
Theoretical Informatics and Applications
Theoret. Informatics Appl. 36 (2002) 155-180

DOI: 10.1051/ita:2002008

SEMANTICS OF VALUE RECURSION

FOR MONADIC INPUT/OUTPUT ∗

Levent Erkök1, John Launchbury1,2 and Andrew Moran2

Abstract. Monads have been employed in programming languages
for modeling various language features, most importantly those that
involve side effects. In particular, Haskell’s IO monad provides access
to I/O operations and mutable variables, without compromising refer-
ential transparency. Cyclic definitions that involve monadic computa-
tions give rise to the concept of value-recursion, where the fixed-point
computation takes place only over the values, without repeating or los-
ing effects. In this paper, we describe a semantics for a lazy language
based on Haskell, supporting monadic I/O, mutable variables, usual re-
cursive definitions, and value recursion. Our semantics is composed of
two layers: A natural semantics for the functional layer, and a labeled
transition semantics for the IO layer.

Mathematics Subject Classification. 68N18, 68Q55, 18C15.

Introduction

Ever since Peyton Jones and Wadler showed how monads can be used to model
I/O in a language with non-strict semantics, monadic I/O became the standard
way of dealing with input/output in Haskell [27,28]. Together with the IO monad,
a rather mysterious function called fixIO, with type ∀τ.(τ → IO τ) → IO τ ,
was also introduced. As Achten and Peyton Jones point out, fixIO “...allows us
to manipulate results [of IO computations] that are not yet computed, but lazily
available” [1] (Sect. 4.1). In this regard, the functionality provided by fixIO is
similar to that of fixST associated with the state monad [18]. Both fixIO and
fixST provide fixed-point operators that enable recursion resulting from the values
of monadic actions. Later work tried to explain the behavior of such fixed-point

∗ This is a revised and extended version of a paper that appeared in FICS’01 [7].

1 OGI School of Science and Engineering, OHSU; e-mail: erkok@cse.ogi.edu
2 Galois Connections, Inc.

c© EDP Sciences 2002

156 L. ERKÖK, J. LAUNCHBURY AND A. MORAN

operators from an axiomatic point of view [6]. It was noted that a generic fixed-
point operator, one that would work regardless of the underlying effect, is not
available. Instead, one has to specify a suitable fixed-point operator for each
different kind of monadic effect. The function fixIO was conjectured to be the
corresponding operator for Haskell’s IO monad, pending a detailed treatment.

To explore this conjecture further, we need to understand the operation of
fixIO. First of all, we need a semantics for the computations in the IO monad.
Recent work by Peyton Jones introduced a semantics based on observable transi-
tions [26], in the spirit of monadic transition systems that were previously studied
by Gordon [9]. In such a system, an IO computation is viewed as a sequence of
labeled transitions. Each label indicates an effect observable in the real world,
similar to those in process calculi [22]. Peyton Jones’s work used an embedding
of a denotational semantics for the functional layer into the IO layer. However, it
did not capture sharing implied by lazy evaluation, the precise interaction of IO
and functional layers, and value recursion. Such an approach is fine, as long as
one is interested in the big picture. If, on the other hand, one wants to capture
value recursion via fixIO, it becomes necessary to be explicit about the details of
the embedding. One aim of this paper is to bridge this gap.

Our semantics is structured in two layers: IO and functional. The semantics for
the IO layer is based on the approach taken by Peyton Jones [26]. The semantics
for the functional layer is based on the natural semantics for lazy evaluation of
Launchbury [16]. A final set of rules precisely shows how these two layers interact
with each other. It is this interaction that allows us to give a semantics for fixIO.

The remainder of this paper is structured as follows. After reviewing back-
ground material on value recursion, we motivate the use of fixIO with some simple
examples. Then, we present a language with monadic I/O, mutable variables, and
value recursion, together with a two layer semantics. We conclude with a discus-
sion of the properties satisfied by fixIO, summary of our results, and pointers for
future work.

1. Related Work and Background Material

Usual domain theoretic treatment of recursion relies on the least fixed-points of
continuous functions. In the implementations of programming languages, recursion
is generally achieved via cyclic structures [2, 10]. Traced monoidal categories,
proposed by Joyal et al. [15], provide a framework for abstractly capturing such
feedback operations. As shown in Hasegawa’s thesis [11], every traced cartesian
category admits a Conway fixed-point operator [32], and vice versa, satisfactorily
explaining recursion resulting from cyclic sharing. A particularly nice summary
of the categorical treatment of fixed-point operators can be found in Simpson and
Plotkin’s recent work [32].

On a parallel thread, Moggi introduced monads to computer science as a way of
structuring denotational semantics [23]. Use of monads influenced functional pro-
gramming community deeply, resulting in a surge of practical applications. Most

SEMANTICS OF VALUE RECURSION FOR MONADIC INPUT/OUTPUT 157

importantly, Haskell’s I/O mechanism was redesigned to use monads [27]. One
particular application domain, however, surfaced the need for a different notion of
recursion in monadic computations: Hardware design languages, such as Hawk and
Lava, employ monads to model circuit elements [4,21]. An important shortcoming
of the monadic approach is the difficulty in modeling feedback loops in circuits,
a fundamental circuit design principle. Launchbury et al. [17] noticed that a new
kind of fixed-point operator is needed, one that would neither repeat nor lose the
effects, but perform recursion only over the values. Later work coined the name
value recursion for this concept [5, 6].

What is the right framework for modeling value recursion? Recalling the cor-
respondence between usual fixed-point operators and traced monoidal categories,
it is natural to ask whether we can build a corresponding framework for value
recursion as well. The answer to this question is still open; we only review the
development so far. One way of modeling value recursion for a strong monad over
a cartesian category is to consider a trace operator on the corresponding Kleisli
category. Unfortunately, the monoidal requirement is too strong: unless the un-
derlying monad is commutative, the Kleisli category will only be premonoidal [30],
and hence the notion of trace is simply not applicable. Hasegawa noted that the ex-
tension of traces to premonoidal categories might prove interesting [11] (Chap. 9).
Jeffrey followed upon this idea, but he worked with a notion of partial traces,
limiting recursion only to a certain class of maps [13].

More recently, Paterson [25] considered value recursion for arrows, a general-
ization of monads [12]. The adaptation of trace axioms, however, turned out to
be too strong for various arrows. More specifically, certain arrows failed to satisfy
the right tightening law required by trace axioms. Indeed, right tightening law has
been observed to be too strong in our earlier work as well (where it was called right-
shrinking) [6]. Independently of Paterson, Benton and Hyland tried to generalize
traces to premonoidal categories as well [3]. They also attempted to generalize
the notion of fixed-point operators to Freyd categories, trying to establish a corre-
spondence with the traced premonoidal case. However, their axiomatization fails
to provide value recursion operators for several monads of practical interest, most
notably exceptions, lazy lists, strict state, and the IO monad, the subject matter
of the present paper. In all these cases, the right tightening axiom fails.

Another common theme in both Paterson’s and Benton and Hyland’s axiom-
atization is the weakening of the sliding axiom. (Recall that sliding axiom for
traces implies swapping the order of computations, which is simply not acceptable
in the premonoidal case [15], as order does matter in performing effects.) Hence,
both Paterson and Benton and Hyland weakened the sliding axiom so that one of
the involved arrows is central, i.e., one that would commute with any other arrow
in the category. However, even this weakened version of sliding is too strong for
value recursion. Similar to the right-tightening axiom, the premonoidal version of
sliding is unsatisfiable for many practical monads, including exceptions, lazy lists,
strict state, and the IO monad [5].

For the purposes of the current paper, we will use our earlier equational presen-
tation of properties of value recursion operators, interpreted in the usual domain

158 L. ERKÖK, J. LAUNCHBURY AND A. MORAN

theoretic model. This is a natural path to follow, given that our aim is to reason
about real Haskell programs. When interpreted with respect to the IO monad and
the function fixIO, these laws are [5]:

1. Strictness: let f :: τ → IO τ be a strict function. Then, fixIO f must
be ⊥. Strictness is an obvious extension of the corresponding property of
usual fixed-points, i.e., it ensures that the fixed-point computation does not
introduce spurious values or effects. Symbolically:

f ⊥τ = ⊥IO τ −→ fixIO f = ⊥IO τ . (1)

2. Purity: consider the composition return · h :: τ → IO τ , where h is a
function of type τ → τ . That is, functions with no effects. In this case, the
value-recursion computation should simply lift the pure fixed-point value to
the monadic world. Symbolically3:

fixIO (return · h) = return (fix · h). (2)

3. Left shrinking: consider a recursive computation that can be decomposed
into two parts, where the initial segment does not make use of the fixed-
point value. In this case we can shrink the recursive loop from the left, i.e.,
pull the initial segment out of the recursive loop. Symbolically:

fixIO (λx. q �= λy. f x y) = q �= λy. fixIO (λx. f x y) (3)

where x does not appear free in q. The types involved are: q :: IO σ, and
f :: τ → σ → IO τ .

For a graphical presentation of these laws (and others), the reader is referred to
our earlier work, and Paterson’s version for arrows [5, 6, 25]. In Section 6, we will
review each one of these laws to establish that fixIO is indeed the required value
recursion operator for the IO monad with respect to our semantics.

2. Motivating Examples

We start by considering several Haskell program fragments, demonstrating the
use of the function fixIO. We will allow ourselves to use Haskell’s do-notation for
notational convenience [27].

3We use the usual Haskell notation: return :: τ → IO τ is the unit of the monad, while the
infix operator �= :: IO τ → (τ → IO σ) → IO σ serves as the bind [27].

SEMANTICS OF VALUE RECURSION FOR MONADIC INPUT/OUTPUT 159

Example 2.1. Our first example shows the interaction of fixIO with input oper-
ations:

fixIO (λcs. do c ← getChar
return (c : cs)).

When we run this computation, a character will be read from the standard input,
say a. Then, the computation will immediately deliver an infinite list of a’s4. We
will be able to pull out as many characters as we wish out of this list, following
the demand-driven evaluation policy of Haskell. There are two crucial points: (i)
the action getChar is executed only once, and (ii) the computation terminates
immediately after the reading is done, i.e., the infinite list is not constructed prior
to its demand. In other words, the fact that the IO monad is strict in actions but
not in values is preserved by fixIO.

Here, we also get a feel for what fixIO provides: it provides a means for recur-
sively defining values resulting from monadic actions. That is, it allows naming
results of computations that will only be available later on, similar to the usual
fixed-point operator. For instance, in the expression given above, we were able to
name the result of the computation as cs, before we had its value computed. In
this sense, the semantics is similar to the semantics of the pure expression:

let cs = ’a’ : cs in cs

which is a more convenient way of writing: fix (λcs. ’a’ : cs), where fix is the
usual fixed-point operator. Except, of course, in the fixIO case the character in
the list is determined by the call to getChar, i.e., it depends on the actual input
available when we run the computation.

Example 2.2. Here is a Haskell expression showing the interaction of fixIO with
mutable variables:

fixIO (λ˜ (x ,). do y ← newIORef x
return (1:x , y))

�= λ(, l). readIORef l.

In this expression, we allocate a cell in which we store the value of the variable x,
before we know what that value really is. The value of x, determined through
the fixed-point computation, is the infinite list of 1’s. The call to fixIO returns
the value (which is discarded) and the address of the cell that stores this cyclic
structure. Outside of the call to fixIO, we dereference the address and get back
the lazily computed list of 1’s. Although this example might look superficial,
it basically captures the essence of cyclic structures with mutable nodes. For
instance, we have previously shown how such a technique can be used to implement
doubly-linked-lists, where each node holds a mutable boolean value [6]. As shown
by Nordlander, a similar situation arises in object oriented programming, when
several objects need to refer to each other cyclically [24].

4Note that, by applying the left shrinking and purity laws of the previous section, we can
reduce this expression to getChar �= λc. return (fix (λcs. c:cs)), guaranteeing the described
behavior axiomatically. Of course, we have not yet established that these two properties hold for
fixIO, but we will do so in Section 6.

160 L. ERKÖK, J. LAUNCHBURY AND A. MORAN

Once we describe our semantics, we will revisit these examples to see how our
system works in practice.

3. The Language

In this section, we define a language based on Haskell [27], supporting monadic
IO primitives, mutable variables, usual recursive definitions, and value recursion.

Notation 3.1. We use the following naming conventions for variables:

c ∈ constructors
x, y, z, w ∈ heap variables

r, s, t ∈ mutable variables.

To simplify the discussion, we syntactically distinguish between heap and mutable
variables: They are drawn from different alphabets.

Definition 3.2. (Terms and values) Terms and values are defined mutually re-
cursively by the following grammars:

(Terms) M, N ::= x
| V
| M N

| let ~x = ~M in N
| case M of {ci ~xi → Ni}

(Values) V ::= c x 1 x2 ... x i

| λx. M
| return M | M �= N
| getChar | putChar M
| fixIO M | updatez M
| r
| newIORef M
| readIORef M
| writeIORef M N.

The function updatez, associated with the heap variable z, cannot appear in a valid
input program, and it is never the result of any program either. It is only used
internally, in giving a semantics to fixIO. We will explain its role in detail later.
All other constructs have the same meaning and type as they do in Haskell. Note
that IO actions are values as far as the purely functional world is concerned.

For the purposes of this paper, we only work with well-typed terms, and ignore
the issues of type checking and inference. We assume that the usual Haskell
rules apply to determine well typed terms. (Typing of Haskell programs has been
discussed in detail in the literature [14,27].) Notice that return,�=, fixIO, etc., are
polymorphic constants. As usual, let expressions provide recursive (and possibly
polymorphic) bindings.

A constructor c of arity i is treated as a function λx1 . . . xi. c x1 . . . xi, which
becomes a value of its own when fully applied. This case is captured by the first

SEMANTICS OF VALUE RECURSION FOR MONADIC INPUT/OUTPUT 161

alternative in the definition of values, where c is assumed to have arity i. We model
constants as nullary constructors, that is, numbers, characters, etc., are treated
as constructors with zero arity. (As a notational hint, we will use the letter k to
refer to constants.)

Remark 3.3. It is worth noting that the grammar we gave describes the syntax
for the reduced terms of our language rather than the concrete syntax that we will
allow ourselves to use. In particular, we will freely use the do-notation of Haskell
and pattern bindings in λ-abstractions [27]. In each case, however, the translation
to the core language will be trivial.

Definition 3.4. (IO and pure terms) A well-typed term of type IO τ , for some
type τ , is called an IO term. All other terms are called pure.

Definition 3.5. (Terminal values) A value is called terminal if it has one of the
following forms:

• c x1 x2 . . . xi, where c is a constructor of arity i;
• λx.M ;
• return M ;

where M is an arbitrary term in the second and third cases.

Definition 3.6. (Heaps) A heap is a finite partial function from heap variables
to terms extended with a special black hole value •:

Γ :: Heap Variables ⇀ Terms ∪ {•}.

A heap binding can be polymorphically typed. A black hole binding, such as
z 7→ •, indicates that the variable is known but not directly accessible. Intuitively,
• is a detectable bottom.

Notation 3.7. Although heaps are functions, we will allow ourselves to use the
set notation freely on them: the notation x 7→ M ∈ Γ simply states that Γ maps
x to M . The empty heap is denoted {}. The notation (Γ, x 7→ M) denotes the
heap Γ extended with a new binding x 7→ M . In this case, x cannot be already
bound in Γ, but might appear free in M .

Since our language allows input operations, the meaning of a term might depend
on the input stream it receives while being run. To accommodate this view, we
have to consider terms and input streams together.

Definition 3.8. (Input streams) An input stream is a list of characters, not nec-
essarily finite.

Notation 3.9. We will use the Haskell list notation to denote input streams.
[] (or "") denotes the empty input stream, i.e., the case when the input is ex-
hausted. Otherwise, a stream is of the form (c : I), where c is a character and I
is an input stream.

162 L. ERKÖK, J. LAUNCHBURY AND A. MORAN

Definition 3.10. (Term and program states) A running program is identified by
its program state, which consists of an input stream, a heap and a term state:

(Terms States) P ::= M Current term

| P | 〈x〉r Passive container

| νr.P Restriction.

We use the notation I : Γ : P to denote program states.

A term state is simply the current term under consideration, together with
a number of passive containers. A passive container 〈x〉r represents a mutable
variable named r, which holds a heap variable x. (We only store heap variables
in these containers; the actual contents are stored in the heap.) Restrictions
convey the scoping information for mutable variables. Notice that a program
state contains enough information to capture a program in execution.

Remark 3.11. To reduce clutter, we will generally skip the bits of the program
state that are not needed in the discussion, especially when we write our rules.
That is, we will use Γ : P , if the input stream is irrelevant, and similarly I : P ,
when the heap is not needed. There is no chance of confusion, however, because
we only use capital Greek letters for heaps and never skip the term state.

Definition 3.12. (The functions bn and fn) The function bn takes a heap and
returns all the variables bound in it, i.e., bn(Γ) = {x | x 7→M ∈ Γ}. The function
fn is defined for term states and heaps. Given a term state, fn returns the set
of free variables in it. A heap variable x is free if it is not in the scope of a λx
binding. A mutable variable r is free if it is not in the scope of a νr binding. For a
heap Γ, fn(Γ) =

⋃
{fn(M) | x 7→M ∈ Γ} − bn(Γ). We treat fn as a variable-arity

function: fn(A, B) means fn(A) ∪ fn(B), and similarly for more arguments.

Definition 3.13. (Slice of a heap) The slice of a heap Γ, with respect to a term
state P , written Γ/P , is the subset of Γ that is reachable from the free names of P .
More precisely, for a given Γ and P , let

S0 = fn(P)

Si+1 = Si ∪ (
⋃
{fn(M) | x ∈ Si ∧ x 7→M ∈ Γ})

and let S =
⋃

i∈N
Si. Then,

Γ/P = {x 7→M | x ∈ S ∧ x 7→M ∈ Γ}. (4)

Definition 3.14. (Closed program states) A program state S : Γ : P is closed if
fn(Γ) = ∅, and fn(P) ⊆ bn(Γ). (Note that if the second condition is satisfied, no
mutable variable in P can be free.)

Definition 3.15. (Type of a program state) Let S : Γ : P be a closed program
state, and let M be the term associated with P . We say that S : Γ : P has type
τ , and write (S : Γ : P) :: τ , when M has type τ when typed in the heap Γ.

SEMANTICS OF VALUE RECURSION FOR MONADIC INPUT/OUTPUT 163

Definition 3.16. (Terminal program state) A program state S : Γ : P is terminal
if the term associated with P is terminal (Def. 3.5).

4. Semantics

We describe the semantics of our language in layers. The IO layer takes care of
input-output and manages mutable variables. The functional layer handles pure
computations. A final set of rules regulate the interaction between these two layers.

Given a term, we need to be able to extract the part that is going to be executed
next. We use contexts to guide this search:

Definition 4.1. (Execution Contexts) Execution contexts are described by the
following grammar:

(Execution Contexts) E ::= [·]
| E�= M.

An execution context is a term with one hole, where the hole itself is filled with
a term. The notation E[M] denotes the context E filled with the term M . An
empty context is one where there are no�=’s, as captured by the first alternative.
Otherwise, the context is non-empty, i.e., it is some IO action followed by others5.
If the context is empty, the term filling the context might be pure.

4.1. IO layer

Figure 1 gives the transition rules for the IO layer.
A rule is a (possibly labeled) transition from a program state to another. The

label “!c” indicates that the character c is printed on standard output, and the
one labeled “?c” indicates that the next character from the input stream (which
happens to be c) is consumed.

To simplify the notation, we use a couple of conventions in writing our rules
(which are going to be formalized in Sect. 4.4). Rather than a verbal explanation,
we will consider several illustrative examples:

Example 4.2. Consider the program state

"ab" : Γ : getChar�= putChar

for some heap Γ. The term state consists of the single term getChar�= putChar.
When we match this term to the context grammar given in Definition 4.1, we see
that there are two possibilities. Either we can have the empty context, filled with
the term getChar�= putChar, or the context [·]�= putChar, filled with the term
getChar. Upon inspection of our rules, we see that only the second has a chance of
matching a rule, namely GETC. Since the GETC rule requires the input stream

5Other authors use the term evaluation context for this concept [8]. We prefer the term
execution, since a non-empty context can only be filled by an IO action which is going to be
executed next.

164 L. ERKÖK, J. LAUNCHBURY AND A. MORAN

E[putChar c]
!c
−→ E[return ()] (PUTC)

(c : I) : E[getChar]
?c
−→ I : E[return c] (GETC)

E[return N �= M] −→ E[M N] (LUNIT)

r /∈ fn(E[newIORef M]) ∧ x /∈ bn(Γ)

Γ : E[newIORef M] −→ (Γ, x 7→M) : νr.(E[return r] | 〈x〉r)
(NEWIO)

E[readIORef r] | 〈x〉r −→ E[return x] | 〈x〉r (READIO)

y /∈ bn(Γ)

Γ : E[writeIORef r N] | 〈x〉r −→ (Γ, y 7→ N) : E[return ()] | 〈y〉r
(WRITEIO)

z /∈ bn(Γ)

Γ : E[fixIO M] −→ (Γ, z 7→ •) : E[M z �= updatez]
(FIXIO)

(Γ, z 7→ •) : E[updatez M] −→ (Γ, z 7→M) : E[return z] (UPDATE)

Figure 1. Semantics: IO layer.

to be of the form (c : I), we have to make sure that we have a non-empty stream.
Because "ab" is not empty, the GETC rule is applicable. Hence, we end up with
the transition:

"ab" : Γ : getChar �= putChar
?a
−→ "b" : Γ : return ’a’ �= putChar.

Note that the GETC rule does not make use of the heap, hence it is not even
mentioned. The heap is simply carried across unchanged.

Example 4.3. Consider what happens when we continue the preceding example.
Again, there are two possible choices for the context. The empty context, filled
with the term return ’a’ �= putChar, or the context [.] �= putChar, filled with
the term return ’a’. Unlike the preceding case, however, the first choice matches
the LUNIT rule, while the second one does not match any. Since the LUNIT
rule does not constrain the input stream or the heap in any way, it is applicable.
Hence, we end up with the transition:

"b" : Γ : return ’a’ �= putChar −→ "b" : Γ : putChar ’a’.

SEMANTICS OF VALUE RECURSION FOR MONADIC INPUT/OUTPUT 165

Since PUTC rule does not make use of the input stream or the heap, it does not
explicitly mention them. They are both simply copied. It should now be obvious
that the next transition is:

"b" : Γ : putChar ’a’
!a
−→ "b" : Γ : return ()

and there are no more transitions from this state, as none of the rules match.

Example 4.4. Consider the program state I : Γ : newIORef 5 �= readIORef,
for some I and Γ. The only matching choice for the context is [·] �= readIORef,
with the term newIORef 5 filling the hole. The NEWIO rule applies. To satisfy
the precondition of this rule, we have to pick variables r and x such that r /∈
fn(newIORef 5 �= readIORef) and x /∈ bn(Γ). We simply pick fresh variables to
satisfy these requests. Let us call them r and x for simplicity. We end up with
the transition:

I : Γ : newIORef 5 �= readIORef

−→ I : (Γ, x 7→ 5) : νr.(return r �= readIORef | 〈x〉r).

Example 4.5. We will continue with the previous example. Clearly, we want to
apply the LUNIT rule, but it is not clear how we get over the restriction νr. If we
look at the LUNIT rule, we see that only a term in context is specified (as in all
rules except READIO and WRITEIO). The convention we adopt in this case is the
following: if a rule only mentions a term in a context in the term state position,
then we consider the term associated with the current program state and try to
match it. Any remaining restrictions, passive containers, etc. are copied along.
That is, the application of the LUNIT rule in this case yields:

I : (Γ, x 7→ 5) : νr.(return r �= readIORef | 〈x〉r)

−→ I : (Γ, x 7→ 5) : νr.(readIORef r | 〈x〉r).

Example 4.6. Finally we show how to handle rules that have both a term in
context and a passive reference mentioned in their left hand sides, namely the
WRITEIO and READIO rules. Continuing the previous example, we see that the
READIO rule needs to be applied, which requires a term of the form readIORef r
next to a passive container named r. In this case, our convention is the following:
if a rule mentions a term in context next to a passive container, then a program
state matches it if and only if we can show that the term associated with it matches
the term in context, and we are next to the corresponding passive container. In
our case, we get the following transition:

I : (Γ, x 7→ 5) : νr.(readIORef r | 〈x〉r)

−→ I : (Γ, x 7→ 5) : νr.(return 5 | 〈x〉r).

Remark 4.7. The careful reader must have noticed that it is not necessarily the
case that we will always have the required passive container positioned nicely. For

166 L. ERKÖK, J. LAUNCHBURY AND A. MORAN

example, if we start with the program state

[] : {} : newIORef 0 �= λr. newIORef 1 �= λs. readIORef r

we will end up with:

[] : {x 7→ 0, y 7→ 1} : νr.(νs.(readIORef r | 〈y〉s) | 〈x〉r).

Clearly, we want to apply the READIOREF rule here as well. Alas, the rule does
not match. In these cases, we will need to use structural rules, which provide
means for transforming the program state into an equivalent one such that there
is an applicable rule. Structural rules are covered in Section 4.4.

Some comments about the FIXIO rule are in order. The function fixIO is
modeled after knot tying recursion semantics. We first create a new heap variable,
called z, whose value is not yet known. This is achieved by binding it to •. Then
we call the function and pass it the argument z, and proceed normally. If the
evaluation of this function needs to know the value of z, the derivation will get
stuck with a detected black hole. Otherwise, z could be passed around, stored in
data structures, etc.: note that it is just a normal heap variable. Once the function
call completes, we update the heap variable z by the result, effectively tying the
knot by an application of the UPDATE rule. In summary, z holds the value of the
entire computation, which might in turn depend lazily on its own value, i.e., it is
recursively defined.

Although the rules of our IO layer are quite similar to those given by Peyton
Jones [26], the following differences are worth mentioning:

• we keep track of the input stream explicitly, rather than assuming that stan-
dard input will be consulted whenever a getChar is executed;

• as in the natural semantics of Launchbury [16], we keep track of a separate
global heap to store values of variables;

• unlike Peyton Jones’s semantics, our reference cells only store heap variables,
rather than arbitrary terms. This restriction is necessary in order to model
sharing implied by lazy evaluation.

4.2. Functional layer

Our rules for the functional layer, given in Figure 2, follow Launchbury’s natural
semantics for lazy evaluation closely [16]. Note that none of the rules in this layer
mention the input stream, as it is irrelevant at this layer. Also, we use the notation
⇓, rather than −→, for reductions. Compared to the IO layer, where we have a
small steps semantics, the rules in the functional layer encode a big step natural
semantics.

Compared to Launchbury’s natural semantics [16], some minor differences worth
mentioning are:

• we introduce a new black hole binding;

SEMANTICS OF VALUE RECURSION FOR MONADIC INPUT/OUTPUT 167

Γ : V ⇓ Γ : V (VALUE)

Γ : M ⇓ ∆ : λy.M ′ (∆, w 7→ N) : M ′[w/y] ⇓ Θ : V

Γ : MN ⇓ Θ : V
(APP)

(Γ, x 7→ •) : M ⇓ (∆, x 7→ •) : V

(Γ, x 7→M) : x ⇓ (∆, x 7→ V) : V
(VAR)

(Γ, x̂1 7→ M̂1 · · · x̂n 7→ M̂n) : N̂ ⇓ ∆ : V

Γ : let x1 = M1 · · · xn = Mn in N ⇓ ∆ : V
(LET)

Γ : M ⇓ ∆ : ck ~xk ∆ : Mk[~xk/~yk] ⇓ Θ : V

Γ : case M of {ci ~yi →Mi} ⇓ Θ : V
(CASE)

Figure 2. Semantics: functional layer.

• the APP rule is generalized to application of terms to terms, rather than
terms to just variables. Correspondingly, we do not need to perform the
normalization pass;

• we perform renaming in the LET rule, rather than the VAR rule.

In the APP rule, we require w /∈ bn(Γ). In the LET rule, we rename all bound
variables x1 . . . xn to x̂1 . . . x̂n so that there will not be any name clashes in the
heap when we do the additions. Similarly, the term M̂i denotes the term Mi,
where each occurrence of xi is replaced by x̂i. (Similarly for N̂ .) The VAR rule
is not applicable if the variable being looked up is bound to • in the heap. If this
case ever occurs, the derivation will simply terminate with failure, corresponding
to a detectable black hole.

We refrain from going into details of this layer, as such systems are rather
well studied in the literature. The interested reader is referred to Launchbury’s
original exposition [16], and Sestoft’s work on abstract machines based on such
systems [31].

4.3. The marriage

Given separate semantics for the IO and functional layers, we need to specify
exactly how they interact. There are two different kinds of interaction. First,
whenever we try to reduce a term of the form, say, putChar M, we first need to
consult the functional layer to reduce the term M to a character. The IO layer
will then perform the output. (Note that the PUTC rule of the IO-layer only

168 L. ERKÖK, J. LAUNCHBURY AND A. MORAN

Γ : M ⇓ ∆ : k

Γ : E[putChar M] −→ ∆ : E[putChar k]
(PUTCEVAL)

Γ : M ⇓ ∆ : r

Γ : E[readIORef M] −→ ∆ : E[readIORef r]
(READIOEVAL)

Γ : M ⇓ ∆ : r

Γ : E[writeIORef M N] −→ ∆ : E[writeIORef r N]
(WRITEIOEVAL)

Γ : M ⇓ ∆ : V

Γ : E[M] −→ ∆ : E[V]
(FUN)

Figure 3. Semantics: marriage of layers. All these rules are
subject to the side condition that M is not a value.

applies when the argument to putChar is a constant.) We need similar rules for
readIORef and writeIORef as well. The first three rules in Figure 3 take care of
this interaction. The second kind of interaction allows handling of applications,
let and case expressions, and variable lookups. This interaction is provided by
embedding the functional world into the IO world, as modeled by the FUN rule.
In all these rules, M is assumed to be a non-value: the functional layer is consulted
to reduce M to a value.

4.4. Structural rules

Finally, we need a set of structural rules to shape our derivations. As discussed
in Remark 4.7, structural rules do not perform evaluation steps as do the other
rules, but they might be necessary in order to transform a program state to an
equivalent one such that one of the transition rules can apply.

The first set of structural rules, presented in Figure 4, state that certain program
states are equivalent to others. As usual, we mention input streams and heaps only
when they are relevant. The ALPHA rules state that heap and mutable variables
can be renamed at will, i.e., we do not distinguish program states that differ only
in the names of variables. (Substitution on heaps is defined as Γ[x/y] = {z 7→
M [x/y] | z 7→ M ∈ Γ}.) Note that we do not need a side condition of the form
s 6∈ bn(Γ) in ALPHA1, since only heap variables can be bound in the heap.

The HEAPEXT rule states that we can add new bindings, as long as they do
not interfere with existing bindings. See Section 6 for an example use of this

SEMANTICS OF VALUE RECURSION FOR MONADIC INPUT/OUTPUT 169

s /∈ fn(P)

Γ : νr.P ≡ Γ[s/r] : νs.P [s/r]
(ALPHA1)

y /∈ fn(Γ, M, P) ∧ y /∈ bn(Γ)

(Γ, x 7→M) : P ≡ (Γ, y 7→M)[x/y] : P [x/y]
(ALPHA2)

x /∈ bn(Γ) ∧ x /∈ fn(Γ, P)

Γ : P ≡ (Γ, x 7→M) : P
(HEAPEXT)

P | Q ≡ Q | P (COMM)
P | (Q | R) ≡ (P | Q) | R (ASSOC)

νr.νs.P ≡ νs.νr.P (SWAP)

r /∈ fn(Q, Γ/Q)

Γ : (νr.P) | Q ≡ Γ : νr.(P | Q)
(EXTRUDE)

Figure 4. Semantics: structural rules, Part I.

rule6. The rules COMM, ASSOC and SWAP state obvious equivalences. Finally
EXTRUDE shows how we can manipulate the scoping of reference variables. The
side condition in the EXTRUDE rule guarantees that no dangling references will
be created. (See Ex. 5.3 for details.)

The second set of structural rules, presented in Figure 5, formalize our conven-
tions in applying the rules. The first four rules simply state that we can concentrate
on the relevant bits of the derivation and add the extra bits later on. And finally,
EQUIV states that we only need to consider program states up to equivalence
when performing transitions.

Example 4.8. We will reconsider the example discussed in Remark 4.7. Recall
that we had the program state:

[] : {x 7→ 0, y 7→ 1} : νr.(νs.(readIORef r | 〈y〉s) | 〈x〉r).

6We can also add a garbage collection rule to get rid of unreachable heap variables and passive
containers. We will avoid such a rule for the sake of brevity, as it is not essential for our current
purposes.

170 L. ERKÖK, J. LAUNCHBURY AND A. MORAN

P
α
−→ Q

Γ : P
α
−→ Γ : Q

(HEAPIN)
P

α
−→ Q

I : P
α
−→ I : Q

(STREAMIN)

P
α
−→ Q

P | R
α
−→ Q | R

(PAR)
P

α
−→ Q

νr.P
α
−→ νr.Q

(NU)

Γ : P ≡ ∆ : P ′ ∆ : P ′ α
−→ Θ : Q′ Θ : Q′ ≡ Σ : Q

Γ : P
α
−→ Σ : Q

(EQUIV)

Figure 5. Semantics: structural rules, Part II. The label α
ranges over empty transitions as well.

By applying EXTRUDE, ASSOC, COMM, ASSOC and READIOREF rules (and
by appropriate applications of the rules in Figure 5 to enable them), we get:

≡ [] : {x 7→ 0, y 7→ 1} : νr.(νs.((readIORef r | 〈y〉s) | 〈x〉r))

≡ [] : {x 7→ 0, y 7→ 1} : νr.(νs.((readIORef r | 〈x〉r) | 〈y〉s))

−→ [] : {x 7→ 0, y 7→ 1} : νr.(νs.((return x | 〈x〉r) | 〈y〉s)).

There are no matching rules for the resulting program state. We can apply struc-
tural rules again, but none will give us a program state where a non-structural
rule can apply.

Remark 4.9. One can extend ≡ to an equivalence relation on program states
by simply adding rules to make it reflexive and transitive. However, the current
definition of ≡ given in Figure 4 is simply too crude to be useful for this purpose.
Intuitively, we want to be able to identify program states if their “observable
behavior” are the same [9,20,29]. We defer a formal development of this possibility
to future work.

4.5. Meaning of program states

The meaning of a closed program state is its derivation:

Definition 4.10. (Derivations) Let I : Γ : P be a closed program state. The
derivation for I : Γ : P is a sequence of labeled transitions, where at each step a
rule is applied. Structural rules can be applied at any time, as long as they trigger
the application of a non-structural rule. The derivation continues until there are
no applicable rules.

Simple inspection of our rules reveals that we have a deterministic system mod-
ulo the structural rules. That is, given a program state there is at most one
non-structural rule that can apply to it.

SEMANTICS OF VALUE RECURSION FOR MONADIC INPUT/OUTPUT 171

Definition 4.11. (Effect of a derivation) The effect of a derivation is the con-
catenation of its transition labels. Empty transitions do not contribute to the
effect.

The effect of a program state is simply a (possibly infinite) list, where each
element is of the form “?c” or “!c” for some character c.

Notation 4.12. As usual, −→∗ is the reflexive transitive closure of −→. We will

shorten multiple steps of derivations using the notation I : Γ : P
α
−→∗ I ′ : Γ′ : P ′.

Definition 4.13. (Divergent and normal program states) A closed program state
I : Γ : P is called divergent if the derivation starting from I : Γ : P either

• continues indefinitely (i.e., we never run out of non-structural rules to apply);
• or, gets stuck in a non-terminal program state (Definition 3.16) where no

non-structural rule applies.

Otherwise, I : Γ : P is called normal.

Example 4.14. It is easy to come up with divergent terms. For instance, one can
show that the derivation for:

I : Γ : let loop = putChar ’a’ � loop in loop (5)

diverges, since we never run out of rules to apply. However, the derivation for:

I : Γ : let x = x in x (6)

will diverge by getting stuck. The FUN rule will never fire, because there are no
reductions for this term in the functional layer. (Notice that the first application
of the VAR rule will result in I : (Γ, x 7→ •) : x, but no other rule will apply since
the VAR rule is only applicable when the binding is not a black hole.) Similarly,
a derivation can get stuck via the use of the FIXIO rule (which introduces a black
hole binding in the heap). A final possibility is the application of the GETC rule
when the input stream is empty.

Lemma 4.15. (Derivations for normal program states) Let I : Γ : P be a normal
program state. The derivation starting at this state will take the form

I : Γ : P
α
−→∗ I ′ : ∆ : Q

where I ′ is a suffix of I. Furthermore, Q can be transformed using only the struc-
tural rules to the form ν~r.(N | C), where N is a terminal value (Def. 3.5), and C
is a number (possibly zero) of parallel passive containers. The restrictions encoded
by ~r cover all passive containers in C.

Proof. (Sketch) By definition 4.13, our proof obligation reduces to establishing
that Q can be transformed into the required ν~r.(N | C) form. By inspection
of the structural rules, we see that the rule EXTRUDE can be repeatedly used
to move restrictions to the top, obtaining the required form. (ALPHA rules can

172 L. ERKÖK, J. LAUNCHBURY AND A. MORAN

be used to resolve naming conflicts, if any.) To see the correspondence between
restrictions and the passive containers, just notice that they are introduced to-
gether by NEWIO, they are never removed, and all rules respect the scoping of ν
bindings.

Observation 4.16. Note that derivations apply to both pure and IO terms. A
derivation either diverges, or ends up with an abstraction or a saturated construc-
tor application for a pure term, or with a term of the form return M for an IO
term.

Proposition 4.17. (Derivations for IO-terms in contexts) Let I : Γ : ν~r.(E[M] |
C) be a closed program state, where M is an IO-term. The derivation starting at
this state will either diverge, or take the form:

I : Γ : ν~r.(E[M] | C)
α
−→∗ I ′ : ∆ : ν~r′.(E[return N] | C ′)

β
−→∗ I ′′ : Θ : ν ~r′′.(return O | C ′′)

where I ′ is a suffix of I, and I ′′ is a suffix of I ′.

Proof. By inspection of our rules, we see that if the derivation for Γ : ν~r.(E[M] | C)
terminates, then so must the derivation for Γ : ν~r.(M | C). Hence, by the previous
lemma, it must do so in the required intermediate form. The form of the final state
is again guaranteed by the previous lemma.

To be able to talk about strictness (Eq. (1)), we need to identify what ⊥ means
for the type IO τ :

Definition 4.18. (Silent derivations) A derivation is silent if its effect is empty.

Definition 4.19. (Bottoms of IO) A closed program state (I : Γ : M) :: IO τ is
a bottom element (⊥) for the type IO τ , iff the derivation for I : Γ : M silently
diverges.

Example 4.20. It is easy to see that Program State (5) is not a ⊥ of IO, but
Program State (6) is. While they both diverge, the former is not silent.

Definition 4.21. (Strict functions) Let Γ be a heap and M be a term such that
the program state ([] : Γ : M) :: τ → IO σ is closed. M is strict, if, for all I and
∆ ⊇ Γ/M , x /∈ bn(Γ), the derivation for

I : (∆, x 7→ •) : M x

is silently divergent.

5. Examples

We revisit the examples given in Section 2, and show how our semantics can
handle them. In these examples, we will use the letters a, b, . . . to represent heap
variables as well. To save space, we will apply the structural rules silently.

SEMANTICS OF VALUE RECURSION FOR MONADIC INPUT/OUTPUT 173

Example 5.1. We will revisit Example 2.1. We first remove the do notation in
favor of explicit �=’s:

fixIO (λcs. getChar �= λc. return (c : cs)).

To reduce clutter, we will not write the input stream explicitly. We have:

{} : fixIO (λcs. getChar �= λc. return (c : cs))
−→∗ (FIXIO - FUN)
{z 7→ •, a 7→ z} : getChar �= λc. return (c : a) �= update z

?ch
−→ (GETC – assume input stream has ch in front)
{z 7→ •, a 7→ z} : return ch �= λc. return (c : a) �= update z

−→∗ (LUNIT - FUN)
{z 7→ •, a 7→ z, b 7→ ch} : return (b : a) �= update z

−→ (LUNIT)
{z 7→ •, a 7→ z, b 7→ ch} : updatez (b:a)
−→ (UPDATE)
{z 7→ b : a, a 7→ z, b 7→ ch} : return z.

The derivation terminates with a terminal program state at this point. Hence the
initial program state is normal. The final heap contains the cyclic structure that
represents the infinite list of ch’s: The character that was read by getChar. In case
elements of this list are demanded in a context, the usual demand-driven rules
modeled by our semantics would let us produce enough elements to satisfy the
need. If the input stream is empty to start with, the derivation will simply block
at the point where the GETC rule is applied, and wait forever, i.e., the derivation
will diverge by getting stuck.

Example 5.2. We now reconsider Example 2.2, which involves reference cells.
Again, removing do-notation and simplifying the patterns, we get:

fixIO (λt. newIORef (fst t) �= λy.
return (1 : fst t , y))

�= λu. readIORef (snd u).

Since there are no calls to getChar, the input stream does not matter. That is, we
will simply copy the same input stream through all transitions in our derivation.
Therefore, we simply do not write it explicitly in what follows.

We’ll first consider the fixIO call. To save space, we will abbreviate newIORef
to new and readIORef to read:

{} : fixIO (λt. new (fst t) �= λy.return (1 : fst t , y))
−→∗ (FIXIO - FUN)
{z 7→ •, a 7→ z} : new (fst a) �= λy. return (1 : fst a , y) �= updatez

−→ (NEWIO)
{z 7→ •, a 7→ z, b 7→ fst a} :

νr.(return r �= λy.return (1 : fst a , y) �= updatez | 〈b〉r)
−→∗ (LUNIT - FUN)
{z 7→ •, a 7→ z, b 7→ fst a, c 7→ r} :

174 L. ERKÖK, J. LAUNCHBURY AND A. MORAN

νr.(return (1 : fst a , c) �= updatez | 〈b〉r)
−→∗ (LUNIT - UPDATE)
{z 7→ (1 : fst a, c), a 7→ z, b 7→ fst a, c 7→ r} : νr.(return z | 〈b〉r).

When we consider the original expression, it is not hard to see that we will have:

−→ (LUNIT - FUN)
{z 7→ (1 : fst a , c) , a 7→ z, b 7→ fst a, c 7→ r, d 7→ z} :

νr.(read (snd d) | 〈b〉r)
−→ (READIOEVAL)
{z 7→ (e, f), a 7→ z, b 7→ fst a, c 7→ r, d 7→ (e, f), e 7→ 1 : fst a, f 7→ r} :

νr.(read r | 〈b〉r)
−→ (READIOREF)
{z 7→ (e, f), a 7→ z, b 7→ fst a, c 7→ r, d 7→ (e, f), e 7→ 1 : fst a, f 7→ r} :

νr.(return b | 〈b〉r).

Now, if we chase the value of b in the heap, we see that we will end up with a
cyclic structure effectively representing the infinite lists of 1’s, as intended. The
most interesting step in this derivation is the application of the READIOEVAL
rule. The function snd is a short hand for case over the pairing constructor. The
VAR rule in the functional layer arranges for sharing, resulting in an abundance
of variables in the resulting heap. Notice that, abusing the notation slightly, in
the above derivation (1 : fst a, c) refers to a function application: the pairing
constructor applied to the terms 1 : fst and c. In the last two lines, however, (e, f)
is a value, i.e., in this case, the pairing constructor applied to the right number of
arguments.

Example 5.3. This example demonstrates the importance of the side condition
of the EXTRUDE rule. Consider:

do j ← new 5
k ← new j
l ← read k
read l.

By removing the do-notation, we get:

new 5 �= new �= read �= read.

We will try to give a derivation for this expression, ignoring the side condition of
the EXTRUDE rule. Again the input stream is irrelevant, and hence ignored:

{} : new 5 �= new �= read �= read
−→ (NEWIOREF)
{x 7→ 5} : νj.(return j �= new �= read �= read | 〈x〉j)
−→∗ (LUNIT-NEWIOREF)
{x 7→ 5, y 7→ j} : νj.(νk.(return k �= read �= read | 〈y〉k) | 〈x〉j)
−→ (COMM)
{x 7→ 5, y 7→ j} : νj.(〈x〉j | νk.(return k �= read �= read | 〈y〉k))

SEMANTICS OF VALUE RECURSION FOR MONADIC INPUT/OUTPUT 175

−→ (EXTRUDE – incorrect application)
{x 7→ 5, y 7→ j} : νj.(〈x〉j) | νk.(return k �= read �= read | 〈y〉k)
−→∗ (LUNIT - READ - LUNIT)
{x 7→ 5, y 7→ j} : νj.(〈x〉j) | νk.(read y | 〈y〉k)
−→ (READIOEVAL)
{x 7→ 5, y 7→ j} : νj.(〈x〉j) | νk.(read j | 〈y〉k).

And now we are stuck! The mutable variable j is not visible at this point.
Since we were not careful in applying the extrude rule, we have created a dangling
reference. Let us construct the slice when the rule is applied:

S0 = {y}, S1 = {y, j}, S2 = S1 = S∞.

By equation 4, the slice is: {y 7→ j}. Since j ∈ fn({y 7→ j}), EXTRUDE is not
applicable. The side condition prevents the creation of the dangling reference.

6. Properties of fixIO

Equipped with the semantics we have presented so far, we are now in a position
to look at the properties of fixIO.

6.1. Strictness

Consider Equation (1), and let Γ be a heap where f is properly bound. Assum-
ing f is strict (Def. 4.21), we will have:

I : Γ : fixIO f −→ I : (Γ, z 7→ •) : f z �= updatez

by a single application of the FIXIO rule. The current context specifies that the
application f z should be evaluated. By Definition 4.21, the derivation will silently
diverge. But then, by Definition 4.19, this divergence implies that fixIO f is ⊥.

To illustrate the notion of strictness for IO computations, we will consider
several examples.

Example 6.1. Using if as a shorthand for case over the boolean type, consider:

I : {} : fixIO (λx. if x == 0 then return 1 else return 2)
−→ (FIXIO - FUN)

I : {z 7→ •, a 7→ z} : if a = 0 then return 1 else return 2 �= updatez

... detected black hole ...

In the last step, the FUN rule is not applicable because there are no reductions
for the current term in the functional layer.

Example 6.2. Consider the following non-strict function:

λx. return x :: Char → IO Char.

176 L. ERKÖK, J. LAUNCHBURY AND A. MORAN

Notice that it returns a computation successfully. Of course, if the result of the
fixed-point computation is used, it will still diverge, but for a different reason:

I : {} : fixIO (λx. return x) �= putChar
−→ (FIXIO - FUN)

I : {z 7→ •, a 7→ z} : return a �= updatez �= putChar
−→ (LUNIT)

I : {z 7→ •, a 7→ z} : updatez a �= putChar
−→∗ (UPDATE - LUNIT)

I : {z 7→ a, a 7→ z} : putChar z
... detected black hole ...

The last step diverges, because the VAR rule will get stuck trying to reduce z to
a character.

Example 6.3. Consider the function:

λa. putChar ’q’ � if a == 1 then return 1 else return 2

which is not strict according to our semantics. Here is the derivation for it:

I : {} : fixIO (λa. putChar ’q’ � if a == 1 then return 1 else return 2)
−→∗ (FIXIO - FUN)

I : {z 7→ •, a 7→ z} :
putChar ’q’ � if a == 1 then return 1 else return 2 �= updatez

!q
−→ (PUTC)

I : {z 7→ •, a 7→ z} : if a == 1 then return 1 else return 2 �= update z

... detected black hole ...

But, before getting stuck, we see the character q printed, which is the correct
behavior in this case.

6.2. Purity

Consider Equation (2), where we will use a let expression to capture the func-
tionality of fix:

fixIO (return · h) = return (let a = h a in a).

Assume Γ is a heap such that ([] : Γ : h) :: τ → τ . On the left hand side, we have:

I : Γ : fixIO (return · h)
−→∗ (FIXIO - FUN)

I : (Γ, z 7→ •, a 7→ z) : (return · h) a �= update z

−→ (LUNIT)
I : (Γ, z 7→ •, a 7→ z) : updatez (h a)
−→ (UPDATE)

I : (Γ, z 7→ h a, a 7→ z) : return z.

SEMANTICS OF VALUE RECURSION FOR MONADIC INPUT/OUTPUT 177

Considering the right-hand-side, we immediately get:

I : Γ : return (let a = h a in a).

We should now prove that these two program states are equivalent, i.e., that
the rules in our system cannot tell them apart. Such an argument would require a
notion of program state equivalence that is more general than what our structural
rules provide. Intuitively, the program states above will be considered equivalent
if we can show that

I : (Γ, z 7→ h a, a 7→ z) : z ≡ I : Γ : let a = h a in a.

Note that the second program state reduces to I : (Γ, z 7→ h z) : z. Hence,
the equivalence is clear provided we adopt a compaction rule that gets rid of the
indirection via a in the first heap. To formalize this argument, we need a precise
definition of program state equivalence and a proof system for showing when two
program states are the same. Development of a such a system is beyond the scope
of the current paper.

6.3. Left shrinking

We will now consider equation (3). Assume q is bound appropriately in the
heap Γ. For the left hand side we get:

I : Γ : fixIO (λx. q �= λy. f x y)
−→∗ (FIXIO - FUN)

I : (Γ, z 7→ •, a 7→ z) : q �= λy. f a y �= update z .

On the right hand side, we have I : Γ : q �= λy. fixIO (λx. f x y). Now, if
the derivation for q diverges, both derivations will diverge in the exact same way,
that is both sides are equivalent. Otherwise, by Lemma 4.15, we will have:

I : Γ : q
α
−→ I ′ : ∆ : ν~r.(return qv | C).

The C on the right hand side captures the passive containers that might be in-
troduced in the derivation for q, along with the associated restrictions ν~r. Since
these containers will get copied in exactly the same way, we do not show them
explicitly in the following discussion. Using the HEAPEXT and EXTRUDE rules
silently, the left hand side yields:

I : (Γ, z 7→ •, a 7→ z) : q �= λy. f a y �= update z
α
−→∗ (ASSUMPTION)

I ′ : (∆, z 7→ •, a 7→ z) : return qv �= λy. f a y �= update z

−→∗ (LUNIT, FUN)
I ′ : (∆, z 7→ •, a 7→ z, b 7→ qv) : f a b �= updatez .

178 L. ERKÖK, J. LAUNCHBURY AND A. MORAN

Let us look at the right hand side:

I : Γ : q �= λy. fixIO (λx. f x y)
α
−→∗ (ASSUMPTION - LUNIT)

I ′ : (∆, b 7→ qv) : fixIO (λx. f x b)
−→∗ (FIXIO - FUN)

I ′ : (∆, b 7→ qv, z 7→ •, a 7→ z) : f a b �= updatez .

Hence, the left shrinking property holds for fixIO. We conclude that, with respect
to our semantics, fixIO is a value recursion operator for the IO monad.

7. Conclusions And Future Work

We have described a semantics for fixIO, and shown that it satisfies the axioms
required for value recursion operators [5, 6]. Our approach presents a full opera-
tional semantics for a non-strict functional language extended with monadic IO
primitives and references. Our contributions are:

• we show how a purely functional language and its semantics can be embedded
into a language with monadic I/O, mutable variables, and value recursion;

• we model sharing explicitly at all levels, giving an account of call by need in
both the functional and the IO layers;

• we provide a semantics for fixIO and show that it indeed is a value recursion
operator.

Our work can be extended in several ways. The most obvious extension is the
addition of threads and synchronized variables as in Peyton Jones’s work [26]. This
extension does not present any technical challenges. The difficulty, however, lies in
extending the approach with asynchronous exceptions [19]. Although exceptions
can be modeled nicely in the IO layer, we currently do not see a complementary
way of capturing them in the functional layer using our method.

Developing proof techniques for establishing program equivalence remains as a
challenging task. Although reasoning techniques are quite well developed for the
functional sublanguage, we do not have very strong tools to deal with monadic ef-
fects and mutable variables. Needless to say, the same goes for the Haskell language
in general. Although the system we have described can be used to give semantics
to concrete examples, it is harder to use it when reasoning about symbolic terms.

Acknowledgements. We thank Simon Peyton Jones, Mark Shields, and Sava Krstić and
other members of the OGI PacSoft Group for valuable discussions.

References

[1] P. Achten and S. Peyton Jones. Porting the Clean Object I/O Library to Haskell. In Pro-
ceedings of the 12th International Workshop on Implementation of Functional Languages,
pages 194–213, 2000.

SEMANTICS OF VALUE RECURSION FOR MONADIC INPUT/OUTPUT 179

[2] Zena M. Ariola and Stefan Blom. Cyclic lambda calculi. In Theoretical Aspects of Computer
Software, pages 77–106, 1997.

[3] Nick Benton and Martin Hyland. Traced premonoidal categories (Extended Abstract). In
Fixed Points in Computer Science Workshop, FICS’02, 2002.

[4] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware design in
Haskell. In International Conference on Functional Programming, Baltimore, July 1998.

[5] Levent Erkök. Value recursion in monadic computations. PhD thesis, OGI School of Science
and Engineering, OHSU, Portland, Oregon, 2002.

[6] Levent Erkök and John Launchbury. Recursive monadic bindings. In Proceedings of the
Fifth ACM SIGPLAN International Conference on Functional Programming, ICFP’00,
pages 174–185. ACM Press, September 2000.

[7] Levent Erkök, John Launchbury, and Andrew Moran. Semantics of fixIO. In Fixed Points
in Computer Science Workshop, FICS’01, September 2001.

[8] Matthias Felleisen and Robert Hieb. A revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science, 103(2):235–271, 1992.

[9] A. D. Gordon. Functional Programming and Input/Output. Distinguished Dissertations in
Computer Science. Cambridge University Press, September 1994.

[10] Masahito Hasegawa. Recursion from cyclic sharing: Traced monoidal categories and models

of cyclic lambda calculi. In Typed Lambda Calculus and Applications, pages 196–213, 1997.
[11] Masahito Hasegawa. Models of Sharing Graphs, A categorical semantics of let and letrec.

Distinguished Dissertations in Computer Science. Springer Verlag, 1999.
[12] John Hughes. Generalising monads to arrows. Science of Computer Programming, 37(1-

3):67–111, May 2000.
[13] Alan Jeffrey. Premonoidal categories and a graphical view of programs. Unpublished man-

uscript. URL: fpl.cs.depaul.edu/ajeffrey/premon/paper.html, 1997.
[14] Mark P. Jones. Typing Haskell in Haskell. In Proceedings of the 1999 Haskell Workshop,

1999.
[15] A. Joyal, R. H. Street, and D. Verity. Traced monoidal categories. Mathematical Proceedings

of the Cambridge Philosophical Society, 119(3):447–468, 1996.
[16] John Launchbury. A natural semantics for lazy evaluation. In Conference record of the

Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Charleston, South Carolina, pages 144–154, 1993.

[17] John Launchbury, Jeff Lewis, and Byron Cook. On embedding a microarchitectural design
language within Haskell. In Proceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP ’99), pages 60–69, 1999.

[18] John Launchbury and Simon L. Peyton Jones. State in Haskell. Lisp and Symbolic Compu-
tation, 8(4):293–341, December 1995.

[19] Simon Marlow, Simon L. Peyton Jones, Andrew Moran, and John Reppy. Asynchronous ex-
ceptions in Haskell. In ACM SIGPLAN 2001 Conference on Programming Language Design
and Implementation (PLDI), Snowbird, Utah, June 20–22 2001.

[20] Ian A. Mason and Carolyn L. Talcott. Equivalence in functional languages with effects.
Journal of Functional Programming, 1(3):287–327, 1991.

[21] John Matthews, Byron Cook, and John Launchbury. Microprocessor specification in Hawk.
In Proceedings of the 1998 International Conference on Computer Languages, pages 90–101.
IEEE Computer Society Press, 1998.

[22] Robin Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge University
Press, May 1999.

[23] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1),
1991.

[24] Johan Nordlander. Reactive Objects and Functional Programming. PhD thesis, Chalmers
University of Technology, Göteborg, Sweden, 1999.

[25] Ross Paterson. A new notation for arrows. In Proceedings of the Sixth ACM SIGPLAN
International Conference on Functional Programming, ICFP’01, Florence, Italy, pages 229–
240. ACM Press, September 2001.

180 L. ERKÖK, J. LAUNCHBURY AND A. MORAN

[26] Simon L. Peyton Jones. Tackling the awkward squad: monadic input/output, concurrency,
exceptions, and foreign-language calls in Haskell. In Tony Hoare, Manfred Broy, and Ralf
Steinbruggen, editors, Engineering theories of software construction, pages 47–96. IOS
Press, 2001.

[27] Simon L. Peyton Jones and John Hughes. (Editors.) Report on the programming language
Haskell 98, a non-strict purely-functional programming language. URL: www.haskell.org/
onlinereport, February 1999.

[28] Simon L. Peyton Jones and Philip Wadler. Imperative functional programming. In Confer-
ence record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Charleston, South Carolina, pages 71–84, 1993.

[29] A. M. Pitts. Parametric polymorphism and operational equivalence. Mathematical Struc-
tures in Computer Science, 10:321–359, 2000.

[30] John Power and Edmund Robinson. Premonoidal categories and notions of computation.
Mathematical Structures in Computer Science, 7(5):453–468, 1997.

[31] Peter Sestoft. Deriving a lazy abstract machine. Journal of Functional Programming,
7(3):231–264, 1997.

[32] Alex Simpson and Gordon Plotkin. Complete axioms for categorical fixed-point operators.
In Proceedings of the Fifteenth Annual IEEE Symposium on Logic in Computer Science,

pages 30–41, 2000.

.

