA f) = mfixB g. The strictness requirement
on s arises from the statetement of the parametricity theorem; Since every type in Haskell contains ⊥, no
general remarks can be made for non-strict s. �
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D Corollary 4.5

Corollary The following equation holds for any recursive-monad:

mfix (λ˜(x, y).f y �= return · sp h id) = mfix f �= return · sp h id

where

sp h g z =

{

⊥ z = ⊥,
(h z, g z) otherwise

Proof Consider the left hand side:

mfix (λ˜(x, y).f y �= return · sp h id)
= mfix (λp.f (π2 p)�= return · sp h id) {rewrite}
= mfix (map (sp h id) · f · π2) {a�= return · f = map f a}

Similarly, right hand side transforms to: map (sp h id) (mfix f). Now, the result follows from Theorem 4.4
where s = sp h id and g = map (sp h id) · f · π2. Just notice that π2 · (sp h id) = id.

Notice that we had to define sp such that it is strict to satisfy the requirements of theorem 4.4. Unfortunately,
the definition

sp h g z = (h z, g z)

is not appropriate for the theorem. �

E Corollary 4.6

Corollary Provided h is strict, the following equation holds for any recursive-monad:

mfix (λx.f x�= return · h) = mfix (λx.return (h x)�= f)�= return · h

where f :: a→ m b and h : b→ a.

Proof It is easy to see that the lhs is equivalent to mfix (map h · f) while the rhs is equivalent to
map h (mfix (f · h)). Now, the equivalence follows from theorem 4.4, where s is h, g is map h · f , and f of
the theorem is f · h. �

F Axiom 3

Recall axiom 3:
mfix (λ˜(x, ).mfix (λ˜( , y).f (x, y))) = mfix f

We have stated that the symmetric law:

mfix (λ˜( , y).mfix (λ˜(x, ).f (x, y))) = mfix f

follows from it (and vice versa). We prove this proposition here. Before giving the proof, we make some
observations. Define ss = strict swap and notice that ss ·ss = id. Furthermore, as an instance of corollary 4.6,
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we have: map ss (mfix f) = mfix (map ss · f · ss). (We’ll refer to this equation as the mfix-swap rule below.)
Consider:

mfix (λ˜( , y).mfix (λ˜(x, ).f (x, y)))
= mfix (λt.mfix (λv.f (π1 v, π2 t))) {rewrite}
= map (ss · ss) (mfix (λt.mfix (λv.f (π1 v, π2 t)))) {ss · ss = id, map id = id}
= map ss (map ss (mfix (λt.mfix (λv.f (π1 v, π2 t))))) {map is a functor}
= map ss (mfix (map ss · (λt.mfix (λv.f (π1 v, π2 (ss t)))))) {mfix-swap and rewrite}
= map ss (mfix (map ss · (λt.mfix (λv.f (π1 v, π1 t))))) {π2 · ss = π1}
= map ss (mfix (λt.(map ss (mfix (λv.f (π1 v, π1 t)))))) {rewrite}
= map ss (mfix (λt.mfix (map ss · (λv.f (π1 v, π1 t)) · ss))) {mfix-swap}
= map ss (mfix (λt.mfix (map ss · (λv.f (π1 (ss v), π1 t))))) {rewrite}
= map ss (mfix (λt.mfix (map ss · (λv.f (π2 v, π1 t))))) {π1 · ss = π2}
= map ss (mfix (λt.mfix (λv.map ss (f (π2 v, π1 t))))) {rewrite}
= map ss (mfix (λt.mfix (λv.(map ss · f) (π2 v, π1 t)))) {rewrite}
= map ss (mfix (λt.mfix (λv.(map ss · f · ss) (π1 t, π2 v)))) {rewrite}
= map ss (mfix (map ss · f · ss)) {axiom 3}
= mfix (map ss ·map ss · f · ss · ss) {mfix-swap}
= mfix (map (ss · ss) · f) {map is a functor, ss · ss = id}
= mfix f {map id = id}

G Theorem 5.3

Theorem Let ε : m → n be an embedding of a monad m into a recursive-monad n. To conclude that
m is recursive, it’s sufficient to show that there exists a function mfixm such that ε is a recursive-monad
embedding.

Proof The proof proceeds by considering each axiom in turn. We first look at axiom 1. Consider the
expression ε (mfixm (ηm · h)):

ε (mfixm (ηm · h))
= mfixn (ε · ηm · h) {eqn 10}
= mfixn (ηn · h) {eqn 8}
= ηn (fix h) {axiom 1 for n}
= (ε · ηm) (fix h) {eqn 8}
= ε (ηm (fix h)) {definition of ·}

The result follows by the assumption that ε is an embedding, i.e. it’s monic. Notice that we only relied on
the first axiom for the recursive-monad n.

Similarly, for axiom 2, we consider: ε (mfixm (λx.a�=m f x)) where x does not appear free in a:

ε (mfixm (λx.a�=m f x))
= mfixn (ε · (λx.a�=m f x)) {eqn 10}
= mfixn (λx.ε (a�=m f x)) {rewrite}
= mfixn (λx.ε a�=n ε · f x) {eqn 9}
= ε a�=n λy.mfixn (λx.(ε · f x) y) {axiom 2 for n}
= ε a�=n λy.mfixn (λx.ε (f x y)) {rewrite}
= ε a�=n λy.mfixn (ε · λx.f x y) {rewrite}
= ε a�=n λy.ε (mfixm (λx.f x y)) {eqn 10}
= ε a�=n ε · λy.mfixm (λx.f x y) {rewrite}
= ε (a�=m λy.mfixm (λx.f x y)) {eqn 9}
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Again the result follows by the fact that ε is monic.

For axiom 3, we consider: ε (mfixm (λ˜(x, ).mfixm (λ˜( , y).f (x, y)))):

ε (mfixm (λ˜(x, ).mfixm (λ˜( , y).f (x, y))))
= ε (mfixm (λp.mfixm (λs.f (π1 p, π2 s)))) {rewrite}
= mfixn (ε · λp.mfixm (λs.f (π1 p, π2 s))) {eqn 10}
= mfixn (λp.ε (mfixm (λs.f (π1 p, π2 s)))) {rewrite}
= mfixn (λp.mfixn (ε · (λs.f (π1 p, π2 s)))) {eqn 10}
= mfixn (λp.mfixn (λs.ε (f (π1 p, π2 s)))) {rewrite}
= mfixn (λp.mfixn (λs.(ε · f) (π1 p, π2 s))) {definition of ·}
= mfixn (λ˜(x, ).mfixn (λ˜( , y).(ε · f) (x, y))) {rewrite}
= mfixn (ε · f) {axiom 3 for n}
= ε (mfixm f) {eqn 10}

which implies that axiom 3 holds for m, since ε is monic. �

H Corollary 4.5 revisited

Corollary 4.5 requires the function sp to be strict. As we have indicated, however, this seems to be an
artificial requirement imposed by the parametricity theorem. In this section, we prove that equation 5
(i.e. corollary 4.5 with non-strict sp) holds through embeddings as well. That is, in order to establish that
equation 5 holds for a recursive monad m, it is sufficient to show that it holds for a monad that m embeds
into. The proof is similar to all embedding proofs:

Proof We start with: ε (mfixm (λ˜(x, y).f y �=m λz.returnm (h z, z))):

ε (mfixm (λ˜(x, y).f y �=m λz.returnm (h z, z)))
= mfixn (ε · (λ˜(x, y).f y �=m λz.returnm (h z, z))) {eqn 10}
= mfixn (λ˜(x, y).ε (f y �=m λz.returnm (h z, z))) {rewrite}
= mfixn (λ˜(x, y).(ε · f) y �=n λz.(ε · returnm)(h z, z)) {eqn 9}
= mfixn (λ˜(x, y).(ε · f) y �=n λz.returnn (h z, z)) {eqn 8}
= mfixn (ε · f)�=n λz.returnn (h z, z) {equation 5 for n}
= ε (mfixm f)�=n λz.(ε · returnm) (h z, z) {equation 8 and rewrite}
= ε (mfixm f)�=n ε · (λz.returnm (h z, z)) {rewrite}
= ε (mfixm f �=m λz.returnm (h z, z)) {equation 9}

Since ε is monic, the proof follows. �

I Corollary 4.6 revisited

We will prove that if a monad m embeds in a recursive-monad n and if we know that n satisfies Corollary 4.6
for non-strict h, then m will satisfy it for non-strict h as well. The proof has exactly the same structure as
that of the embedding theorem (theorem 5.3). The crucial point to notice is that we never mention h being
strict-or-not through the embedding, hence the monad m inherits the property enjoyed by n exactly.

Proof We start with: ε (mfixm (λx.f x�=m returnm · h)):
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ε (mfixm (λx.f x�=m returnm · h))
= mfixn (ε · (λx.f x�=m returnm · h)) {eqn 10}
= mfixn (λx.ε (f x)�=n ε · returnm · h) {eqn 9}
= mfixn (λx.(ε · f) x�=n returnn · h) {eqn 8}
= mfixn (λx.returnn (h x)�=n ε · f)�=n returnn · h {corollary 4.6 for n}
= mfixn (λx.(ε · returnm) (h x)�=n ε · f)�=n ε · returnm · h {eqn 8}
= mfixn (λx.ε (returnm (h x))�=n ε · f)�=n ε · returnm · h {rewrite}
= mfixn (λx.ε (returnm (h x)�=m f))�=n ε · returnm · h {eqn 9}
= mfixn (ε · (λx.returnm (h x)�=m f))�=n ε · returnm · h {rewrite}
= ε (mfixm (λx.returnm (h x)�=m f))�=n ε · returnm · h {eqn 10}
= ε (mfixm (λx.returnm (h x)�=m f)�=m returnm · h) {eqn 9}

which implies the required result since ε is monic. Notice that we have never mentioned whether h was strict
or not, proof carries on for both cases. �

J Equation 7 revisited

Recall (in-)equality 7:

mfix (λ˜(x, y).f x�= λz.g z �= λw.return (z, w)) v mfix f �= λz.g z �= λw.return (z, w)

We would like to prove that, if a recursive-monad n satisfies this property as an equality (inequality) then
any recursive-monad m that embeds into n will satisfy it as an equality (inequality). We will see that this,
in general, requires the embedding to be split, i.e. there should be a left-inverse for ε:

Proof We start with the expression:

ε (mfixm (λ˜(x, y).f x�=m λz.g z �=m λw.returnm (z, w)))

and proceed as in the previous embedding proofs:

ε (mfixm (λ˜(x, y).f x�=m λz.g z �=m λw.returnm (z, w)))
= mfixn (ε · (λ˜(x, y).f x�=m λz.g z �=m λw.returnm (z, w))) {eqn 10}
= mfixn (λ˜(x, y).ε (f x�=m λz.g z �=m λw.returnm (z, w))) {rewrite}
= mfixn (λ˜(x, y).ε (f x)�=n ε · (λz.g z �=m λw.returnm (z, w))) {eqn 9}
= mfixn (λ˜(x, y).(ε · f) x�=n (λz.ε (g z �=m λw.returnm (z, w)))) {rewrite}
= mfixn (λ˜(x, y).(ε · f) x�=n (λz.(ε (g z)�=n ε · (λw.returnm (z, w))))) {eqn 9}
= mfixn (λ˜(x, y).(ε · f) x�=n (λz.(ε · g) z �=n λw.(ε · returnm) (z, w))) {rewrite}
= mfixn (λ˜(x, y).(ε · f) x�=n (λz.(ε · g) z �=n λw.returnn (z,w))) {eqn 8}

In the next step, we apply the corresponding equation for the recursive-monad n. We use the symbol ≈ to
mean either one = or v. If monad n satisfies the property as a strict equality then it means =, otherwise it
means v:

≈ mfixn (ε · f)�=n λz.(ε · g) z �=n λw.returnn (z, w) {eqn 7 for n}
= mfixn (ε · f)�=n λz.(ε · g) z �=n λw.(ε · returnm) (z, w) {rewrite}
= mfixn (ε · f)�=n λz.(ε · g) z �=n λw.ε (returnm (z, w)) {rewrite}
= mfixn (ε · f)�=n λz.ε (g z)�=n ε · λw.returnm (z, w) {rewrite}
= mfixn (ε · f)�=n λz.ε (g z �=m λw.returnm (z, w)) {eqn 9}
= mfixn (ε · f)�=n ε · (λz.g z �=m λw.returnm (z, w)) {rewrite}
= ε (mfixm f)�=n ε · (λz.g z �=m λw.returnm (z, w)) {eqn 10}
= ε (mfixm f �=m λz.g z �=m λw.returnm (z, w)) {eqn 9}
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To complete the proof, just apply the left inverse of ε to both sides.6 �

K The identity monad

The proof that the identity monad is recursive follows from the fact that we can embed it into any other
recursive-monad, n. The embedding is simply: ε = returnn. Proving embedding equations is a trivial task:

Equation 8: Since ε = returnn and returnm = id, ε · returnm = returnn holds trivially.

Equation 9: We need to establish that returnn (p �=id h) = returnn p �=n returnn · h. The lhs is simply
returnn (h p), while the rhs becomes map h (returnn p). The equivalence simply follows from the naturality
condition for returnn.

Equation 10: We need: returnn (fix h) = mfixn (returnn · h), which is exactly axiom 1 for the monad n.

Finally, we need ηn to be monic, i.e. the monad n should satisfy the mono requirement. This requirement
is satisfied by, say, the state monad, completing the proof: Recall that return for the state monad is:
return x = λs.(s, x). The obvious left inverse: εl f = π2 (f ⊥), guarantees that ε is split-monic.

L The maybe monad

L.1 Lemma 6.1

Lemma The Maybe instance of mfix satisfies (J: Just, N: Nothing):

mfix f = ⊥ ←→ f ⊥ = ⊥

mfix f = N ←→ f ⊥ = N

mfix f = J ⊥ ←→ f ⊥ = J ⊥

unJust (mfix f) = fix (unJust · f)

Proof Recall that: fix f =
⊔

k
fk⊥. We look at each case in turn:

First equivalence: We prove two implications: mfix f = ⊥ → f ⊥ = ⊥, and f ⊥ = ⊥ → mfix f = ⊥.
The first implication immediately follows from corollary 4.3. To prove f ⊥ = ⊥ → mfix f = ⊥, we as-
sume f ⊥ = ⊥, i.e. f is strict. Now, the composite function f · unJust is strict as well, resulting in
fix (f · unJust) = ⊥, which is sufficient to conclude that mfix f = ⊥, by the definition of mfix.

Second equivalence: Again, we prove: mfix f = N → f ⊥ = N, and f ⊥ = N → mfix f = N. For the first
implication, assume mfix f = N. By the definition of mfix, we have: fix (f · unJust) = N. This implies
⊔

k
(f · unJust)k⊥ = N by the definition of fix. Since unJust is strict, the chain looks like: {⊥, f ⊥, . . .}.

6Since the definition of an embedding does not require a left-inverse, we will be careful in pointing out that the monic
embedding splits whenever we refer to this proof. Note that this is not a real problem, since all monics with non-empty source
can be split in the category of Sets, where we do our work. (Non-emptiness requirement is satisfied by the fact that every type
has ⊥ in it.)
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Now, since f is not strict (otherwise mfix f would be ⊥ by above equality), f ⊥ is either N or J x for some
x. The case J x would have resulted in the limit of the chain to be a Just term (by monotonicity) which is
not the case by the assumption. Hence, f ⊥ = N. To prove the second implication, assume f ⊥ = N. Now,
mfix f = fix (f · unJust) =

⊔

k
(f · unJust)k⊥ =

⊔

{⊥, N, N, . . .} = N.

Third equivalence: Similarly, we prove: mfix f = J ⊥ → f ⊥ = J ⊥, and f ⊥ = J ⊥ → mfix f = J ⊥.
For the first implication, we assume mfix f = J ⊥ and reason exactly as above to conclude that mfix f =
⊔

{⊥, f ⊥, . . .} = J ⊥ and hence, f ⊥ = J ⊥ by monotonicity. For the second implication, we assume:
f ⊥ = J ⊥. Now, mfix f = fix (f · unJust) =

⊔

k
(f · unJust)k⊥ =

⊔

{⊥, J ⊥, J ⊥, . . .} = J ⊥.

Fourth equality: Recall that fix (f ·g) = f (fix (g ·f)). We have: unJust (mfix f) = unJust (fix (f ·unJust)) =
fix (unJust · f). �

L.2 Proving that the maybe monad is recursive

The proof that the maybe monad is recursive is done by embedding it into the List monad. The embedding
is:

ε x =







⊥ x = ⊥,
[ ] x = Nothing,
[y] x = Just y

Here are the proofs for the embedding equations:

Monic requirement: ε is in fact a split-monic, with the obvious left inverse:

εl x =

{

⊥ x = ⊥,
Nothing x = [ ] ,
Just y x = y : ys

Before proving the equations, recall that: returnl = λx.[x] and returnm = Just. (We use the subscript m
for the maybe monad and l for the list.)

Equation 8: We need ε · Just = λx.[x]. By applying both hand sides to an arbitrary p, we get [p], proving
the equivalence.

Equation 9: We need ε (p�=m h) = ε p�=l ε · h. Case analysis on p:

• p = ⊥: Both hand sides reduce to ⊥.

• p = N: Both hand sides reduce to [ ].

• p = J x: Both hand sides reduce to ε (h x).

Equation 10: We need ε (mfixm h) = mfixl (ε · h). Case analysis on mfixm h:

• mfixm h = ⊥: By lemma 6.1, h is strict. Since ε is strict, so is ε · h. By lemma 6.2 (which is yet to be
proven), mfixl (ε · h) = ⊥.
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• mfixm h = N: By lemma 6.1, h ⊥ = N. Now, mfixl (ε ·h) depends on the value of fix (ε ·h ·head), which
is:

⊔

k

(ε · h · head)k ⊥ =
⊔

k

{⊥, [ ], [ ], . . .} = [ ]

The case expression yields [ ] for the rhs as well.

• mfixm h = J x: In this case, lhs is [x] and on the rhs we have mfixl (ε · h), whose value depends on
fix (ε · h · head). Notice that head · ε = unJust. Now:

fix (ε · h · head) = ε (fix (h · head · ε)) = ε (fix (h · unJust))

Recalling the definition of mfixm, this is equivalent to:

= ε (mfixm h) = ε (J x) = [x]

The proof will be complete if we can argue that mfixl (tail · ε · h) = [ ]. Consider the value of
(tail · ε ·h) ⊥. Since h ⊥ = J y, for some y (not necessarily equivalent to x) by Lemma 6.1, we conclude
that: (tail · ε · h) ⊥ = [ ]. By Lemma 6.2 (which will be proven later), we have mfixl (tail · ε · h) = [ ],
completing the proof.

L.3 Equation 7 in detail

We have stated that equation 7 is too strong for many monads and in the general case we can only expect
an inequality. For convenience, we repeat this inequality here:

mfix (λ˜(x, y).f x�= λz.g z �= λw.return (z, w)) v mfix f �= λz.g z �= λw.return (z, w)

Of course, individual monads may satisfy the equality and some may satisfy it under certain side conditions.
We have previously showed that the equality does not hold for the maybe monad. The following theorem
makes the statement for the maybe monad precise:

Theorem Maybe monad will satisfy equation 7 as a strict equality with the following side condition: If

1. f : a→ Maybe a, where a is a non-flat domain.

2. f ⊥ = J v0, where v0 6= ⊥.

3. The function g · unJust · f is strict

then the function g · (unJust · f)k must be strict for each k > 0. (If any of the above conditions fail, it will
satisfy equation 7 as a strict equality with no side conditions.) Without any conditions, inequality 7 will be
satisfied (i.e. lhs will always be v rhs).

Proof First, we single out the case when a is a flat domain. In this case mfix f = f ⊥, by lemma 6.1. A
simple analysis shows that both hand sides are the same in this case. So, we assume a is non-flat. Consider
the lhs:

mfix (λ˜(x, y).f x�= λz.g z �= λw.return (z, w))
= fix ((λt.(f · π1) t�= λz.g z �= λw.return (z,w)) · unJust) {defn of mfix}
= fix (λt.(f · π1 · unJust) t�= λz.g z �= λw.return (z, w)) {rewrite}
=

⊔

k
(λt.(f · π1 · unJust) t�= λz.g z �= λw.return (z, w))k ⊥ {defn of fix}
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Similarly, consider the rhs:

mfix f �= λz.g z �= λw.return (z,w)
= fix (f · unJust)�= λz.g z �= λw.return (z, w) {defn of mfix}
= (

⊔

k
(f · unJust)k ⊥)�= λz.g z �= λw.return (z, w) {defn of fix}

=
⊔

k
((f · unJust)k ⊥ �= λz.g z �= λw.return (z, w)) {continuity}

Now, we will do a case analysis on the value of f ⊥:

• f ⊥ = ⊥: Both hand sides become:
⊔

{⊥,⊥, . . .} = ⊥.

• f ⊥ = N: Both hand sides become:
⊔

{⊥, N, N . . .} = N.

• f ⊥ = J ⊥. In this case, mfix f = J ⊥. The rhs simply becomes: g ⊥ �= λw.return (⊥, w). The lhs
chain looks like:

{⊥, g ⊥ �= λw.return (⊥, w), . . .}

We perform a case analysis on g ⊥:

– g ⊥ = ⊥. Both lhs and rhs reduce to ⊥.

– g ⊥ = N. Both lhs and rhs reduce to N.

– g ⊥ = J a. Both lhs and rhs reduce to J (⊥, a).

• f ⊥ = J v0, v0 6= ⊥. We analyse this final case in detail below.

Notice that, we haven’t mentioned any side conditions yet, i.e. the proof so far applies for all f and g. The
final case, however, requires the side conditions. Before going into the details, we make some observations:

1. For k ≥ 0, unJust ((f · unJust)k ⊥) = (unJust · f)k ⊥. The proof is by simple induction on k and is
skipped.

2. Consider the chain (f · unJust)k ⊥, k ≥ 0. We have:

fk ⊥ = {⊥, J v0, J v1, J v2, . . .}

by the monotonicity of f . Here, vk = unJust ((f · unJust)k⊥), k > 0. Furthermore, {v0, v1, . . .} is a
chain too.

3. By the first observation, we have: vk = (unJust · f)k ⊥, k > 0.

Now, we perform a case analysis on the value of g v0.

• g v0 = ⊥: In this case, lhs =
⊔

{⊥,⊥, . . .} = ⊥. And rhs is:
⊔

{⊥,⊥, g v0 �= λw.return (v0, w), g v1 �= λw.return (v1, w), . . .}

We claim g vi = ⊥ for i ≥ 0. Notice that f ⊥ = J v0 and v0 6= ⊥ and g v0 = ⊥ (case assumptions).
Then (g · unJust · f) ⊥ = ⊥, i.e. (g · unJust · f) is strict. Now, all the conditions in the theorem hold,
hence we can use the fact that g ·(unJust ·f)k is strict for k > 0. That is, g ((unJust ·f)k⊥) = ⊥ = g vk,
k > 0, as required. (The case i = 0 is covered by the case assumption.) Hence the rhs becomes ⊥ as
well.

Notice that this is the only place in the proof that we resort to the side conditions. If the side conditions
are not satisfied we can only state that lhs (which is ⊥) will be v rhs.
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• g v0 = N: Now, lhs becomes
⊔

{⊥, N, N, . . .} = N and rhs becomes:

⊔

{⊥,⊥, g v0 �= λw.return (v0, w) = N, g v1 �= λw.return (v1, w), . . .}

By monotonicity, all terms in the chain must also be N, ensuring that the limit is N as well.

• g v0 = J u. Now, we proceed by induction on k.

Base case: k = 0: Trivially, lhs = rhs = ⊥.
Inductive hypothesis: We assume lhsk = rhsk, where:

lhsk = (λt.(f · π1 · unJust) t�= λz.g z �= λw.return (z, w))k⊥

rhsk = (f · unJust)k⊥�= λz.g z �= λw.return (z, w)

Inductive step: We prove lhsk+1 = rhsk+1. (We will use uj to abbreviate unJust). First, we establish
the case k = 1: lhs1 = g v0 �= λw.return (v0, w). Similarly, rhs1 = (f · uj) ⊥ �= λz.g z �=
λw.return (z, w) = g v0 �= λw.return (v0, w). Hence lhs1 = rhs1. Now we prove lhsk+2 = rhsk+2:

lhsk+2

= (λt.(f · π1 · uj) t�= λz.g z �= λw.return (z, w))k+2⊥ {defn of lhs}
= (λt.(f · π1 · uj) t�= λz.g z �= λw.return (z, w)) (lhsk+1) {defn of ·}
= (λt.(f · π1 · uj) t�= λz.g z �= λw.return (z, w)) (rhsk+1) {I.H.}
= (f · π1 · uj)((f · uj)k+1⊥�= λz.g z �= λw.return (z, w))

�= λz.g z �= λw.return (z, w) {expand rhsk+1}

Consider (f ·uj)k+1⊥. By the previous observations, this is equivalent to: J vk+1, hence we can simplify
the �= expression, obtaining:

J vk+1 �= λz.g z �= λw.return (z, w) = g vk+1 �= λw.return (vk+1, w)

Recall that {⊥, v0, v1, . . .} was a chain. Mapping g over it, we get the following chain: {g ⊥, g v0 =
J u, g v1, . . .}, that is g vk+1 is a Just term. Hence, we can further simplify the equation to:

return (vk+1, unJust (g vk+1))

Substituting this back into the original derivation, we obtain:

= (f · π1 · uj) (return (vk+1, unJust (g vk+1)))�= λz.g z �= λw.return (z, w) {simplify}
= f vk+1 �= λz.g z �= λw.return (z, w) {simplify}

Recalling that vk = unJust ((f · unJust)k⊥), k > 0, we have:

f vk+1 = f (unJust ((f · unJust)k+1⊥)) = (f · unJust)k+2⊥

Finally yielding:

= (f · unJust)k+2⊥�= λz.g z �= λw.return (z, w) {simplify}
= rhsk+2

This completes the proof. Notice that, we have also established that even if there are no side conditions the
inequality will hold. �
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Recall the counter-example, stating the need for inequality for the maybe monad. We repeat the example
here for convenience:

f :: [Int] -> Maybe [Int] g :: [Int] -> Maybe Int

f xs = Just (1:xs) g [x] = Nothing

g _ = Nothing

We see that:

• f : [Int]→ [Int] (i.e. [Int] is non-flat).

• f ⊥ = Just (1 : ⊥) (i.e. (1 : ⊥) 6= ⊥).

• (g · unJust · f) ⊥ = ⊥, i.e. The function g · unJust · f is strict.

But,

• The function g · (unJust · f)2 is not strict. Notice that (g · (unJust · f)2) ⊥ = Nothing.

This clearly violates the requirement of the theorem.

M The list monad

M.1 Lemma 6.2

Lemma The List instance of mfix satisfies:

mfix f = ⊥ ←→ f ⊥ = ⊥

mfix f = [ ] ←→ f ⊥ = [ ]

mfix f = [⊥] ←→ f ⊥ = [⊥]

head (mfix f) = fix (head · f)

tail (mfix f) = mfix (tail · f)

mfix (λx.f x : g x) = fix f : mfix g

mfix (λx.f x ++ g x) = mfix f ++ mfix g

Proof We look at each case in turn:

First equivalence:

mfix f = ⊥ ←→ fix (f · head) = ⊥

←→
⊔

{⊥, (f · head) ⊥, (f · head)2⊥, . . .} = ⊥

←→ (f · head) ⊥ = ⊥

←→ f ⊥ = ⊥
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Second equivalence:

mfix f = [ ] ←→ fix (f · head) = [ ]

←→
⊔

{⊥, (f · head) ⊥, (f · head)2⊥, . . .} = [ ]

←→ (f · head) ⊥ = [ ]

←→ f ⊥ = [ ]

Third equivalence:

mfix f = [⊥] −→ head (fix (f · head)) = ⊥ ∧ mfix (tail · f) = [ ]

−→ fix (head · f) = ⊥ ∧ tail (f ⊥) = [ ]

−→
⊔

{⊥, (head · f) ⊥, (head · f)2⊥, . . .} = ⊥ ∧ f ⊥ = [z]

−→
⊔

{⊥, z, (head · f) z, . . .} = ⊥

−→ z = ⊥

−→ f ⊥ = [⊥]

Proving mfix f = [⊥] when f ⊥ = [⊥]: Notice that the value of mfix f depends on fix (f · head):

fix (f · head) =
⊔

{⊥, [⊥], [⊥], . . .} = [⊥]

Now, the case expression yields: ⊥ : mfix (tail · f). Similarly, mfix (tail · f) depends on fix (tail · f · head):

fix (tail · f · head) =
⊔

{⊥, [ ], [ ], . . .} = [ ]

Yielding mfix f = [⊥].

Fourth equality:

head (mfix f ) = head (case fix (f . head) of
[ ] → [ ]
(x : ) → x : mfix (tail . f ))

= case fix (f . head) of
[ ] → head [ ]
(x : ) → x

= case fix (f . head) of
[ ] → head [ ]
(x : ) → head (x : )

= head (fix (f . head))
= fix (head . f )

Fifth equality: We look at two cases:

Case 1: mfix f = ⊥ or [ ]. Therefore f ⊥ = ⊥ or [ ], respectively. In both cases, rhs becomes:

mfix (tail . f ) = case fix (tail . f . head) of
[ ] → [ ]
(x : ) → x : mfix (tail . tail . f )
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We have:
fix (tail · f · head) =

⊔

{⊥,⊥, . . .} = ⊥

hence, the rhs is ⊥. But so is lhs, trivially.

Case 2: mfix f = x : xs:

tail (mfix f ) = tail (case fix (f . head) of
[ ] → [ ]
(x : ) → x : mfix (tail . f ))

Since mfix f = x : xs, the case should be taking its second branch, finally yielding mfix (tail ·f), as required.

Sixth equality:

mfix (λx. (f x : g x)) = case fix ((λx. (f x : g x)) . head) of ...
= case (λx. (f x : g x)) (fix (λx. f x )) of ...
= case f (fix f ) : g (fix f ) of

[ ] → [ ]
(q : ) → q : mfix (tail . λx.(f x : g x))

= fix f : mfix (λx. g x)
= fix f : mfix g

Seventh equality: To prove

mfix (λx. f x ++ g x ) = mfix f ++ mfix g

we will use the approx lemma. Recall the definition of approx:

approx :: Integer → [a ] → [a ]
approx (n+1) [ ] = [ ]
approx (n+1) (x :xs) = x : approx n xs

We will prove:

∀n, ∀f, g. approx n (mfix (λx. f x ++ g x)) = approx n (mfix f ++ mfix g)

The base case, n = 0, is obvious. The inductive hypothesis is:

∀f, g. approx k (mfix (λx. f x ++ g x )) = approx k (mfix f ++ mfix g)

Notice that our I.H. is valid for all f and g: this generality is crucial in the proof. Here is the inductive step:
We need to prove:

∀f, g. approx (k+1) (mfix (λx. f x ++ g x )) = approx (k+1) (mfix f ++ mfix g)

Now, fix arbitrary f and g. We’ll do a case analysis on f ⊥.

Case 1: f ⊥ = ⊥: Since (λx.f x ++ g x) ⊥ = ⊥, both hand sides reduce to ⊥.

Case 2: f ⊥ = [ ]: This implies that f = const [ ] (by the monotonicity of f). The rhs becomes
approx (k+1) (mfix g) . Similarly, lhs becomes:
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approx (k+1) (mfix (λx. const [ ] x ++ g x)) = approx (k+1) (mfix g)

Case 3: f ⊥ = x : xs: First, two observations: mfix f is also a cons-cell, and, f a is a cons-cell for any a.
Consider the lhs:

mfix (λx. f x ++ g x) = mfix (λx. (head (f x) : tail (f x )) ++ g x)
= mfix (λx. head (f x) : (tail (f x ) ++ g x))
= mfix (λx. (head . f ) x : (tail . f ) x ++ g x)
= fix (head . f ) : mfix (λx. (tail . f ) x ++ g x)
= head (mfix f ) : mfix (λx. (tail . f ) x ++ g x)

The rhs becomes:

mfix f ++ mfix g = (head (mfix f ) : tail (mfix f )) ++ mfix g
= head (mfix f ) : (mfix (tail . f ) ++ mfix g)

The proof proceeds as follows:

approx (k+1) (mfix (λx. f x ++ g x))
= approx (k+1) (head (mfix f ) : mfix (λx. (tail . f ) x ++ g x))
= head (mfix f ) : approx k (mfix (λx. (tail . f ) x ++ g x ))
= head (mfix f ) : approx k (mfix (tail . f ) ++ mfix g) -- ind. hyp.
= approx (k+1) : (head (mfix f ) : (mfix (tail . f ) ++ mfix g))
= approx (k+1) (mfix f ++ mfix g)

This completes the proof of the last equality and the lemma. �

M.2 Proving that the list monad is recursive

Axiom 1

mfix (return . h) = case fix (return . h . head) of ...
= case return (fix (h . head . return)) of ...
= case [fix h ] of ...
= fix h : mfix (tail . return . h)
= fix h : (case fix (tail . return . h . head) of ...)
= fix h : (case (LUB {⊥, [ ], [ ], ...}) of ...)
= fix h : (case [ ] of

[ ] → [ ]
(q : ) → q : mfix (tail . tail . return . h))

= fix h : [ ]
= [fix h ]
= return (fix h)
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Axiom 2 By induction on the structure of a. The cases ⊥ and [ ] are trivial. (When a = ⊥, both lhs and
rhs become ⊥. When a = [ ], both become [ ].) In the inductive case, we assume: a = q : qs, and proceed as
follows:

mfix (λx.(q : qs)�= f x)
= mfix (λx.f x q ++ qs�= f x) {defn of �=}
= mfix (λx.f x q) ++ mfix (λx.qs�= f x) {lemma 6.2}
= mfix (λx.f x q) ++ qs�= λy.mfix (λx.f x y) {I.H.}
= (λy.mfix (λx.f x y)) q ++ qs�= λy.mfix (λx.f x y) {rewrite}
= (q : qs)�= λy.mfix (λx.f x y) {defn of �=}

Axiom 3 We do a case analysis on the value of mfix f :

Cases 1 and 2: mfix f = ⊥/[ ]. Then f ⊥ = ⊥/[ ]. We have:

mfix (λu.mfix (λv.f (π1 u, π2 v))) = ⊥/[ ]

←→ mfix (λv.f (⊥, π2 v)) = ⊥/[ ]

←→ f (⊥,⊥) = ⊥/[ ]

←→ mfix f = ⊥/[ ]

Cases 3: Now, we know that both hand sides are “cons-cells”. We use the approx lemma to prove:

∀n. approx n (mfix (λu.mfix (λv.f (π1 u, π2 v)))) = approx n (mfix f)

We perform an induction on n. The base case, n = 0, is trivial, as both sides reduce to ⊥. For the inductive
step, we assume:

approx k (mfix (λu.mfix (λv.f (π1 u, π2 v)))) = approx k (mfix f)

Notice that this holds ∀f, g. Here is the inductive step:

approx (k + 1) (mfix (λu.mfix (λv.f (π1 u, π2 v))))

= head (mfix (λu.mfix (λv.f (π1 u, π2 v))))

: approx k (tail (mfix (λu.mfix (λv.f (π1 u, π2 v)))))

= fix (λu.fix (λv.(head · f)(π1 u, π2 v)))

: approx k (mfix (λu.mfix (λv.(tail · f)(π1 u, π2 v))))

= fix (head · f) : approx k (mfix (tail · f))

= approx (k + 1) (head (mfix f) : tail (mfix f))

= approx (k + 1) (mfix f)

M.3 Equation 5

Equation 5 holds as an equality for the list monad. Here’s the proof:

Proof For notational convenience, define:

〈f, g〉 x = (f x, g x)
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Notice that we don’t impose a strictness requirement. Now, the lhs of equation 5 can be written as:

mfix (λ˜(x, y).f y �= return (h z, z))
= mfix (λp.f (π2 p)�= return · 〈h, id〉) {rewrite}
= mfix (map 〈h, id〉 · f · π2) {a�= return · f = map f a}

Similarly, rhs becomes: map 〈h, id〉 (mfix f). To prove that

mfix (map 〈h, id〉 · f · π2) = map 〈h, id〉 (mfix f)

we will prove a stronger equality:

tailm (mfix (map 〈h, id〉 · f · π2)) = tailm (map 〈h, id〉 (mfix f))

Obviously, m = 0 will give us the required equality. We will use the approx lemma to do the proof, i.e. we
will prove:

∀k. approx k (tailm (mfix (map 〈h, id〉 · f · π2))) = approx k (tailm (map 〈h, id〉 (mfix f)))

The proof is by induction on k. When k = 0, both hand sides are ⊥. For the k + 1 case, we need:

approx (k + 1) (tailm (mfix (map 〈h, id〉 · f · π2))) = approx (k + 1) (tailm (map 〈h, id〉 (mfix f)))

Since tail (mfix f) = mfix (tail · f) and tail ·map f = map f · tail, we need:

approx (k + 1) (mfix (map 〈h, id〉 · tailm · f · π2)) = approx (k + 1) (map 〈h, id〉 (mfix (tailm · f)))

Now, we will perform a case analysis on the value of mfix (map 〈h, id〉 · tailm · f · π2):

• Case ⊥/[ ]: Then, (map 〈h, id〉 · tailm · f · π2) ⊥ = ⊥/[ ]. This means that (tailm · f) ⊥ = ⊥/[ ],
guaranteeing that mfix (tailm · f) = ⊥/[ ]. Hence both hand sides reduce to ⊥/[ ].

• Otherwise: Then the value is a cons-cell, and in particular (map 〈h, id〉 · tailm ·f ·π2) ⊥ is a cons-cell,
which guarantees that (tailm · f) ⊥ is a cons-cell. Hence, both hand sides will be cons-cells. By this
observation, lhs becomes:

fix (head ·map 〈h, id〉 · tailm · f · π2) : approx k (mfix (map 〈h, id〉 · tailm+1 · f · π2))

Similarly, rhs becomes:

head (map 〈h, id〉 (mfix (tailm · f))) : approx k (map 〈h, id〉 (mfix (tailm+1 · f)))

The induction hypothesis establishes that the tails of these lists are the same, hence all we need to
show is that:

fix (head ·map 〈h, id〉 · tailm · f · π2) = head (map 〈h, id〉 (mfix (tailm · f)))

Now consider the function head ·map f . It is an easy exercise to show that head (map f (a : as)) =
f (head (a : as)), in other words head ·map f = f · head whenever the argument to this composition is
a cons-cell. (Notice that this equality does not hold in general, unless f is strict.) Since, by the case
assumption, tailm · f always yields a cons-cell, we can conclude that:

fix (head ·map 〈h, id〉 · tailm · f · π2) = fix (〈h, id〉 · head · tailm · f · π2)

And similarly:

head (map 〈h, id〉 (mfix (tailm · f))) = 〈h, id〉 (fix (head · tailm · f))
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Hence, our proof obligation reduces to:

fix (〈h, id〉 · head · tailm · f · π2) = 〈h, id〉 (fix (head · tailm · f))

Now, recall that fix (f · g) = f (fix (g · f)), transforming lhs to:

〈h, id〉 (fix (head · tailm · f · π2 · 〈h, id〉))

The proof follows since π2 · 〈h, id〉 = id.
�

Hence we have proved that equation 5 will hold for the list monad and any monad that embeds into it.

M.4 Equations 6 and 7

The list monad satisfies equation 6 for only strict h. The example given for the maybe monad applies here
as well. Equation 7 does not hold as an equality. This is not surprising at all, since the Maybe monad does
not satisfy it as an equality either. Although we have not constructed an explicit proof that property 7 will
hold as an inequality, we have strong evidence that it does. Hence, we conjecture that it will apply as an
inequality.

N The state monad

For simplicity, we drop the tags from the declarations. (A newtype declaration achieves essentially the same
thing in Haskell.) We repeat the definitions for convenience:

type State s a = s → (a, s)

instance Monad (State s) where
return x = λs. (x , s)
f �= g = λs. let (a , s ′) = f s in g a s ′

instance MonadRec (State s) where
mfix f = λs. let (a , s ′) = f a s

in (a , s ′)

Axiom 1

mfix (return . h) = λs. let (a , s ′) = (return . h) a s in (a , s ′)
= λs. let (a , s ′) = (λs. (h a, s)) s in (a , s ′)
= λs. let (a , s ′) = (h a , s) in (a , s ′)
= λs. let a = h a

s ′ = s
in (a , s ′)

= λs. let a = fix h in (a, s)
= λs. (fix h , s)
= return (fix h)
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Axiom 2

First transform the lhs:

mfix (λx. a �= f x )
= λs. let (b, s ′) = (a �= f b) s in (b, s ′)
= λs. let (b, s ′) = (λs ′′. let (c, s ′′′) = a s ′′ in f b c s ′′′) s

in (b, s ′)
= λs. let (b, s ′) = let (c, s ′′′) = a s in f b c s ′′′

in (b, s ′)
= λs. let (b, s ′) = f b c s ′′′

(c, s ′′′) = a s
in (b, s ′)

= λs. let (b, s ′) = f b c s ′′

(c, s ′′) = a s
in (b, s ′)

Now work on rhs:

a �= λy. mfix (λx. f x y)
= λs. let (b, s ′) = a s in (λy. mfix (λx. f x y)) b s ′

= λs. let (b, s ′) = a s in (mfix (λx. f x b)) s ′

= λs. let (b, s ′) = a s
in (λs ′′. let (c, s ′′′) = (λx. f x b) c s ′′

in (c, s ′′′)) s ′

= λs. let (b, s ′) = a s
in let (c, s ′′′) = f c b s ′

in (c, s ′′′)
= λs. let (b, s ′) = a s

(c, s ′′) = f c b s ′

in (c, s ′′)
= λs. let (c, s ′′) = a s

(b, s ′) = f b c s ′′

in (b, s ′)

Axiom 3

mfix (λ˜ (x , ). mfix (λ˜ ( , y). f x y))
= mfix (λu. mfix (λv. f (fst u, snd v)))
= λs. let (a , s ′) = (λu. mfix (λv. f (fst u, snd v))) a s

in (a , s ′)
= λs. let (a , s ′) = mfix (λv. f (fst a , snd v)) s

in (a , s ′)
= λs. let (a , s ′) = (λs ′. let (b, s ′′) = (λv. f (fst a , snd v)) b s ′

in (b, s ′′)) s
in (a , s ′)

= λs. let (a , s ′) = let (b, s ′′) = f (fst a , snd b) s
in (b, s ′′)

in (a , s ′)
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= λs. let (a , s ′) = (b, s ′′)
(b, s ′′) = f (fst a , snd b) s

in (a , s ′)
= λs. let (a , s ′) = f (fst a , snd a) s

in (a , s ′)
= λs. let (a , s ′) = f a s

in (a , s ′)
= mfix f

N.1 Equations 5, 6, and 7

The state monad satisfies equation 5, equation 6 without requiring h to be strict. Similarly, equation 7 is
satisfied as an equality. Here are the proofs of these claims:

Equation 5 First work on lhs:

mfix (λ˜ (x , y). f y �= λz. return (h z , z ))
= λs. let (a , s ′) = (λ˜ (x , y). f y �= λz. return (h z , z )) a s

in (a , s ′)
= λs. let (a , s ′) = (f (snd a) �= λz. return (h z , z )) s

in (a , s ′)
= λs. let (a , s ′) = (λs. let (b, s ′′) = f (snd a) s

(c, s ′′′) = return (h b, b)
in (c, s ′′′)) s

in (a , s ′)
= λs. let (a , s ′) = let (b, s ′′) = f (snd a) s

(c, s ′′′) = ((h b, b), s ′′)
in (c, s ′′′)

in (a , s ′)
= λs. let (a , s ′) = (c, s ′′′)

(c, s ′′′) = ((h b, b), s ′′)
(b, s ′′) = f (snd a) s

in (a , s ′)
= λs. let (b, s ′′) = f b s

in ((h b, b), s ′′)
= λs. let (a , s ′) = f a s

in ((h a , a), s ′)

Now transform the rhs:

mfix f �= λz. return (h z , z )
= (λs. let (a, s ′) = f a s

in (a , s ′))
�= λz. return (h z , z )

= λs. let (b, s ′′) = let (a, s ′) = f a s
in (a , s ′)

in ((h b, b), s ′′)
= λs. let (a , s ′) = f a s

in ((h a , a), s ′)

41



Equation 6

First work on lhs:

mfix (λx. f x �= return . h)
= λs. let (a , s ′) = (λx. f x �= return . h) a s

in (a , s ′)
= λs. let (a , s ′) = (f a �= return . h) s

in (a , s ′)
= λs. let (a , s ′) = (λs ′. let (b, s ′′) = f a s ′ in (return . h) b s ′′) s

in (a , s ′)
= λs. let (a , s ′) = let (b, s ′′) = f a s in (h b, s ′′)

in (a , s ′)
= λs. let (a , s ′) = (h b, s ′′)

(b, s ′′) = f a s
in (a , s ′)

= λs. let (b, s ′′) = f (h b) s in (h b, s ′′)
= λs. let (a , s ′) = f (h a) s in (h a , s ′)

Now transform rhs:

mfix (λx. return (h x ) �= f ) �= return . h
= mfix (f . h) �= return . h
= (λs. let (a, s ′) = f (h a) s in (a , s ′)) �= return . h
= λs. let (b, s ′′) = let (a, s ′) = f (h a) s

in (a , s ′)
in return (h b) s ′′

= λs. let (b, s ′′) = (a , s ′)
(a , s ′) = f (h a) s

in (h b, s ′′)
= λs. let (a , s ′) = f (h a) s in (h a , s ′)

Equtaion 7

Again, we start with lhs:

mfix (λ˜ (x , y). f x �= λz. g z �= λw. return (z , w))
= mfix (λt. f (fst t) �= λz. g z �= λw. return (z , w))
= mfix (λt. λs. let (a, s ′) = (f . fst) t s

in (g a �= λw. return (a , w)) s ′)
= mfix (λt. λs. let (a, s ′) = (f . fst) t s

in let (b, s ′′) = g a s ′

in ((a , b), s ′′))
= mfix (λt. λs. let (a, s ′) = (f . fst) t s

(b, s ′′) = g a s ′

in ((a , b), s ′′))
= λu. let (c, v) = let (a, s ′) = (f . fst) c u

(b, s ′′) = g a s ′

in ((a , b), s ′′)
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in (c, v)
= λu. let (c, v) = ((a , b), s ′′)

(a , s ′) = (f . fst) c u
(b, s ′′) = g a s ′

in (c, v)
= λu. let (a , s ′) = f a u

(b, s ′′) = g a s ′

in ((a , b), s ′′)

Now transform rhs:

mfix f �= λz. g z �= λw. return (z , w )
= λu. let (a , s ′) = mfix f u

in (g a �= λw. return (a , w)) s ′

= λu. let (a , s ′) = mfix f u
in let (b, s ′′) = g a s ′

in ((a, b), s ′′)
= λu. let (a , s ′) = mfix f u

(b, s ′′) = g a s ′

in ((a , b), s ′′)
= λu. let (a , s ′) = (λu. let (q , s ′) = f q u in (q , s ′)) u

(b, s ′′) = g a s ′

in ((a , b), s ′′)
= λu. let (a , s ′) = let (q , s ′) = f q u in (q , s ′)

(b, s ′′) = g a s ′

in ((a , b), s ′′)
= λu. let (a , s ′) = (q , s ′)

(q , s ′) = f q u
(b, s ′′) = g a s ′

in ((a , b), s ′′)
= λu. let (a , s ′) = f a u

(b, s ′′) = g a s ′

in ((a , b), s ′′)

O State with exceptions

O.1 When the whole computation might fail

Recall the definitions (no tags):
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newtype STE s a = s → Maybe (a , s)

instance Monad (STE s) where
return x = λs. Just (x , s)
f �= g = λs. case f s of

Nothing → Nothing
Just (a , s ′) → g a s ′

instance MonadRec (STE s) where
mfix f = λs. let a = f b s

b = fst (unJust a)
in a

We first verify the monad laws:

Monad Axiom: return is the right unit:

f �= return = λs. case f s of
Nothing → Nothing
Just (a , s ′) → return a s ′

= λs. case f s of
Nothing → Nothing
Just (a , s ′) → Just (a , s ′)

= λs. f s
= f

Monad Axiom: return is the left unit:

return x �= f = λs. case return x s of
Nothing → Nothing
Just (a, s ′) → f a s ′

= λs. case Just (x , s) of
Nothing → Nothing
Just (a, s ′) → f a s ′

= λs. f x s
= f x

Monad Axiom: �= is associative:
Look at lhs:

f �= λx. (g x �= h)
= λs. case f s of

Nothing → Nothing
Just (a , s ′) → (g a �= h) s ′

= λs. case f s of
Nothing → Nothing
Just (a , s ′) → case g a s ′ of

Nothing → Nothing
Just (b, s ′′) → h b s ′′
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Now transform rhs:

(f �= g) �= h
= λs. case (f �= g) s of

Nothing → Nothing
Just (a , s ′) → h a s ′

= λs. case (case f s of
Nothing → Nothing
Just (b, s ′′) → g b s ′′) of

Nothing → Nothing
Just (a , s ′) → h a s ′

= λs. case f s of
Nothing → Nothing
Just (b, s ′′) → case g b s ′′ of

Nothing → Nothing
Just (a , s ′) → h a s ′

Now we look at the mfix axioms:

Axiom 1

mfix (return . h) = λs. let a = (return . h) b s
b = fst (unJust a)

in a
= λs. let a = Just (h b, s)

b = h b
in a

= λs. let a = Just (h (fix h), s) in a
= λs. return (fix h) s
= return (fix h)

Axiom 2

First work on lhs:

mfix (λx. a �= f x )
= λs. let b = (a �= f c) s

c = fst (unJust b)
in b

= λs. let b = case a s of
Nothing → Nothing
Just (d , s ′) → f c d s ′

c = fst (unJust b)
in b

Now look at rhs:
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a �= λy. mfix (λx. f x y)
= λs. case a s of

Nothing → Nothing
Just (d , s ′) → mfix (λx. f x d) s ′

Apply both handsides to an arbitrary s, we get:

lhs = let b = case a s of
Nothing → Nothing
Just (d , s ′) → f c d s ′

c = fst (unJust b)
in b

rhs = case a s of
Nothing → Nothing
Just (d , s ′) → mfix (λx. f x d) s ′

Now, do a case analysis on a s. The cases ⊥ and Nothing are immediate. When a s = Just (d, s′), we
have:

lhs = let b = f c d s ′

c = fst (unJust b)
in b

rhs = mfix (λx. f x d) s ′

= (λs. let b = (λx. f x d) c s
c = fst (unJust b)

in b) s ′

= let b = f c d s ′

c = fst (unJust b)
in b

which are identical.

Axiom 3

mfix (λ˜ (x , ). mfix (λ˜ ( , y). f x y))
= mfix (λu. mfix (λv. f (fst u, snd v)))
= λs. let a = (λu. mfix (λv. f (fst u, snd v))) b s

b = fst (unJust a)
in a

= λs. let a = mfix (λv. f (fst b, snd v)) s
b = fst (unJust a)

in a
= λs. let a = let c = f (fst b, snd d) s

d = fst (unJust c)
in c

b = fst (unJust a)
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in a
= λs. let a = c

c = f (fst b, snd d) s
d = fst (unJust c)
b = fst (unJust a)

in a
= λs. let a = f (fst b, snd d) s

d = fst (unJust a)
b = fst (unJust a)

in a
= λs. let a = f (fst b, snd b) s

b = fst (unJust a)
in a

= λs. let a = f b s
b = fst (unJust a)

in a
= mfix f

O.1.1 Equations 5, 6, and 7

This version of the state-with-exceptions monad satisfies equation 5, requires a strict h for satisfying equa-
tion 6 and satisfies equation 7 only as an inequality. This is hardly surprising since the maybe monad behaves
the same way.

We will first prove property 7 and then use the ideas presented in that proof to establish equation 5.

The proof for property 7 is quite tedious. We need to expand equations and perform lots of case analysis.
First start by looking at the lhs:

mfix (λ˜ (x , y). f x �= λz. g z �= λw. return (z , w))
= mfix (λt. f (fst t) �= λz. g z �= λw. return (z , w))
= {expand mfix}

λs. let a = ((f . fst) b �= λz. g z �= λw. return (z , w)) s
b = fst (unJust a)

in a
= {expand �= }

λs. let a = case (f . fst) b s of
Nothing → Nothing
Just (c, s ′) → (g c �= λw. return (c, w)) s ′

b = fst (unJust a)
in a

At this point, define an auxiliary function aux as follows:

aux q = case q of
Nothing → Nothing
Just (c, s ′) → (g c �= λw. return (c, w)) s ′

Now continue the derivation:
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= {use aux}
λs. let a = aux ((f . fst) b s)

b = fst (unJust a)
in a

= λs. let a = aux ((f . fst) (fst (unJust a)) s) in a
= λs. let a = aux (((f . fst . fst . unJust) a) s) in a
= λs. let a = (aux . flip (f . fst . fst . unJust) s) a in a
= λs. fix (aux . flip (f . fst . fst . unJust) s)

Similarly, manipulate rhs:

mfix f �= λz. g z �= λw. return (z , w )
= λs. case mfix f s of

Nothing → Nothing
Just (c, s ′) → (g c �= λw. return (c, w)) s ′

= {use aux}
λs. aux (mfix f s)

= {expand mfix}
λs. aux (let a = f b s

b = fst (unJust a)
in a)

= λs. aux (let a = f (fst (unJust a)) s in a)
= λs. aux (fix (flip (f . fst . unJust) s))

Since both lhs and rhs are functions, to prove that lhs v rhs, we need to prove that when applied to an
arbitrary s, the inequality is preserved. Furthermore, recalling fix (f · g) = f (fix (g · f)) and that fix and
aux are monotonic, we need:

flip (f · π2
1 · unJust) s · aux v flip (f · π1 · unJust) s

Again, since both hand sides are functions, we apply to an arbitrary A (of type Maybe (a, s)):
Case 1: A = ⊥: f ⊥ s v f ⊥ s.
Case 2: A = N: f ⊥ s v f ⊥ s.
Case 3: A = J ⊥: f ⊥ s v f ⊥ s.
Case 4: A = J (c, s′): Look at lhs:

flip (f . fst . fst . unJust) s ((g c �= λw. return (c, w)) s ′)
= flip (f . fst . fst . unJust) s

(case g c s ′ of
Nothing → Nothing
Just (d , s ′′) → Just ((c, d), s ′′))

= case g c s ′ of
undefined → f undefined s
Nothing → f undefined s
J (d , s ′′) → f c s

The right hand side is simply f c s. Now, a simple case analysis on the value of g c s′, shows that lhs v rhs
holds in all cases.

Now, we take a look at the proof for equation 5. Recall the equation:

mfix (λ˜(x, y).f y �= λz.return (h z, z)) = mfix f �= return (h z, z)
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We will prove the symmetric version:

mfix (λ˜(x, y).f x�= λz.return (z, h z)) = mfix f �= return (z, h z)

Using monad laws, lhs is equivalent to:

mfix (λ˜(x, y).f x�= λz.(return · h) z �= λw.return (z, w))

while the rhs becomes:
mfix f �= λz.(return · h) z �= λw.return (z, w)

That is, we can reuse the proof we just did for equation 7, noting that g in that proof is now of the form
return · h. It is easy to see that our proof obligation becomes:

flip (f · π2
1 · unJust) s · aux = flip (f · π1 · unJust) s

with the following definition of aux:

aux q = case q of
Nothing → Nothing
Just (c, s ′) → Just ((c, h c), s ′)

The final case analysis we did above becomes:
Case 1: A = ⊥: f ⊥ s = f ⊥ s.
Case 2: A = N: f ⊥ s = f ⊥ s.
Case 3: A = J ⊥: f ⊥ s = f ⊥ s.
Case 4: A = J (c, s′): f c s = f c s

This establishes the equality in all cases, completing the proof of equation 5.

O.2 When only the value part might fail

Again, the definitions are:

newtype STE2 s a = s -> (Maybe a, s)

instance Monad (STE2 s) where

return x = \s -> (Just x, s)

f >>= g = \s -> case f s of

(Nothing, s’) -> (Nothing, s’)

(Just a, s’) -> g a s’

instance MonadRec (STE2 s) where

mfix f = \s -> let a = f b s

b = unJust (fst a)

in a

Again, we first verify the monad laws:

Monad Axiom: return is the right unit:
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f >>= return = \s. case f s of

(Nothing, s’) -> (Nothing, s’)

(Just a, s’) -> return a s’

= \s. case f s of

(Nothing, s’) -> (Nothing, s’)

Just (a, s’) -> (Just a, s’)

= \s. f s

= f

Monad Axiom: return is the left unit:

return x >>= f = \s. case return x s of

(Nothing, s’) -> (Nothing, s’)

(Just a, s’) -> f a s’

= \s. case (Just x, s) of

(Nothing, s’) -> (Nothing, s’)

(Just a, s’) -> f a s’

= \s. f x s

= f x

Monad Axiom: �= is associative:
Look at lhs:

f >>= \x. (g x >>= h)

= \s. case f s of

(Nothing, s’) -> (Nothing, s’)

(Just a, s’) -> (g a >>= h) s’

= \s. case f s of

(Nothing, s’) -> (Nothing, s’)

(Just a, s’) -> case g a s’ of

(Nothing, s’’) -> (Nothing, s’’)

(Just b, s’’) -> h b s’’

Now transform rhs:

(f >>= g) >>= h

= \s. case (f >>= g) s of

(Nothing, s’) -> (Nothing, s’)

(Just a, s’) -> h a s’

= \s. case (case f s of

(Nothing, s’’) -> (Nothing, s’’)

(Just b, s’’) -> g b s’’) of

(Nothing, s’) -> (Nothing, s’)

(Just a, s’) -> h a s’

= \s. case f s of

(Nothing, s’’) -> (Nothing, s’’)

(Just b, s’’) -> case g b s’’ of

(Nothing, s’) -> (Nothing, s’)

(Just a, s’) -> h a s’
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Now we look at the mfix axioms:

Axiom 1

mfix (return . h) = \s. let a = (return . h) b s

b = unJust (fst a)

in a

= \s. let a = (Just (h b), s)

b = h b

in a

= \s. let a = (Just (h (fix h)), s) in a

= \s. return (fix h) s

= return (fix h)

Axiom 2

First work on lhs:

mfix (\x. a >>= f x)

= \s. let b = (a >>= f c) s

c = unJust (fst b)

in b

= \s. let b = case a s of

(Nothing, s’) -> (Nothing, s’)

(Just d, s’) -> f c d s’

c = unJust (fst b)

in b

Now look at rhs:

a >>= \y. mfix (\x. f x y)

= \s. case a s of

(Nothing, s’) -> (Nothing, s’)

(Just d, s’) -> mfix (\x. f x d) s’

Apply both handsides to an arbitrary s, we get:

lhs = let b = case a s of

(Nothing, s’) -> (Nothing, s’)

(Just d, s’) -> f c d s’

c = unJust (fst b)

in b

rhs = case a s of

(Nothing, s’) -> (Nothing, s’)

(Just d, s’) -> mfix (\x. f x d) s’
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Now, do a case analysis on a s. The cases ⊥ and (Nothing, s′) are immediate. When a s = (Just d, s′), we
have:

lhs = let b = f c d s’

c = unJust (fst b)

in b

rhs = mfix (\x. f x d) s’

= (\s. let b = (\x. f x d) c s

c = unJust (fst b)

in b) s’

= let b = f c d s’

c = unJust (fst b)

in b

which are identical.

Axiom 3

mfix (\~(x, _). mfix (\~(_, y). f x y))

= mfix (\u. mfix (\v. f (fst u, snd v)))

= \s. let a = (\u. mfix (\v. f (fst u, snd v))) b s

b = unJust (fst a)

in a

= \s. let a = mfix (\v. f (fst b, snd v)) s

b = unJust (fst a)

in a

= \s. let a = let c = f (fst b, snd d) s

d = unJust (fst c)

in c

b = unJust (fst a)

in a

= \s. let a = c

c = f (fst b, snd d) s

d = unJust (fst c)

b = unJust (fst a)

in a

= \s. let a = f (fst b, snd d) s

d = unJust (fst a)

b = unJust (fst a)

in a

= \s. let a = f (fst b, snd b) s

b = unJust (fst a)

in a

= \s. let a = f b s

b = unJust (fst a)

in a

= mfix f

O.2.1 Equations 5, 6, and 7

This version of the state-with-exceptions monad behaves exactly as the first version discussed above. Again,
we first prove 7 holds as an inequality. The proof is very similar to the previous version. We start by looking
at the lhs:
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mfix (\~(x, y). f x >>= \z. g z >>= \w. return (z, w))

= mfix (\t. f (fst t) >>= \z. g z >>= \w. return (z, w))

= {expand mfix}

\s. let a = ((f . fst) b >>= \z. g z >>= \w. return (z, w)) s

b = unJust (fst a)

in a

= {expand >>=}

\s. let a = case (f . fst) b s of

(Nothing, s’) -> (Nothing, s’)

(Just c, s’) -> (g c >>= \w. return (c, w)) s’

b = unJust (fst a)

in a

Similar to the previous version, we define an auxiliary function aux as follows:

aux q = case q of

(Nothing, s’) -> (Nothing, s’)

(Just c, s’) -> (g c >>= \w. return (c, w)) s’

Now continue the derivation:

= {use aux}

\s. let a = aux ((f . fst) b s)

b = unJust (fst a)

in a

= \s. let a = aux ((f . fst) (unJust (fst a)) s) in a

= \s. let a = aux (((f . fst . unJust . fst) a) s) in a

= \s. let a = (aux . flip (f . fst . unJust . fst) s) a in a

= \s. fix (aux . flip (f . fst . unJust . fst) s)

Similarly, manipulate rhs:

mfix f >>= \z. g z >>= \w. return (z, w)

= \s. case mfix f s of

(Nothing, s’) -> (Nothing, s’)

(Just c, s’) -> (g c >>= \w. return (c, w)) s’

= {use aux}

\s. aux (mfix f s)

= {expand mfix}

\s. aux (let a = f b s

b = unJust (fst a)

in a)

= \s. aux (let a = f (unJust (fst a)) s in a)

= \s. aux (fix (flip (f . unJust . fst) s))

Reasoning exactly as in the previous case, we need:

flip (f · π1 · unJust · π1) s · aux v flip (f · unJust · π1) s

Again, since both hand sides are functions, we apply to an arbitrary A (of type (Maybe a, s)):
Case 1: A = ⊥: f ⊥ s v f ⊥ s.
Case 2: A = (⊥, s′): f ⊥ s v f ⊥ s.
Case 3: A = (N, s′): f ⊥ s v f ⊥ s.
Case 4: A = (J c, s′): Look at lhs:
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flip (f . fst . unJust . fst) s ((g c >>= \w. return (c, w)) s’)

= flip (f . fst . fst . unJust) s

(case g c s’ of

(Nothing, s’) -> (Nothing, s’)

(Just d, s’’) -> (Just (c, d), s’’))

= case g c s’ of

undefined -> f undefined s

(Nothing, s’’) -> f undefined s

(Just d, s’’) -> f c s

The right hand side is simply f c s. Now, a simple case analysis on the value of g c s′, shows that lhs v rhs
holds in all cases.

As in the previous case, the proof for equation 5 follows exactly the same pattern. The new definition of
aux is:

aux q = case q of

(Nothing, s’) -> (Nothing, s’)

(Just c, s’) -> (Just (c, h c), s’)

with the proof obligation:

flip (f · π1 · unJust · π1) s · aux = flip (f · unJust · π1) s

And the final case when A = (J c, s′), both hand sides yield: f c s, completing the proof for equation 5.

P The reader monad

We give details for the reader monad, which is just mentioned in the actual paper. The declarations are
(again, no tags):

type Reader e a = e -> a

instance Monad (Reader e) where

return x = \e -> x

m >>= k = \e -> k (m e) e

instance MonadRec (Reader e) where

mfix f = \e -> let a = f a e in a

The definitions are very similar to that of the state monad, as expected. Typically, one fixes a certain
type e (such as: [(String, String)]), to behave as the environment from which values are read, while
some non-standard morphisms (such as fetch and extend with obvious definitions) are used to manipulate
environments. We prove that the reader monad is recursive by showing that it (obviously) embeds into the
state monad. The embedding is:

ε r = λs.(r s, s)

Notice that ηr = const, and ηs = λx.λs.(x, s).
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Equation 8: We need: ε · returnr = returns.

ε · returnr = λx.ε (returnr x)

= λx.λs.(const x s, s)

= λx.λs.(x, s)

= ηs

Equation 9: We need to establish that ε (p�=r h) = ε p�=s ε · h.

ε (p�=r h) = ε (λe.h (p e) e)

= λs.(h (p s) s, s)

and,

ε p�=s ε · h = (λs.(p s, s))�=s ε · h

= λs.(ε · h) (p s) s

= λs.ε (h (p s)) s

= λs.(λq.(h (p s) q, q)) s

= λs.(h (p s) s, s)

Equation 10: We need: ε (mfixr h) = mfixs (ε · h).

eps (mfix h) = eps (\e. let a = h a e in a)

= \s. (let a = h a s in a, s)

= \s. let a = h a s

in (a, s)

and,

mfix (eps . h) = mfix (\x. eps (h x))

= mfix (\x. \s. (h x s, s))

= \s. let (a, s’) = (h a s, s)

in (a, s’)

= \s. let a = h a s

in (a, s)

Finally, we need ε to be monic. The obvious left inverse: εl f = π1 · f guarantees that it’s split:

εl (ε f) = εl (λs.(f s, s))

= π1 · λs.(f s, s)

= λs.π1 (f s, s)

= λs.f s

= f
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Q The output monad

We give details for the output monad. The declarations are:

newtype Out a = Out (a, String)

instance Monad Out where

return x = Out (x, "")

Out ~(x, s) >>= f = let Out (y, s’) = f x

in Out (y, s ++ s’)

instance MonadRec Out where

mfix f = fix (f . unOut)

where unOut (Out (a, _)) = a

We prove that the output monad is recursive by showing that it embeds into the state monad. The embedding
is:

ε (x, s) = λs′.(x, s′ ++ s)

Equation 8: We need: ε · returno = returns.

ε · returno = λs′.(x, s′ ++ "")

= λs′.(x, s′)

= ηs

Equation 9: We need to establish that ε (p�=o h) = ε p�=s ε · h.

eps ((a, s) >>= f) = eps (let (b, s’) = f a in (b, s ++ s’))

= let (b, s’) = f a in eps (b, s ++ s’)

= let (b, s’) = f a in \s’’. (b, s’’ ++ s ++ s’)

and,

eps (a, s) >>= eps . f = (\s’. (a, s’ ++ s)) >>= eps . f

= \s’’. let (b, s’’’) = (a, s’’ ++ s)

in eps (f b) s’’’

= \s’’. let (b, s’) = (a, s’’++ s)

in eps (f b) s’

= \s’’. eps (f a) (s’’ ++ s)

= \s’’. (let (b, s’) = f a

in \s’’’. (b, s’’’ ++ s’)) (s’’ ++ s)

= \s’’. let (b, s’) = f a

in (b, s’’ ++ s ++ s’)

= let (b, s’) = f a in \s’’. (b, s’’ ++ s ++ s’)

Equation 10: We need: ε (mfixo h) = mfixs (ε · h). We use the following equivalent definition of mfix to
simplify the proof:
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mfix f = let (a, s) = f a in (a, s)

The equivalence of this definition to the previously given one is obvious. Notice that unOut=π1:

mfix f = let (a, s) = f a in (a, s)

= let a = fst (f a)

s = snd (f a)

in (a, s)

= let a = fix (fst . f)

s = snd (f a)

in (a, s)

= let a = fst (fix (f . fst))

s = snd (f a)

in (a, s)

= let a = fst (fix (f . fst))

s = snd (f (fst (fix (f . fst))))

in (a, s)

= let a = fst (fix (f . fst))

s = snd (fix (f . fst))

in (a, s)

= (fst (fix (f . fst)), snd (fix (f . fst)))

= fix (f . fst)

= fix (f . unOut)

This derivation should make it clear the need for the ˜ in the definition of �= and the newtype declaration
for the output monad: true products (i.e. non-lifted) are essential in establishing the embedding.

We look at both hand sides of Equation 10:

eps (mfix h) = eps (let (a, s) = h a in (a, s))

= let (a, s) = h a in \s’. (a, s’ ++ s)

= let (a, s’) = h a in \s. (a, s ++ s’)

and,

mfix (eps . h) = \s. let (a, s’) = eps (h a) s in (a, s’)

= \s. let (a, s’) = let (b, s’’) = h a

in (\s’’’. (b, s’’’ ++ s’’)) s

in (a, s’)

= \s. let (a, s’) = let (b, s’’) = h a

in (b, s ++ s’’)

in (a, s’)

= \s. let (a, s’) = (b, s ++ s’’)

(b, s’’) = h a

in (a, s’)

= \s. let a = b

s’ = s ++ s’’

(b, s’’) = h a

in (a, s’)

= \s. let (b, s’’) = h b in (b, s ++ s’’)

= \s. let (a, s’) = h a in (a, s ++ s’)
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Finally, we need ε to be monic. The obvious left inverse: εl f = f "" guarantees that it’s split:

εl (ε (x, s)) = εl (λs′.(x, s′ ++ s))

= (x,"" ++ s)

= (x, s)

R The tree monad

In this section we look at the tree monad, which is just mentioned in the paper. The declarations are:

data T a = L a | F (T a) (T a)

unL (L a) = a

lc (F l _) = l

rc (F _ r) = r

instance Monad T where

return x = L x

(L a) >>= f = f a

(F l r) >>= f = F (l >>= f) (r >>= f)

instance MonadRec T where

mfix f = case fix (f . unL) of

L x -> L x

F _ _ -> F (mfix (lc . f)) (mfix (rc . f))

We start by proving the monad laws.

Monad Axiom: return is the right unit: t�= return = t. Induction on the structure of t:

Base Case 1: t = ⊥. ⊥ = ⊥.
Base Case 2: t = L x. L x = L x.
Inductive Step: t = F l r.

F l r >>= return = F (l >>= return) (r >>= return)

= F l r {I.H}

Monad Axiom: return is the left unit:

return x�= f = L x�= f = f x

Monad Axiom: �= is associative: t�= λx.(fx�= g) = (t�= f)�= g: Induction on the structure of t:

Base Case 1: t = ⊥. ⊥ = ⊥.
Base Case 2: t = L x. f x�= g = f x�= g.
Inductive Step: t = F l r.

F l r >>= \x. (f x >>= g)

= F (l >>= \x. (f x >>= g)) (r >>= \x. (f x >>= g))

= F ((l >>= f) >>= g) ((r >>= f) >>= g) {I.H}

= (F (l >>= f) (r >>= f)) >>= g

= (F l r >>= f) >>= g
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R.1 The tree lemma

Analogous to the list lemma, we have:

Lemma The Tree instance of mfix satisfies:

mfix f = ⊥ ←→ f ⊥ = ⊥

mfix f = L ⊥ ←→ f ⊥ = L ⊥

unL (mfix f) = fix (unL · f)

lc (mfix f) = mfix (lc · f)

rc (mfix f) = mfix (rc · f)

Proof We look at each case in turn:

First equivalence:

mfix f = ⊥ ←→ fix (f · unL) = ⊥

←→
⊔

{⊥, (f · unL) ⊥, (f · unL)2⊥, . . .} = ⊥

←→ (f · unL) ⊥ = ⊥

←→ f ⊥ = ⊥

Second equivalence:

mfix f = L ⊥ ←→ fix (f · unL) = L ⊥

←→
⊔

{⊥, (f · unL) ⊥, (f · unL)2⊥, . . .} = L ⊥

←→ (f · unL) ⊥ = L ⊥

←→ f ⊥ = L ⊥

Third Equality:

unL (mfix f) = unL (case fix (f . unL) of

L x -> L x

F _ _ -> F (mfix (lc . f)) (mfix (rc . f)))

= case fix (f . unL) of

L x -> x

F _ _ -> undefined

= unL (fix (f . unL))

= fix (unL . f)

Fourth Equality: Case analysis on the value of mfix f :

Case 1: mfix f = ⊥: Now, lhs = ⊥. By the first equivalence, f is strict. Consider rhs:

mfix (lc . f) = case fix (lc . f . unL) of

L x -> L x

F _ _ -> F (mfix (lc . lc . f)) (mfix (rc . lc . f))
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Now, lc, f and unL are all strict functions, and hence their composition is strict as well, resulting in ⊥ for
rhs.

Case 2: mfix f = L x. Again, lhs is ⊥ and we know that f ⊥ is L of something (by monotonicity). For rhs,
we have the same expansion above, and the case expression becomes:

⊔

{⊥, (lc · f · unL) ⊥ = ⊥, . . .} = ⊥

Hence, both hand sides are, again, ⊥.

Case 3: mfix f = F l r.

lc (mfix f) = lc (case fix (f . unL) of

L x -> L x

F _ _ -> F (mfix (lc . f)) (mfix (rc . f)))

Since mfix f = F l r, the case expression should take its 2nd branch:

= lc (F (mfix (lc . f)) (mfix (rc . f)))

= mfix (lc . f)

Fifth Equality: Completely symmetric to the previous equality.

This completes the proof of the lemma. �

R.2 Proving that the tree monad is recursive

Axiom 1

mfix (return . h) = case fix (return . h . unL) of ...

= case return (fix (h . unL . return)) of ...

= case L (fix (h . id)) of

L x -> L x

F _ _ -> ...

= L (fix h)

= return (fix h)

Axiom 2 By induction on the structure of a. The cases ⊥ and L x are trivial. (When a = ⊥, both lhs and
rhs become ⊥. When a = L u, both become mfix (λx.f x u).) In the inductive case, we assume: a = F u v,
and proceed as follows:

mfix (\lx. F u v >>= f x)

= mfix (\x. F (u >>= f x) (v >>= f x))

= case fix (\x. (F (u >>= f x) (v >>= f x)) . unL) of ...

= case fix (\x. F (u >>= f (unL x)) (v >>= f (unL x))) of ...

= {By monotonicity, the fix expression necessarily yields a fork.

Notice that when fed bottom, it yields a fork}

F (mfix (lc . (\x. F (u >>= f (unL x)) (v >>= f (unL x)))))

(mfix (rc . (\x. F (u >>= f (unL x)) (v >>= f (unL x)))))

= F (mfix (u >>= f (unL x))) (mfix (v >>= f (unL x)))

= F (u >>= \y. mfix (\x. f x y)) (v >>= \y. mfix (\x. f x y)) {I.H}

= (F u v) >>= \y. mfix (\x. f x y)
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Axiom 3 We do a case analysis on the value of mfix f :
Case 1: mfix (λu.mfix (λv.f (π2 u, π2 v))) = ⊥:

mfix (λu.mfix (λv.f (π2 u, π2 v))) = ⊥

←→ mfix (λv.f (⊥, π2 v)) = ⊥

←→ f (⊥,⊥) = ⊥

←→ mfix f = ⊥

Case 2: mfix (λu.mfix (λv.f (π2 u, π2 v))) is leaf.

mfix (λu.mfix (λv.f (π2 u, π2 v))) is leaf

←→ mfix (λv.f (⊥, π2 v)) is leaf

←→ f (⊥,⊥) is leaf

←→ mfix f is leaf

Now, L · unL = id, since both hand sides are leafs. Consider:

mfix (λu.mfix (λv.f (π2 u, π2 v)))

= L (unL (mfix (λu.mfix (λv.f (π2 u, π2 v)))))

= L (fix (λu.fix (λv. (unL · f) (π2 u, π2 v))))

= L (fix (unL · f))

= L (unL (mfix f))

= mfix f

Cases 3: Now, we know that both hand sides are “fork”s. We use the approxT lemma (proven next) to
prove:

∀n. approxT n (mfix (λu.mfix (λv.f (π1 u, π2 v)))) = approxT n (mfix f)

We perform an induction on n. The base case, n = 0, is trivial, as both sides reduce to ⊥. For the inductive
step, we assume:

approxT k (mfix (λu.mfix (λv.f (π1 u, π2 v)))) = approxT k (mfix f)

Notice that this holds ∀f, g. Here is the inductive step:

approxT (k + 1) (mfix (λu.mfix (λv.f (π1 u, π2 v))))

= approxT (k + 1) (F (lc (mfix (λu.mfix (λv.f (π1 u, π2 v)))))

(rc (mfix (λu.mfix (λv.f (π1 u, π2 v))))))

= F (approxT k (mfix (λu.mfix (λv.(lc · f) (π1 u, π2 v)))))

(approxT k (mfix (λu.mfix (λv.(rc · f) (π1 u, π2 v)))))

= F (approxT k (mfix (lc · f))) (approxT k (mfix (rc · f)))

= approxT (k + 1) (F (lc (mfix f)) (rc (mfix f)))

= approxT (k + 1) (mfix f)
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R.3 The approxT lemma

Similar to approx lemma for lists, we have used the approxT lemma for trees. The function approxT is
defined as:

approxT :: Integer -> T a -> T a

approxT (n+1) (L x) = L x

approxT (n+1) (F l r) = F (approx n l) (approx n r)

The lemma we used in our proof is:

Lemma limn→∞ approxT n t = t.

Proof By induction on the structure of the tree t.
Base Case 1: t = ⊥: ⊥ = ⊥.
Base Case 2: t = L x:

lim
n→∞

approxT n (L x) = lim {⊥, L x, L x, . . .} = L x

Inductive step: t = F l r: The induction hypotheses are: limn→∞ approxT n l = l and limn→∞ approxT n r =
r. The inductive step is:

lim
n→∞

approxT n (F l r)

= lim {⊥, F ⊥ ⊥, F (approxT 1 l) (approxT 1 r),

F (approxT 2 l) (approxT 2 r), . . .}

= F ( lim
n→∞

approxT n l) ( lim
n→∞

approxT n r)

= F l r

Which completes the proof of the approxT lemma. �

R.4 Equation 5

The tree monad satisfies equation 5, as all others do. Here’s the proof:

Proof We’re going to prove:

∀k. approxT k (mfix (map 〈h, id〉 · f · π2)) = approxT k (map 〈h, id〉 (mfix f))

The equivalence of this form and equation 5 was discussed in the list monad case. The proof proceeds by
induction, the base case when k = 0 is trivial, both hand sides are ⊥. The induction hypothesis states:

∀f. approxT k (mfix (map 〈h, id〉 · f · π2)) = approxT k (map 〈h, id〉 (mfix f))

and we try to prove:

approxT (k + 1) (mfix (map 〈h, id〉 · f · π2)) = approxT (k + 1) (map 〈h, id〉 (mfix f))

Before proceeding, recall the definition of map in this case:
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map :: (a -> b) -> T a -> T b

map f (L x) = L (f x)

map f (F l r) = F (map f l) (map f r)

We do a case analysis on the value of mfix (map 〈h, id〉 · f · π2):

Case ⊥: By the tree lemma, (map 〈h, id〉 · f · π2) ⊥ = ⊥, which implies that f ⊥ = ⊥. Since mfix f = ⊥,
both hand sides reduce to ⊥.

Case L x: By the tree lemma, (map 〈h, id〉 · f · π2) ⊥ = L y, for some y (not necessarily x). Hence, f ⊥
must be a leaf node. But then, mfix f must also be a leaf node. By looking at the definition of mfix for the
tree monad, we conclude that:

fix (map 〈h, id〉 · f · π2 · unL) = L x

which implies that:
map 〈h, id〉 (fix (f · π2 · unL ·map 〈h, id〉)) = L x

It is a simple matter to check that:

f · π2 · unL ·map 〈h, id〉 = f · unL

which means that:
map 〈h, id〉 (fix (f · unL)) = L x

Now consider mfix f . Since f ⊥ is a leaf node, mfix f must be a leaf node as well. By the definition of mfix,
we have: mfix f = fix (f · unL), and the right hand side becomes:

map 〈h, id〉 (fix (f · unL))

which we have determined to be L x. Hence both hand sides are the same.

Case F l r: Now, lhs becomes:

approxT (k+1) (mfix (map <h, id> . f . snd))

= approxT (k+1) (F (lc (mfix (map <h, id> . f . snd)))

(rc (mfix (map <h, id> . f . snd))))

= approxT (k+1) (F (mfix (lc . map <h, id> . f . snd))

(mfix (rc . map <h, id> . f . snd)))

It can simply be proven by case analysis that:

lc ·map f = map f · lc

and similarly for rc. Continuing our derivation:

= approxT (k+1) (F (mfix (map <h, id> . (lc . f) . snd))

(mfix (map <h, id> . (rc . f) . snd)))

= F (approxT k (mfix (map <h, id> . (lc . f) . snd)))

(approxT k (mfix (map <h, id> . (rc . f) . snd)))

Applying the induction hypothesis twice, we get:

= F (approxT k (map <h, id> (mfix (lc . f))))

(approxT k (map <h, id> (mfix (rc . f))))

= F (approxT k (lc (map <h, id> (mfix f))))

(approxT k (rc (map <h, id> (mfix f))))
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Now consider rhs. Since f ⊥ is a fork, so is mfix f , yielding:

approxT (k+1) (map <h, id> (mfix f))

= approxT (k+1) (map <h, id> (F (lc (mfix f)) (rc (mfix f))))

= approxT (k+1) (F (map <h, id> (lc (mfix f)))

(map <h, id> (rc (mfix f))))

= F (approxT k ((map <h, id> . lc) (mfix f)))

(approxT k ((map <h, id> . rc) (mfix f)))

= F (approxT k (lc (map <h, id> (mfix f))))

(approxT k (rc (map <h, id> (mfix f))))

Which completes the proof. �

R.5 Equations 6 and 7

The tree monad satisfies equation 6 for only strict h. It is possible to construct a counter-example, like in
the list and Maybe cases. As in the case of the list monad, although we do not have an explicit proof, we
conjecture that equation 7 will apply as an inequality.
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