
A Recursive do for Haskell

Levent Erkök John Launchbury

OGI School of Science and Engineering, OHSU

Abstract

Certain programs making use of monads need to perform recur-
sion over the values of monadic actions. Although the do-notation
of Haskell provides a convenient framework for monadic program-
ming, it lacks the generality to support such recursive bindings. In
this paper, we describe an enhanced translation schema for the do-
notation and its integration into Haskell. The new translation allows
variables to be bound recursively, provided the underlying monad
comes equipped with an appropriate fixed-point operator.

Categories and Subject Descriptors

D.3 [Software]: Programming Languages; D.3.3 [Programming
Languages]: Language Constructs and Features—control struc-
tures, recursion

General Terms

Languages, Design

Keywords

Haskell, monads, do-notation, value recursion

1 Introduction

Recursive specifications are ubiquitous in the functional paradigm.
While let (and where) constructs of Haskell provide a convenient
notation for expressing recursive bindings in pure computations,
the do-notation stops short of providing a similar facility in the
monadic world. (Recall that a variable bound in a do-expression
is visible only in the textually following generators, with no provi-
sion for cyclic definitions [18].) The aim of this paper is to bridge
this gap, describing a new translation schema for the do-notation
that allows variables to be bound recursively.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’02, October 3, 2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 ACM 1-58113-605-6/02/0010 ...$5.00

Let us consider a motivating example to familiarize ourselves with
the notion of recursive monadic bindings: hardware modeling using
monads. The aim is to model circuit elements such as and, or gates,
multiplexers, registers, delays, etc., which can be combined in var-
ious ways to form bigger circuits. One way to solve this problem
is to use ordinary lists as signals, and list processing functions as
circuit elements, following the model used in the Hawk and Lava
hardware description languages [3, 15]. Another alternative is to
use monads, abstracting away from any particular representation
of signals and circuits. As argued by Launchbury et. al. [14], the
monadic approach allows “elaborations”, i.e., by simply changing
the underlying monad we can obtain different interpretations of the
same circuit, a highly desirable feature in a hardware modeling lan-
guage. For instance, we can generically specify a half-adder simply
by:

halfAdd :: Signal Bool → Signal Bool →
Circuit (Signal Bool, Signal Bool)

halfAdd i1 i2 = do sum ← xor i1 i2
carry ← and i1 i2
return (sum, carry)

By picking appropriate instantiations for the Signal data type and
the Circuit monad, (and corresponding implementations of xor,
and and gates), we can simulate, dump a wire-by-wire descrip-
tion, or render this description of the half-adder in another language
(such as VHDL) for further processing. This is the strength of the
monadic approach.

Unfortunately, the monadic solution has its own shortcomings.
Most importantly, it is not clear how to model circuits with feedback
loops. Consider how we might model the following counter [14]:

zero

inc

out

next

MUX

reset

DELAY 0

0

+1

The aim is to increment the value of the out line by 1 at each clock
tick, dropping down to 0 whenever the reset line goes high. Follow-
ing the half-adder example, we would like to model this circuit as
follows:

29

counter :: Signal Bool → Circuit (Signal Int)
counter reset = do next ← delay 0 inc

inc ← lift1 (+1) out
out ← mux reset zero next
zero ← lift0 0
return out

Note that the description we have given corresponds to the circuit
diagram very closely. Alas, this definition is not valid Haskell. The
variable inc used in the first line is unbound. Of course, we intended
inc to refer to the signal produced in the next generator, but that
information is lost in the do-expression. The variables inc, out, and
next depend on each other cyclically, corresponding to the feedback
loop in the circuit diagram, making serialization impossible.

As the reader might have already guessed, the solution is to use an
appropriate fixed-point operator, tying the recursive knot implied
by the cyclic dependency [3, 5, 7, 14]:

counter :: Signal Bool → Circuit (Signal Int)
counter reset =

mfix (λ˜(next, inc, out, zero).
do next ← delay 0 inc

inc ← lift1 (+1) out
out ← mux reset zero next
zero ← lift0 0
return (next, inc, out, zero))

�= λ(next, inc, out, zero). return out

(A note on notation: Except for some typographical improve-
ments, we will use the Haskell syntax exclusively. For in-
stance, we write Haskell’s \f -> \g -> \x -> (f . g) x as
λf.λg.λx.(f · g) x. Other changes should be obvious.)

The function mfix, known as a value recursion operator, performs
the required recursive computation. As we will briefly review in
the next section, such operators exist for a variety of monads; the
most well known examples being the functions fixIO and fixST for
the internal IO and state monads of Haskell [5, 8].

Regarding the use of such looping operators, Claessen writes [3]:

...loop combinators are unfortunate because they intro-
duce extra clutter in the code that is hard to motivate.

That is indeed the case, as evidenced by the difference between
the specifications of the half-adder and the counter circuits given
above. Compared to the half-adder, the specification of the counter
carries a lot of extra baggage, making it hard to understand and
maintain. (Note that binders can be arbitrary patterns in general, as
in “Just x ← f x”, making the situation even worse.) It is interest-
ing to note that the lack of syntactic support for recursive bindings
in the do-notation was one of the main reasons why Hawk and Lava
languages abandoned the monadic approach in the first place, de-
spite all its advantages. The translation we will introduce in this
paper will handle such recursive definitions automatically, without
bothering programmers with the details of the necessary plumbing.

The remainder of this paper is organized as follows: Section 2 re-
views value recursion operators [5]. Section 3 describes the ba-
sic translation idea, investigating associated problems and design
choices. The translation algorithm is given in Section 4. We have
already implemented the new translation in the Hugs interpreter,
Section 5 reports on the current status of this implementation. Sec-
tion 6 presents some example uses of the recursive do-notation. Fi-
nally, Section 7 summarizes the related work and concludes.

2 Value recursion

The use of mfix to tie the recursive knot in monadic computa-
tions is similar to the handling of recursive bindings in usual let-
expressions. For the sake of clarity, let us use the keyword letrec
in the following discussion to indicate that a binding can be recur-
sive, and let otherwise. In the pure world, we have the following
operational equivalence:

letrec x = e in e′
≡ let x = fix (λx. e) in e′
≡ (λx. e′) (fix (λx. e))

Correspondingly, in the monadic world we expect to find a fixed-
point operator mfix such that:

mdo { x ← e; e′ }
≡ do { x ← mfix (λx. e); e′ }
≡ mfix (λx. e) �= λx. e′

where we use the keyword mdo1 when a binding can be recursive
(i.e., x can appear free in e). This is the basic translation idea behind
the recursive do-notation.

We use the term value recursion to capture this notion of recur-
sion, and the term value recursion operator to refer to correspond-
ing fixed-point operators. Briefly, a value recursion operator for a
given monad m is a function:

mfix :: (α → m α) → m α

which is subject to the following three semantic properties [5]:

1. Strictness: For a function f :: τ→ m τ, mfix f is ⊥ exactly
when f is strict:

f ⊥τ =⊥m τ ⇔ mfix f =⊥m τ

2. Purity: For pure functions, mfix should agree with the usual
fixed-point operator fix:

mfix (return · h) = return (fix · h)

where h :: τ→ τ.

3. Left shrinking: Computations that do not involve the fixed-
point variable can be pulled out of the fixed-point loop from
the left hand side of a�= :

mfix (λx. q �= λy. f x y)
= q �= λy. mfix (λx. f x y)

where x does not appear free in q. The types involved are:
q :: m σ, and f :: τ→ σ→m τ.

Among these three basic requirements, the left-shrinking law re-
quires special mention. Left-shrinking guarantees that the new
translation schema for the do-notation will agree with the already
existing translation, in case there are no recursive bindings. That
is, considering the basic translation schema given above, the left-
shrinking law guarantees that the following two expressions will be
equivalent:

mdo x ← A
B

do x ← A
mdo B

1The closest we can get to µdo using ASCII.

30

provided the code in block A does not make use of the variable
x, or any variable defined in the block B. If B does not have any
recursive bindings either, we can push mdo further down, eventu-
ally eliminating it altogether. Hence, the new translation will pro-
duce the same results as do-notation, provided there are no recursive
bindings. The left-shrinking law we have given above captures this
equivalence formally.

Having given a left-shrinking law, the reader might wonder about a
corresponding right-shrinking law as well. That is, we might expect
being able to pull out computations that do not make use of the
recursion variable from the right hand side of a�=. Symbolically:

mfix (λ(x,). f x �= λz. g z �= λw. return (z, w))
= mfix f �= λz. g z �= λw. return (z, w)

where f :: α→ m α, g :: α→ m β. Note that g only depends on
the result of f , but not the recursion variable, and is lifted out of
the mfix loop. Unfortunately, right shrinking law is not satisfiable
for a wide range of monads, including list, maybe, IO, and the strict
state monads of Haskell. (In general, one can show that if the�=
operator of a monad m is strict in its first argument, then no value re-
cursion operator for m can satisfy the right shrinking property [5].)
As we will see in Section 3.2, this limitation plays an essential role
in the design of the recursive do-notation.

3 The basic translation and design guidelines

For clarity, we will refer to the recursive version of the do-notation
as the mdo-notation, and continue using the keyword mdo. When-
ever we refer to the do-notation, we mean the currently available
notation in Haskell that does not allow variables to be bound recur-
sively.

Generalizing the idea introduced in the previous section, one might
naively translate mdo-expressions as follows:

mdo p1 ← e1
...
pn ← en
e

=⇒

mfix (λ˜BV. do p1 ← e1
..
pn ← en
return BV)

�= λBV. e

where BV stands for the tuple consisting of all variables occurring
in patterns p1 . . . pn, making sure that bound variables are visible
throughout the entire body. The lazy match, obtained by ˜, is essen-
tial in avoiding strictness problems.

However, there are a number of problems raised by the schema
above. First of all, do-expressions in Haskell can use let-generators
to introduce polymorphic bindings for pure expressions [18]. It
is not clear how such bindings can be integrated into this trans-
lation. Similarly, in an ordinary do-expression, variables can be
bound repeatedly, later bindings shadowing earlier ones. When
bindings can be recursive, shadowing becomes problematic. Also,
the use of a single mfix to handle recursion over the entire body of an
mdo-expression may induce poor termination properties whenever
the right-shrinking law fails (see Section 3.2). Intuitively, recur-
sion should only be performed over generators that depend on each
other cyclically, leaving the rest untouched. Furthermore, we would
like to address these issues within the boundaries of the “syntactic-
sugar” approach. That is, the translation should produce only valid
(well-formed and well-typed) Haskell code. This approach keeps
the extension simple, providing a smooth transition.

To summarize, the basic design guidelines for the mdo-notation are:

• Syntactic agreement with the do-notation: Programmers fa-
miliar with the do-notation should have no trouble using the
recursive version.

• Semantic agreement with the do-notation: To the extent
possible, valid do-expressions should also be valid mdo-
expressions, with their meanings preserved.

• Segmentation: Calls to mfix should be isolated to recursive
segments only, leaving the non-recursive parts out of the
fixed-point computation. As we will see, segmentation is
essential because extending the scope of recursion can give
poorer results for those monads that fail to satisfy the right
shrinking law.

• Pure syntactic sugar: The translation should only produce
well-formed and well-typed Haskell code.

In the remainder of this section, we address these issues, refining
the basic translation scheme as we go along.

3.1 Let generators

The do-notation of Haskell allows let-generators, with the following
translation [18]:

do let p1 = e1
...
pn = en

stmts

=⇒

let p1 = e1
...
pn = en

in do stmts

The variables bound in p1 . . . pn can be polymorphically typed. In
mdo-expressions, these variables should be visible throughout the
entire body, suggesting the translation:

mdo stmts1
let p1 = e1

...
pn = en

stmts2
e

=⇒

mfix (λ˜BV. do stmts1
let p1 = e1

...
pn = en

stmts2
return BV)

�= λBV. e

where the variables bound in p1 . . . pn will appear in BV as well.
Unfortunately, the resulting code is not guaranteed to be well-typed.
To illustrate, consider the expression:

mdo z ← f 2 y
y ← f ’a’ z
let f x = return x
return (f y z, f z y)

which gets translated into the following ill-typed expression:

mfix (λ˜(z, y, f).
do z ← f 2 y

y ← f ’a’ z
let f x = return x
return (z, y, f))

�= λ(z, y, f). return (f y z, f z y)

Since f is λ-bound, it becomes monomorphically typed, making its
use at two different types illegal. In fact, the situation is even worse:
Referring to the schematic translation above, let-bound variables in

31

patterns p1 . . . pn will have monomorphic types over stmts1 and e,
while they will retain their polymorphic typings over stmts2 and
e1 . . .en. This situation is quite bizarre. Unfortunately, there is no
easy solution to this problem. Since the tuple BV is λ-bound, the
variables that appear in it will be monomorphically typed when we
attempt to type check the body of the do-expression and the final
expression e.

How should we deal with this problem? Clearly, it is unaccept-
able to ban let-generators completely because they are quite useful
in practice. (Requiring let-bound variables to be visible only in the
textually following generators would also be wrong.) An alternative
is to go slightly beyond Haskell 98, using records with polymorphi-
cally typed fields [12]. Rather than using tuples, we can package
the arguments into a record with polymorphic fields, retaining the
polymorphic typings of let-bound variables. However, the resulting
translation is overly complicated (as we need to perform type infer-
ence during the translation), making it extremely hard to formalize
and automate [6]. One might also argue that we can go beyond
the “syntactic-sugar” approach, i.e., let the translation produce ill-
typed code, provided we can come up with special typing rules for
mdo-expressions. We will not pursue this option here, however, in
order to be able to keep the translation as simple as possible. (We
will get back to this point in Section 4.3.)

The solution we adopt is to require let bindings to be monomor-
phic in mdo-expressions. That is, let becomes just a syntactic sugar
within mdo, translated as:

let p1 = e1
...
pn = en

=⇒

BV ← return (let p1 = e1
...
pn = en

in BV)

where BV is the tuple corresponding to the variables bound in
p1 . . . pn. This idea easily extends to more complicated forms of
function definitions as well. For instance:

mdo let len [] = 0
len (x:xs) = 1 + len xs

return (len [1,2,3], len [])

translates into:

mdo len ← return (let len [] = 0
len (x:xs) = 1 + len xs

in len)
return (len [1,2,3], len [])

Note that we do not commit to a specific monomorphic type for len.
As long as len is used consistently at a single monomorphic type,
the translation will be well-typed.

We expect this restriction to be negligible in practice. Such poly-
morphic let-generators are hardly ever used in practice, and experi-
ence suggests that there is almost always an obvious way to rewrite
the required polymorphic bindings using an explicit let-expression,
avoiding the whole problem. Therefore, we believe that the sim-
plicity of this design far outweighs any generality that might be
obtained by more complicated translation schemas.

Remark 3.1 It might help programmers if monomorphic let-
bindings were visually distinguishable from polymorphic ones. In
a recent paper, Hughes argues that the syntax of let-expressions
should be extended to allow explicit monomorphic bindings, sug-

gesting the use of the symbol := to tell them apart from poly-
morphic ones [10]. If this idea ever gets adopted in Haskell, let-
generators in mdo-expressions can be restricted to use := as well,
emphasizing the fact that they will be monomorphically typed.

3.2 Segmentation

Consider the following mdo-expression, which creates two infinite
lists consisting of 1’s and 2’s respectively.

mdo putStr “all 1s”
ones ← return (1 : ones)
putStr “all 2s”
twos ← return (2 : twos)
putStr “done”

The translation yields:

mfix (λ˜(ones, twos).
do putStr “all 1s”

ones ← return (1 : ones)
putStr “all 2s”
twos ← return (2 : twos)
return (ones, twos))

�= λ(ones, twos). putStr “done”

The resulting code is quite unsatisfactory. The only recursion we
need is in independently computing the lists ones and twos, sug-
gesting a translation of the form:

do putStr “all 1s”
ones ← mdo ones ← return (1 : ones)

return ones
putStr “all 2s”
twos ← mdo twos ← return (2 : twos)

return twos
putStr “done”

where the inner mdo-expressions will further be translated accord-
ingly. This process is analogous to the handling of ordinary let-
expressions in Haskell, where mutually dependent bindings are
grouped together to enhance types of bound variables [18]. In our
case, all variables are λ-bound, i.e., monomorphic, so typing is not
an issue. However, we still need segmentation to avoid the un-
wanted interference from trailing computations. As an example, let

checkSingle :: [Int] → IO ()
checkSingle [x] = putStr “singleton”
checkSingle = putStr “not−singleton”

and consider the following expression:

mdo xs ← return (1 : xs)
checkSingle xs
return ()

The translation yields:

mfix (λxs. do xs ← return (1 : xs)
checkSingle xs
return xs)

�= λxs. return ()

where the call to mfix will invoke the Haskell library function
fixIO :: (α → IO α) → IO α, the value recursion operator for
the IO monad [8]. Intuitively, when executed we expect this expres-
sion to print “not-singleton”, as the value of xs should simply be

32

the infinite list of 1’s. Alas, the translation will diverge! The reason
is simply that the pattern matching in checkSingle is too strict for
the computation to proceed, failing the match immediately. How-
ever, with segmentation, we will get the code:

do xs ← mfix (λxs. return (1 : xs))
checkSingle xs
return ()

which will happily print “not-singleton”, avoiding the unin-
tended interference. (Interestingly, if the final “return ()” is omitted,
the original translation will work as well, since the call to checkS-
ingle will be the final expression, automatically pushed outside the
mfix loop. Just adding “return ()” should not change the result,
pointing out the need for segmentation.) Note that this problem
will arise whenever the right-shrinking law fails, which is the case
for many practical monads of interest. (See Section 2 for details.)

3.3 Shadowing

The current syntax of do-expressions allows variable names to be
bound repeatedly, later bindings shadowing earlier ones. One could
accommodate such bindings in the mdo-notation as well, by au-
tomatically renaming them. As a design choice, however, we re-
ject this possibility. Although shadowing might be convenient at
times, it is also a constant source of bugs. Since bound variables are
visible throughout the entire body in an mdo-expression, allowing
repetitions is much more likely to cause confusion. Therefore, we
disallow shadowing in mdo-expressions. (This design choice also
implies that the scoping rules for mdo-expressions are the same as
those for let and where expressions, providing a consistent view of
scoping in Haskell’s binding constructs, both pure and monadic.)

4 Translation of mdo-expressions

We now present an algorithm to translate mdo-expressions to core
Haskell.

4.1 Preliminaries

In the following discussion, we assume that let-generators are al-
ready de-sugared into their return equivalents, as described in Sec-
tion 3.1. We use the meta-variable p to range over patterns, v over
variables, and e over expressions.

Definition 4.1 (Defined variables.) A generator p← e defines the
variables that appear in the pattern p. If the generator is of the form
e, i.e., without any binding patterns, then it defines no variables. An
mdo-expression m defines a variable v, if v is defined in a generator
of m.

Definition 4.2 (Used variables.) A defined variable v is used in a
generator p← e if v occurs free in e. (And similarly when there is
no binding pattern.)

Definition 4.3 (Recursive variables.) Let m be an mdo-
expression, and v be a used variable of m. Let g be the generator
that defines v. The variable v is recursive if it is either used by g
itself, or by a generator of m that appears textually before g.

Remark 4.4 Every defined variable comes from a distinct genera-
tor, due to the no-repetition requirement. Furthermore, only defined
variables can be used, and only used variables can be recursive.

That is, for an arbitrary mdo-expression, we have:

Recursive Variables⊆ Used Variables⊆ Defined Variables

Definition 4.5 (Dependent generators.) A generator g is depen-
dent on a textually following generator g′, if

• g′ defines a variable that is used by g,

• or, g′ textually appears in between g and g′′, where g is de-
pendent on g′′.

Remark 4.6 The second condition in the above definition can
be considered as interval closure. Note that, unlike a usual let-
expression, we cannot reorder the generators: Order does matter
in performing side effects. Hence, if a generator is dependent on
another, we are forced to package them together with all the gener-
ators in between.

Definition 4.7 (Segments.) A segment of a given mdo-expression
is a minimal sequence of generators such that no generator of the se-
quence depends on an outside generator. As a special case, although
it is not a generator, the final expression in an mdo-expression is
considered to form a segment by itself.

Remark 4.8 To compute the segments, it suffices to start with the
first generator of an mdo-expression, and search for the last gener-
ator that it depends on (Definition 4.5). If such a generator exists,
we add all the generators up to and including it to the segment. This
process is repeated for each and every one of the generators in the
segment, until we cannot add any new generators. Once a segment
is found, the very next generator starts a new segment. Note that the
number of segments is bounded above by the number of generators
in the mdo-expression, plus one for the segment corresponding to
the final expression.

Definition 4.9 (Free variables of a segment.) Let m be an mdo-
expression, v be a defined variable, and s be a segment of m. We
say that v is free in s if (i) v appears free in the right hand side of
a generator of s, and (ii) v is defined in a segment textually preced-
ing s.

Definition 4.10 (Exported variables of a segment.) A variable that
is defined in a segment is exported if it is free in any of the textually
following segments.

4.2 The translation algorithm

We describe the algorithm step by step using the following
schematic running example:

mdo {a b} ← {c d}
{e} ← {f}
{g} ← {h}
{f} ← {a}
{i j} ← {i e}
{j g k}

s0
s1
s2
s3
s4
s5

where {v1 . . .vn} stands for a pattern that binds the variables
v1 . . .vn on the left hand side of a generator, and for an expres-
sion whose free variables are v1 . . .vn on the right hand side. Note
that the actual patterns or expressions are not important for our pur-
poses. For instance, the generator s3 uses the variable a, and defines
f . Generator s2 defines g, but does not use h, since h is not defined

33

in this expression. For our purposes, it is nothing but a constant.
Similar remarks apply to the variables c,d and k as well.

Segmentation step: Starting with the first generator, form the seg-
ments as described in Remark 4.8.

To perform this step, we will need the defined (Di) and used vari-
ables (Ui) of each generator si. Luckily, for our running example,
these sets are obvious:

D0 = {a,b} U0 = /0
D1 = {e} U1 = { f}
D2 = {g} U2 = /0
D3 = { f} U3 = {a}
D4 = {i, j} U4 = {i,e}
D5 = /0 U5 = { j,g}

To compute the segments, we start with s0. Since s0 does not use
any variables, it cannot depend on any further generators, and hence
forms a segment by itself. The next generator to consider is s1,
which uses the variable f . Since f is defined by s3, we have to
package everything in between, i.e., s1, s2, and s3 together. Since
none of these generators depend on s4 or s5, we stop the iteration,
forming the second segment. It is not hard to see that s4 and s5
form the next two segments by themselves. Therefore, we obtain
the following four segments:

S0 = {s0}, S1 = {s1,s2,s3}, S2 = {s4}, S3 = {s5}

Analysis step: For each segment Si do the following: For each
variable v defined in the segment, determine whether it is recursive
(Definition 4.3). Collect all recursive variables of the segment Si
in the set Ri. If Ri is empty, this segment does not need fixed-
point computation, leave it untouched. If Ri is not empty, compute
the exported variables of the segment, Ei, and mark this segment as
recursive for future processing. Returning to our example, we have:

R0 = /0
R1 = { f} E1 = {e,g}
R2 = {i} E2 = { j}
R3 = /0

Since only R1 and R2 are non-empty, we mark S1 and S2 as recur-
sive; other segments are left untouched. (Note that the last segment
can never be recursive.)

Translation step: At this point, we are left with a number of seg-
ments, some of which are marked recursive by the previous step.
For each marked segment, do the following.

• Create the tuples ET and RT corresponding to the sets E and
R. If E is empty, ET will be the empty tuple. Create and add
a brand new variable v to the tuple RT as well.

• Form the generator:
ET ← mfix (λ˜RT. do

.....
v ← return ET
return RT)

�= λRT. return v
where the dotted lines are filled with the generators of the seg-
ment.

Note that segments that are marked recursive by the previous step
are turned into a single generator, while non-recursive segments are

left untouched.2 Returning to our example, we create the following
generator for S1:

(e, g) ← mfix (λ˜(f , v). do {e} ← {f}
{g} ← {h}
{f} ← {a}
v ← return (e, g)
return (f , v))

�= λ(f , v). return v

and the following for S2:

j ← mfix (λ˜(i, v). do {i j} ← {i e}
v ← return j
return (i, v))

�= λ(i, v). return v

The other two segments, S0 and S4, are left untouched.

Finalization step: Now, concatenate all segments and form a single
do-expression out of them. For our example, we obtain:

do {a b} ← {c d}
(e, g) ← mfix (λ˜(f , v). do {e} ← {f}

{g} ← {h}
{f} ← {a}
v ← return (e, g)
return (f , v))

�= λ(f , v). return v
j ← mfix (λ˜(i, v). do {i j} ← {i e}

v ← return j
return (i, v))

�= λ(i, v). return v
{j g k}

Remark 4.11 If there are no recursive bindings present to start
with, the algorithm we have described will just leave the input un-
touched (except for replacing the keyword mdo by do). That is, the
left shrinking property is automatically applied by the algorithm to
get rid of unnecessary calls to mfix. (See Section 2 for details.)

Desugaring step: Now we are left with a non-recursive do-
expression, and we can apply the standard translation to replace
the do with explicit�=’s, completing the translation [18].

4.3 Type checking mdo-expressions

To accommodate for the overloading of the name mfix, we simply
add the following type class to Haskell:

class Monad m ⇒ MonadRec m where
mfix :: (α → m α) → m α

Intuitively, an mdo-expression is well-typed if its translation pro-
duces a well-typed Haskell expression. In order to perform type-
inference, a type judgement of the form:

Γ′ ` ei : m τi Γ′ ` pi : τi Γ′ ` e : m τ
Γ `mdo {pi← ei} e : m τ

2Depending on the sets E and R, several other improvements are
possible in forming the required generator. For instance, if E is a
subset of R, then we do not need a new variable. We skip a detailed
discussion of these improvements here, as they are not essential to
our discussion.

34

suffices, with the side condition that m must belong to the Mon-
adRec class. In this rule, Γ′ is obtained by extending Γ with the
variables defined in the given mdo-expression. Each such vari-
able is assigned a monomorphic type variable to begin with. (For
simplicity, we assume all generators have the form p← e.) The
only special care is needed in handling let-generators, which can
be typed similarly to normal let-expressions. To ensure that vari-
ables introduced by let-generators are monomorphic, it suffices to
leave out the generalization step in the type inference algorithm for
let-bound variables [6, 13].

As we have promised in Section 3.1, let us reconsider the typing
of let-generators, aiming to find a solution that would allow poly-
morphic bindings. In fact, it is arguable that we should have a
more liberal scheme, where normal bindings can be polymorphic
as well. For instance, there is no reason why the following expres-
sion should be ill-typed:

poly :: Maybe ([Bool], [Int]) -- ill−typed
poly = do nil ← return []

return (True : nil, 1 : nil)

However, poly is not a well-typed Haskell expression, since nil is
required to be monomorphic. Of course, we cannot allow polymor-
phic typings arbitrarily, as illustrated by the infamous ML-typing
problem [20], coded here in Haskell:

do rf ← newSTRef (λx. x)
writeSTRef rf (λx. x + 1)
f ← readSTRef rf
return (f True)

Following the previous example, we might think that rf might be
assigned the type ∀α. STRef s (α → α), which leads to disaster.
So, it seems that the maybe monad is mild enough that generaliza-
tion is acceptable, but the state monad is not. It is beyond the scope
of this paper to investigate exactly when one might allow general-
ization, but we conjecture that it is safe to do so in the following
two cases:

• For any variable, provided the underlying monad is com-
pletely definable in Haskell, and not built on top of one of
the internal state or IO monads,

• Or, variables bound by the let-generators, regardless of what
the underlying monad is.

Since checking for the first condition seems to be rather expensive,
we might settle for allowing generalization in let-bound variables
only, which coincides with the treatment of let-generators in the
current do-notation. (Such a solution would be similar to ML’s
value restriction, where only “syntactically distinguishable” values
are typed polymorphically [20].) Of course, a more detailed study
is needed before such an approach can be adopted. We leave the
exploration of this idea for future work.

5 Current status

We have already implemented the new translation fully in the
February 2001 release of the Hugs interpreter [11, 19]. We hope
to integrate the translation into a future version of GHC [9] as well.
In order to avoid any possible confusion, the new translation is trig-
gered only with the keyword mdo, and the Hugs interpreter should
be started with the -98 flag. Programs using the mdo-notation
should import the module MonadRec, which contains the decla-
ration of the MonadRec class, and instances of mfix for the maybe,

list, IO and state monads (both strict and lazy) of Haskell. (See the
appendix for a listing of the MonadRec module.)

The new translation is relatively straightforward to implement; our
implementation in Hugs required around 600 lines of additional
C code (including comments), which constitutes about 1% of the
whole Hugs source base.

6 Examples

In this section, we will present a couple of examples illustrating the
use of the new mdo-notation.

The repmin problem is concerned with the replacement of all the
numbers in a binary tree by their minimum. The challenge is to do
so in a single pass [2, 4]. In 1984, Richard Bird devised a beautiful
solution to this problem, exploiting laziness and cyclic definitions:

data Tree α = L α | B (Tree α) (Tree α)
deriving Show

copy :: Tree Int → Int → (Tree Int, Int)
copy (L a) m = (L m, a)
copy (B l r) m = let (l′, ml) = copy l m

(r′, mr) = copy r m
in (B l′ r′, ml ‘min‘ mr)

repmin :: Tree Int → Tree Int
repmin t = let (t′, m) = copy t m in t′

Here’s an example run:

Main> repmin (B (L 11) (B (L 2) (L 3)))
B (L 2) (B (L 2) (L 2))

The single pass solution is achieved by the clever use of recursion
in the let-expression of the function repmin. By the virtue of the
recursive binding, the function copy simultaneously computes and
replaces all the leaves with m, the minimum value in the tree.

Benton and Hyland take the problem one step further [1]. What
if we also want to print the values stored in the nodes during this
single traversal as well? It is easy to modify copy to achieve this
effect:

copyPrint :: Tree Int → Int → IO (Tree Int, Int)
copyPrint (L a) m = do print a

return (L m, a)
copyPrint (B l r) m = do (l′, ml) ← copyPrint l m

(r′, mr) ← copyPrint r m
return (B l′ r′, ml ‘min‘ mr)

But, it is not clear at all how to modify repmin accordingly. Obvi-
ously, the attempt:

copyPrint t m �= λ(t′, m). return t′

is flawed, since m is no longer recursively bound! We need to tie
the recursive knot with an appropriate value recursion operator. The
mdo-notation comes to the rescue:

repminPrint :: Tree Int → IO (Tree Int)
repminPrint t = mdo (t′, m) ← copyPrint t m

return t′

In this particular case, the appropriate operator is the one for the IO

35

monad, i.e., the function fixIO. The class mechanism will automat-
ically substitute the required instance.

Here is another variation of the repmin problem, demonstrating the
use of the mdo-notation for the list monad. (See the appendix for
the corresponding MonadRec instance declaration.) Consider the
data type:

data Exp = C Int | A Exp Exp

representing simple arithmetic expressions formed out of integer
constants and additions. The problem is to find all possible pair-
swaps of a given expression. A swapping is defined to be the ex-
change of any two constants, not necessarily distinct. (For instance,
the only possible swapping of 1 is 1, while that of 1 + 2 are 1 + 2,
2 + 1, 2 + 1, and 1 + 2. The two 2 + 1’s are considered different,
corresponding to the swappings of 1–2 and 2–1. It is easy to see
that an expression with n constants will have n2 swappings, one
for each pair of constants.) Solving the swappings problem is not
a terribly hard task. Here, we present a particularly neat solution,
illustrating the use of value recursion for the list monad:

replace :: Int → Exp → [(Exp,Int)]
replace x (C y) = [(C x, y)]
replace x (A l r) = [(A l′ r, y) | (l′, y) ← replace x l]

++ [(A l r′, y) | (r′, y) ← replace x r]

pairSwaps :: Exp → [Exp]
pairSwaps e = mdo (e′, m) ← replace n e

(e′′, n) ← replace m e′
return e′′

The call replace x e creates copies of e, where each copy has one
of its constants replaced by x. Each replaced constant is returned
along with the corresponding copy. (If there are n constants in e,
the call to replace will return n copies.) For instance:

replace 1 2 =⇒ [(1, 2)]
replace 1 (2 + 3) =⇒ [(1 + 3, 2), (2 + 1, 3)]

The function pairSwaps makes two successive calls to replace,
threading the input expression through. The first call replaces each
constant with n (yet to be computed), determining the respective
values for m. The second call completes the swapping by substitut-
ing m’s, and by computing the values of n needed in the first call.
Each pairing of m and n corresponds to a possible swapping. The
cyclic dependence between m and n achieves the required swapping
quite neatly.

Here is an example run for the input (1 + 2)+ 3, using appropriate
functions for parsing and printing:

Main> display (pairSwaps (parse "(1 + 2) + 3"))
[(1 + 2) + 3, (2 + 1) + 3, (3 + 2) + 1,
(2 + 1) + 3, (1 + 2) + 3, (1 + 3) + 2,
(3 + 2) + 1, (1 + 3) + 2, (1 + 2) + 3]

Note that the diagonal corresponds to the swappings of the liter-
als with themselves, (i.e., 1–1, 2–2, and 3–3), simply repeating the
original expression.

Further example uses of the mdo-notation can be found in the first
author’s thesis [5, Chapter 9], and online on the web [19].

7 Related work and Conclusions

Predating our work, the need for recursive bindings in the do-
notation was also discussed in the framework of the O’Haskell
language, a concurrent, object-oriented extension to Haskell [16].
O’Haskell extends the do-notation with a variety of new features.
With regard to recursion, O’Haskell provides a special keyword fix,
providing a way to specify a block of generators with mutual de-
pendencies. The translation for fix-blocks is a simpler version of
ours: No segmentation is performed and let-generators are not al-
lowed. The translation seems to allow shadowing, but that appears
to be an oversight, rather than a conscious design decision. The
addition of the fix keyword to the do-notation in O’Haskell arose
from practical programming needs; the syntax and the translation
was not designed to meet a general need.

Paterson’s arrow-notation supports recursive bindings as well, pro-
vided the underlying arrow comes equipped with a loop opera-
tor [17]. Similar to O’Haskell, mutually dependent generators are
explicitly marked, using the keyword rec. No segmentation is
performed on recursive blocks. Currently, let-generators are not
supported in the arrow-notation, but the addition of such bindings
seems straightforward. We note that all variables become λ-bound
after the translation in the arrow-notation, forcing monomorphic
types. Hence, regardless of the support for recursive bindings,
let-generators will suffer from the monomorphism problem in the
arrow-notation.

Recalling our design goals for the mdo-notation, we can conclude
that our translation fulfills its purpose. To review briefly, we have
aimed for syntactic and semantic agreement with the do-notation,
segmentation for grouping minimally dependent sequences of state-
ments together, and preservation of the syntactic-sugar status. Our
translation achieves all these goals, except for syntactic agreement
for a relatively small set of do-expressions. Since let-generators
become monomorphic and shadowing is no longer allowed, any
do-expression using these features will be rejected. However, we
believe that neither of these restrictions will cause serious problems
in practice. Also, if desired, the typing problem might be reme-
died by devising a solution along the lines we have described in
Section 4.3.

It is our belief that Haskell should have just one version of the do-
notation. Just like let-expressions, do-expressions should be capa-
ble of expressing both recursive and non-recursive bindings. (The
type system will insist on the MonadRec instance only when recur-
sive bindings are used.) However, such a change will potentially
break existing programs, due to the minor incompatibilities men-
tioned above. Therefore, a separate notation (using the keyword
mdo) has been adopted for the time being, possibly switching to
the new translation in a future version of the Haskell standard.

8 Acknowledgements

We are thankful to Jeff Lewis of Galois Connections for helping
out with the implementation of the mdo-notation. Jeff not only
took time to explain us the internals of Hugs, but also helped with
the actual coding process as well. We are also grateful to Mark P.
Jones and other the members of the OGI PacSoft Research Group
for valuable discussions.

The research reported in this paper is supported by the National
Science Foundation (CCR-9970980).

36

9 References

[1] BENTON, N., AND HYLAND, M. Traced premonoidal cat-
egories (Extended Abstract). In Fixed Points in Computer
Science Workshop, FICS’02 (2002).

[2] BIRD, R. S. Using circular programs to eliminate multiple
traversals of data. Acta Informatica 21 (1984), 239–250.

[3] CLAESSEN, K. Embedded languages for describing and ver-
ifying hardware. PhD thesis, Chalmers University of Tech-
nology, Göteborg, Sweden, 2001.

[4] DE MOOR, O. An exercise in polytypic program derivation:
repmin. Unpublished manuscript. URL: web.comlab.ox.
ac.uk/oucl/work/oege.demoor/pubs.htm, 1996.

[5] ERKÖK, L. Value recursion in monadic computations. PhD
thesis, OGI School of Science and Engineering, OHSU, Port-
land, Oregon, 2002.

[6] ERKÖK, L., AND LAUNCHBURY, J. A recursive do for
Haskell: Design and implementation. Tech. Rep. CSE-00-
014, Oregon Graduate Institute School of Science and Engi-
neering, Department of CSE, OHSU, August 2000.

[7] ERKÖK, L., AND LAUNCHBURY, J. Recursive monadic bind-
ings. In Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming, ICFP’00 (Septem-
ber 2000), ACM Press, pp. 174–185.

[8] ERKÖK, L., LAUNCHBURY, J., AND MORAN, A. Seman-
tics of fixIO. In Fixed Points in Computer Science Workshop,
FICS’01 (September 2001).

[9] GHC web page. URL: www.haskell.org/ghc.

[10] HUGHES, J. Global variables in Haskell. Draft paper. URL:
www.cs.chalmers.se/~rjmh/Globals.ps.

[11] Hugs (Haskell Users Gofer System) web page. URL: www.
haskell.org/hugs.

[12] JONES, M. P. First-class polymorphism with type inference.
In Proceedings of the Twenty Fourth ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL
’97) (1997).

[13] JONES, M. P. Typing Haskell in Haskell. In Proceedings of
the 1999 Haskell Workshop (1999).

[14] LAUNCHBURY, J., LEWIS, J., AND COOK, B. On embed-
ding a microarchitectural design language within Haskell. In
Proceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP ’99) (1999), pp. 60–69.

[15] MATTHEWS, J., COOK, B., AND LAUNCHBURY, J. Micro-
processor specification in Hawk. In Proceedings of the 1998
International Conference on Computer Languages (1998),
IEEE Computer Society Press, pp. 90–101.

[16] NORDLANDER, J. Reactive Objects and Functional Pro-
gramming. PhD thesis, Chalmers University of Technology,
Göteborg, Sweden, 1999.

[17] PATERSON, R. A new notation for arrows. In Proceed-
ings of the Sixth ACM SIGPLAN International Conference on
Functional Programming, ICFP’01, Florence, Italy (Septem-
ber 2001), ACM Press, pp. 229–240.

[18] PEYTON JONES, S. L., AND HUGHES, J. (Editors.) Report
on the programming language Haskell 98, a non-strict purely-
functional programming language. URL: www.haskell.
org/onlinereport, Feb. 1999.

[19] Recursive monadic bindings web page. URL: www.cse.ogi.
edu/PacSoft/projects/rmb.

[20] WRIGHT, A. K. Simple imperative polymorphism. Lisp and
Symbolic Computation 8, 4 (1995), 343–355.

Appendix

The following listing contains the module MonadRec, containing
the MonadRec class declaration and appropriate instances for vari-
ous monads.

-- MonadRec.hs
--
-- Suitable for use with “recursive monadic bindings”
-- http: //www.cse.ogi.edu/PacSoft/projects/rmb

module MonadRec (MonadRec(mfix)) where

import qualified LazyST
import qualified ST
import IOExts

-- The MonadRec class definition
class Monad m ⇒ MonadRec m where

mfix :: (α → m α) → m α

-- Instances of MonadRec:

-- Maybe:
instance MonadRec Maybe where

mfix f = let a = f (unJust a) in a
where unJust (Just x) = x

-- List:
instance MonadRec [] where

mfix f = case fix (f · head) of
[] → []
(x:) → x : mfix (tail · f)

where fix :: (α → α) → α
fix f = let a = f a in a

-- IO:
instance MonadRec IO where

mfix = fixIO

-- Lazy State:
instance MonadRec (LazyST.ST s) where

mfix = LazyST.fixST

-- Strict State:
instance MonadRec (ST.ST s) where

mfix = ST.fixST

37

